PARAMETERS OF NOBLE GAS DISCHARGES 29

and the average rate of energy loss P is then

1
NJN,

where F.(v),N. and F,(V),N, refer to electrons and
atoms, respectively.

Values of P are shown in Fig. 7, the temperature of
the gas atoms being taken as 293°K. The dotted curve
is one calculated by Kenty,! using the Compton for-
mula,! and total cross-section data of Ramsauer and
Kollath. He assumed a Maxwell-Boltzmann distribu-
tion for the electrons, neglecting the motion of the gas
atoms. He also measured the loss experimentally, over
a limited range of electron temperature from 0.84 ev
to 1.29 ev. His calculated values differed from his
experiment by a few percent at the lower temperature
and by about 20 percent at the higher temperature. If
one makes the comparison using the values of elastic
loss per electron derived from the phase-shifts, the
agreement is better than 6 percent over the range of
Kenty’s experimental values.

b=

fwfw dVdV'UO'tp.o(Vo'V)Fe(‘v)Fa(V)y (14)
0 0

10 Kenty, Easley, and Barnes, J. Appl. Phys. 22, 1006 (1951).
1 K, T. Compton, Phys. Rev. 22, 333 (1923).

V. DISCUSSION

The probable accuracy of these calculations is esti-
mated to be within 10 percent for electron energy
greater than 0.15 ev. The main source of error lies in
the original set of phase shifts. A direct comparison with
theoretical calculations is possible only for helium. The
zero-order phase shift for helium used in these calcu-
lations agrees very closely with a calculation by Morse
and Allis®? using a Hartree field, and also with a recent
calculation by Moiseiwitsch®® using a variational
method. For £<1.0 (13.5 ev) the agreement among the
three is about 1 percent; and for k<2.5(~85 ev) the
agreement is better than 6 percent.

There are two features of significance in these phase
shift calculations. First, the extrapolation of phase
shifts to energies less than 1 or 2 ev is probably more
reliable than extrapolation of the direct scattering data.
Second, the transport cross sections constitute a central
set of data from which many discharge parameters can
be calculated; thus, if experimental agreement is
established for several parameters, then one can more
confidently extend the calculations to parameters which
are not easily measured accurately.

2P, M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).

( 13 B). L. Moiseiwitsch, Proc. Roy. Soc. (London) A219, 102
1953).
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A. B. Lmiarp
Department of Physics, University of Illinois, Urbana, Illinois

(Received October 28, 1953)

Experimental determinations of the ionic conductivity of impure or “doped” alkali halide crystals are
often used to find the mobility of the cation vacancies. For this purpose it is important to know to what
extent the vacancies and the impurity ions have associated together to form neutral ‘“complexes,” which do
not contribute to the conductivity. Previous interpretations of the experimental data have relied largely on
the law of mass action to give the degree of association, but have neglected the long-range Coulomb interac-
tions between the unassociated impurity ions and vacancies. The effect of these interactions on the calculated
degree of association and upon the dc conductivity is examined in this paper. The interactions are shown to
be significant even in systems containing impurities in concentrations of no more than one part in 10% A new
analysis of the results obtained by Etzel and Maurer for the system NaCl+CdCly, leads to a binding energy
of about 0.35 ev for the cadmium ion-vacancy complex. The mobility of the sodium ion vacancy is found to be
about 30 percent larger, at all temperatures, than was inferred by Etzel and Maurer, using a simpler theory
to interpret the data. The activation energy for the vacancy motion remains however at about 0.9 ev.

L. INTRODUCTION More recent reviews have been given by Jacobs and

HE ionic conductivity of polar crystals has in
recent years engaged the attention of many in-
vestigators. The earlier work, mainly on pure crystals,
has been reviewed by Mott and Gurney! and by Seitz.?

* This work was supported by the U. S. Office of Naval Research.

T Present address: Department of Physics, University of Cali-
fornia, Berkeley 4, California.

IN. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, Oxford, 1948), Chap. IL.

2 F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), Chap. XV.

Tompkins,® and by Jost.*

In general the ionic current is carried by the migra-
tion of lattice vacancies and interstitial ions. The
analysis of the experimental data is complicated by the
temperature dependence not only of the numbers of the
various carriers but also of their mobilities. Thus the

3P. W. M. Jacobs and F. C. Tompkins, Quart. Revs. London
6, 238 (1952).

1W. Jost, Diffusion in Solids, Liquids, Gases (Academic Press,
New York, 1952), Chap. IV.
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contribution of a particular carrier to the conductivity
is limited both by the thermal energy needed to create
it and by the energy barriers which prevent its free
migration once it is formed. Uncertainties in the values
of these energies limit the usefulness of the theory of
conduction in the general ionic crystal.® Particular
substances may however present simplified situations.
Thus in AgBr, the ionic current is carried only by the
interstitial silver ions and by the silver ion vacancies.
The alkali halides are an even simpler example. Here
interstitial ions do not occur to any appreciable extent
and, at least for temperatures less than about 400°C,®
the cation vacancies alone carry the current. But the
situation can be refined further. Consider, for example,
the solution of small amounts of CdCl, in NaCl. The
Cd*+ ions enter the Nat lattice substitutionally, but
owing to their double charge there must also be intro-
duced an equal number of Nat vacancies in order to
maintain electrical neutrality. Since the number of
thermally produced vacancies is very small, it only
needs an impurity content of one part in 10* to keep the
number of vacancies quite independent of temperature.
Hence, by considering a “doped” alkali halide crystal we
have a system with only one type of current carrier, the
latter being present in known constant amount. The
same situation can be obtained in the silver halides,
although here much larger additions” of the divalent
ion are required (about 1 percent).

It might appear that we have now so simplified the
system as to make it of no further theoretical interest
and of experimental interest only in so far as it enables
a simple direct measure of the cation vacancy’s mobility.
That this is not so is because of the effective negative
charge (—e) carried by the cation vacancy and the effec-
tive positive charge (-+e¢) of the divalent impurity ions.
Now charges of the same kind repel one another, and
unlike charges attract, so that at the absolute zero of
temperature the lowest-energy state of the system will
be one in which each impurity ion has a cation vacancy
attached to it in the nearest neighboring position.®
Such a pair is spoken of as a ‘“‘complex.” At higher
temperatures some of these attachments will be broken,
and the thermodynamic state at a temperature 7" can
be described by giving the number of complexes which
remain. Now the complexes have no net charge and so
do not contribute to the conductivity. In the inter-
pretation of conductivity data it is therefore important

5 General equations giving the number of vacancies and inter-

stitial ions, of both kinds, have been derived by R. H. Fowler and

Guggenheim, Statistical Thermodynamics (Cambridge
University Press, Cambridge, 1939), Chap. XIII.

8 See Table XV of reference 2.

7 The conductivity of AgCl and AgBr containing lead and
cadmium ions has been studied by E. Koch and C. Wagner, Z.

hysik. Chem. B38, 295 (1937) and by J. Teltow, Ann. Physik,
, 63 (1949).

8 This is, of course, the nearest neighboring position on the
cation sublattice. Since the anion sublattice plays no active role
in our considerations we shall speak of the cation sublattice simply
as the lattice. Thus in NaCl the “lattice” is of face-centered cubic

type.

LIDIARD

to know the number of complexes present, particularly
as a function of the impurity concentration. The law of
mass action has been used for this purpose by several
workers.> ' At any given temperature let there by »
complexes present; if the total number of impurity ions
is N; there will be N;—» unassociated vacancies, and
the law of mass action states that

N+1’l

———=K(1), 1
(Ni—n)?

where K (T) is a function only of the temperature. The
number of solvent cations is denoted by N,. Equation
(1) enables us to calculate the variation in the degree of
association #/N;, i.e., the variation in the conductivity,
as we alter the concentration N,;/N, of the impurity. It
was on this basis that Etzel and Maurer! analyzed
their experimental data on the system NaCl+CdCl,.

However, by requiring K(7') to be independent of
N; we are implicitly neglecting the interactions between
unassociated impurity ions and vacancies. As far as we
are aware they have not yet been taken into account in
the present connection,!? although an indication of their
possible importance has been obtained by Teltow.!* He
analyzed his data on AgBr+ CdBr, both on the basis
of an association described by (1) and also on the
assumption that the vacancies and impurity ions formed
an unassociated (strong) Debye-Hiickel electrolyte. At
impurity concentrations of less than one percent the
data could be fitted reasonably well on either basis,
although for larger concentrations it was apparent that
some combination of the two assumptions was necessary
We therefore propose to retain the idea of associated
complexes, but in addition to treat the unassociated
vacancies and impurity ions as forming a Debye-Hiickel
electrolyte in which the neutral complexes are immersed.
It is of general interest to study the effect of neglecting
the long range interactions among the unassociated
charges and in the present paper we shall discuss this
question with the aid of a simple model in which they
are taken to be Coulombic at all distances. Although the
calculations of Reitz and Gammel® for the system
NaCl+CdCl, show that this is unlikely to be accurate
at distances as small as the nearest neighbor separation,
it does not seem probable that this error will materially
affect our general conclusions about the influence of the

9 Q. Stasiw and J. Teltow, Ann. Physik 1, 261 (1947).

10 J. Teltow, Ann. Physik 5, 71 (1949).

1 H. W. Etzel and R. J. Maurer, J. Chem. Phys. 18, 1003 (1950).

2 J, Frenkel [Kinetic Theory of Liquids (Clarendon Press, Ox-
ford, 1946), p. 36 fi.], considering the thermal production of anion
and cation vacancies in the pure salt, had earlier shown how these
long range interactions would lead to a space change in the surface
regions of the crystal. See also a recent paper by K. Lehovec [J.
Chem. Phys. 21, 1123 (1953)].

18], R. Reitz and J. L. Gammel, J. Chem. Phys. 19, 894 (1951).
These calculations have since been extended by F. Bassani and
F. G. Fumi who have calculated association energies between
vacancies and Cd, Ca, and Sr impurity ions in both NaCl and
KCl [Nuovo cimento (to be published)]. I am very grateful to

Professor Fumi for informing me of their results prior to publi-
cation.
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interaction.* The assumption that the interaction is
purely Coulombic has the practical advantage of leading
to a set of equations containing a minimum of unknown
parameters. Our aim is thus not so much to account in
detail for one special system as to see those effects of
the long-range forces between the unassociated charges
which are common to all systems. In the next section we
obtain equations showing the influence of these forces
on the degree of association into complexes, as a
function of temperature and impurity content. Numer-
ical results giving #/N; as a function of 7" for various
molar concentrations between 10~ and 1072 are ex-
hibited graphically. In Sec. ITI we apply these results to
the derivation of the steady dc conductivity. We show
that departures from the simple association theory!
may well be detectable even at impurity concentrations
as low as a few parts in 10% A fresh analysis of the ex-
perimental data obtained by Etzel and Maurer (in
Sec. IV) bears out this deduction. In the course of this
analysis we obtain a value of 0.35 ev for the binding
energy of the Cd*+: vacancy complex in NaCl. The
activation energy for vacancy diffusion in NaCl deduced
by Etzel and Maurer to be 0.9 ev is unaltered, although
we find that the mobility is some 30 percent larger than
is predicted by their Eq. (18). In subsequent papers we
shall apply these calculations to a discussion of diffusion
and of the ac conductivity and dielectric loss.

II. DEGREE OF ASSOCIATION INTO COMPLEXES

Our problem in this section is the calculation of the
degree of association between the impurity ions and the
cation vacancies. As explained in the introduction we
shall take the potential energy of two such ‘“charges”
separated by a distance 7 to be,

e?

V(r)=2—.

€

@)

The positive sign is taken when the “‘charges” are the
same and the negative sign when they are different; e
is the static dielectric constant of the pure solvent salt.
We may proceed therefore by considering the Helmholtz
free energy F of an alkali halide crystal, which is perfect
except for the presence in the cation sublattice of N;
divalent impurity ions and N, vacancies, interacting
with one another according to Eq. (2). It may be
assumed that F can be written as the sum of two parts:
(1) a configurational term directly dependent on the
presence of the impurities and (2) a vibrational term
which is independent of the arrangement of the im-
purities in the lattice. (That the vibrational contribution
to the free energy is independent of the arrangements of
the impurity ions and vacancies can easily be justified

14 We would draw attention to the theory of liquid electrolyte
solutions which has achieved great success, even though it neg-
lects specific non-Coulombic interaction forces between ions close
to one another. See, for example, H. Falkenhagen, Electrolytes
(Oxford University Press, Oxford, 1934).
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as a first approximation.) In calculating the degree of
association we then need not consider the second term
at all. When in the following we speak of the free energy,
we shall in fact mean only the configurational free
energy, since this is all we shall need.

We shall suppose that of the N; impurity ions and V;
vacancies which are distributed among the cation
lattice sites, # are paired together into complexes. Each
complex has sz distinguishable orientations since the
vacancy can be at any one of the 2z nearest neighboring
positions to the impurity ion. The complexes have no
net charge and we shall be justified in neglecting their
small dipolar interactions with one another and with the
unassociated charges. If now the impurity content is
sufficiently low for us also to neglect the mutual interactions
of the unassociated charges if follows immediately that
the configurational free energy is

2 [I (V44 2N:—2s)
8=0
Fo=—kT In

n!

ne?

(Ny+2(Ni—n))!
N W(N—n) (N;—n)!

3)

€79

The first term is the entropy term, the expression inside
the braces being the product of the number of distin-
guishable ways of placing the # complexes on the lattice
and the number of ways of arranging the remaining
N;—n impurity ions and N;—# vacancies. The second
term in the expression (3) is the energy of association,
calculated by substituting the nearest neighbor separa-
tion, 7o into Eq. (2). We can now obtain the equilibrium
number of complexes by minimizing Fo with respect
to n. Using Stirling’s theorem and the condition

N./N,<1 we find
2
X] .
p(eTokT)

This is equivalent to the mass action formula (1),
although (4) gives an explicit form for the temperature
dependence of the equilibrium constant. If we rewrite
(4), in terms of the molar concentration,

N+'ﬂ
—_——=gze
(Ni—n)?

4)

¢=Ni/Ny, ©)
and the degree of association,
p = n/ N + (6)
we get
1
p=1—-—1+ (1+2y)%], ™
Y
where
T,
y= exp[;-l— In (22¢) ] (8)
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Here T, equal to €%/ erok, is the binding energy in‘units of
Boltzmann’s constant. We note that to derive (7) and
(8) it is not necessary to make any assumption about
the source of the binding energy. In Fig. 1 we show p as
a function of 7/T, for three different concentrations.
We now have to consider how these results are modi-
fied when the interactions between the unassociated ions
and vacancies are not sufficiently small as to be negli-
gible. The necessary modification in expression (3) can
be obtained from the theory of electrolyte solutions,
since our system of unassociated ions and vacancies is
equivalent to a solution of a binary electrolyte in a
medium of dielectric constant e. The fact that our “ions”
can only occupy discrete lattice positions whereas the
ions in a solution can move around continuously, is not
likely to be significant at the small concentrations
occurring in this problem. For, at these concentrations,
the average separation between charges will be much
larger than the lattice spacing, and the discreteness of
the allowed positions will be unimportant. We shall
therefore describe the effects of the Coulomb inter-
actions between the unassociated impurity ions and
vacancies by means of the equations of the Debye-
Hiickel theory of electrolytes.’® In applying these
equations, we have to be careful not to allow an im-
purity ion and a vacancy to approach closer than the
next nearest neighboring distance 7, since if they ap-
proached as close as the nearest neighboring distance

7

Fi16. 1. Curves showing the degree of association p as a function
of the reduced temperature T/7T, at three different concentra-
tions; I, ¢=1074; II, ¢=107%; III, ¢=10"2. The dashed lines have
been obtained from 'Egs. (7) and (8); the full lines were calculated
from Eq. (13).

15 For a complete account see the reference cited in footnote 14,
However for the purpose of this section it is more convenient to
refer to Chapter IX of reference 5, particularly Secs. 904 through
914.

they would be considered as a complex and therefore
not part of our unassociated “electrolyte.” We shall
therefore take the ionic radius parameter of the electro-
Iyte theories to be 7;. We are now in a position to write
down the additional free energy F,; due to interactions,
which must be added to Fy to get the total configura-
tional free energy. From Eq. (913.1) of reference 5 we
have:

-2 (N i n)e“’

k7 (kr1). 9)
3e

el=

where «, the Debye-Hiickel screening constant, is given
by
R 8 (N i ‘ﬂ) e?

, 10
VekT (10)

K

and

3 x?
-r(x)=—{ln(1+x)—x+——}. (11)
%3 2
In Eq. (10) V is the volume of the crystal. We can now
find the equilibrium value of , the number of complexes
by minimizing the sum of F, and F,; with respect to 7.
In place of (4) we get

niN, 11 1/722\3
(Ni—n)? ETLery 2\ €

47I'(N ,--—n) i 1

x( ) ]} (12)

VkT 14-kry
This equation is essentially the same as one derived by
Bjérrum?® in his theory of ionic association in electrolyte
solutions. His definition of association is, however,
more general than the association into complexes which
we have used. In the language of our problem, it in-
cludes impurity vacancy pairs farther apart than
nearest neighbors. The extension of our calculations in

this manner is considered in the final section.

Equation (12) can be derived in a more intuitive way
starting from (4), if we notice that the additional term
in the exponential is merely the average potential energy
of an unassociated vacancy in its surrounding Debye-
Hiickel charge cloud [see, for example, Eq. (911, 10) of
reference 5. The total expression in the square brackets
is therefore the effective energy of excitation for a
vacancy going from the associated to the unassociated
state.

In order to obtain numerical results from Eq. (12)
we have to make assumptions about the nature of the
lattice, so that 7o and 7; may be related to one another
and to V. Let us consider the NaCl-type lattice; here
the cation sub-lattice is face-centered cubic, so that
3=12, r;/ro=V2, and V=2N a3, where a is the anion-
cation separation equal to ro/V2. With this assumption

16 N. Bjerrum, Kgl. Danske Videnskab. Selskab., Mat.-fys.
Medd. 7, No. 9, (1926). See also Sec. 924 of reference $.
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of a face-centered cubic lattice, Eq. (12) can be re-
written as

? e[ iz
(I_P)Z—exp[T. n(12¢)
_2(27r\f2)*(To/T)*[(1—P)CJ*] 13)
{1+4(V)L (1~ p)eTo/TTH )

For ¢<107% it was found convenient to solve (13) by
successive approximations using the pairs of equations

[see (7) and (8)]:
1
PO =1——[— 1+ (1420)],  (18)
y(:)
and
Ty
y@D= exp[—zj—i- In(24¢)
2@V (To/T)L(1—p@D)c ]t (15)
{1+4(7r\/7)*[(1—P"'))cTo/T]*}]’

and starting with y© given by (8). For concentrations
greater than 1073 this process requires more than three
iterations, and it is more convenient to rearrange (13)
to give T/T as a function of p. Thus,

ORG=

+(T£) A1 — p)icd IH(EZ%JSE)

T} '
_(:[_) + (1A—p)¥H(aV2)}(2VZ—4)=0. (16)

0

In Fig. 1 we show the solutions of (13) for concentra-
tions 1072, 10~3, and 10~ and for comparison we also
show the corresponding solutions of (7) and (8).
(Results have also been obtained for a number of other
concentrations; details will be supplied on request.)
We notice that the effect of the Coulomb interactions
is to hasten the decay of p with increasing T, and that
this effect is more pronounced the greater the impurity
content. Even so the transition is not especially sharp;
for example, since 7T is of the order of several thousand
degrees a system containing 1 percent of impurity
would have to be raised many hundreds of degrees in
order to reduce the degree of association from 90 percent
to 40 percent. In the normal region of experimentation
on ionic conductivity the degree of association is thus
an appreciable fraction of unity. The gradualness of the
transition also means that any thermal effects due to the
dissociation of complexes will be very slight. Thus there
will be an additional specific heat which may be
calculated from (3) and (9) by using the formula

Co=—Td(Fo+F.)/dT 17
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w0 CONCENTRATION, Cs107*

0% 0
i,

F16. 2. The configurational specific heat, in units of the gas con-
stant per gm-mole of impurity, as a function of the reduced
temperature, T'/To; impurity concentration, 10~2 mole per mole.

This is shown as-a function of 7" in Fig. 2 for a lattice of
the NaCl type and an impurity concentration of 102
The apparent sudden rise of C, from zero to nearly 0.03
R per gram-mole probably requires several hundred
degrees to occur. This combined with the small height
of the peak makes it seem quite impossible that the
transition could be observed experimentally in this way.
Nevertheless Dr. H. Kanzaki at the University of
Tokyo in a private communication to the author, has
reported the occurrence of a small A-type anomaly in
the specific heat of AgCl41 percent CdCl, at 310°C
which is not present in pure AgCl. He also reports a
similar peak in the specific heat of AgBr+1 percent
CdBr;, occurring at about 130°C, but whose precise
shape depends on the heat treatment which the speci-
men has undergone. As explained later in Sec. V, even
our Eq. (13) probably underestimates the sharpness of
the transition in real systems, and it is at least possible
that the decomposition of the complexes could be
detected thermally by measurements such as those
which Kanzaki has made.

III. THE STEADY DC CONDUCTIVITY

As in the last section we can ignore the small dipolar
interactions between the complexes and the unasso-
ciated impurity ions and vacancies. Furthermore, the
complexes being neutral, we may forget them in this
section since we shall only be concerned with the con-
ductivity in the presence of a constant applied field E.1”
The unassociated impurity ions have no mobility by
themselves,'® so that they too make no direct contribution
to the conductivity. They are however of indirect im-
portance in that they form part of the Debye-Hiickel

7'This is only permissible for fields for which Ohm’s law is
obeyed. At higher fields the equilibrium number of complexes de-
pends on E; see L. Onsager, J. Chem. Phys. 2, 599 (1934).

18 This does not imply that the impurity ions are permanently
fixed at their positions in the lattice. An impurity ion may move
whenever there is an adjacent vacancy into which it can jump,
although not otherwise. In other words at any instant only the
associated impurity ions are mobile, but since the equilibrium
existing in the numbers of associated and unassociated impurity
ions is a dynamical equilibrium, every impurity ion before long
gets its chance to move. Hence it is legitimate to assume a ther-
modynamic equilibrium distribution of impurity ions, even though
they make no direct contribution to the conductivity. )
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atmosphere which hinders the motion of the vacancies.
We express the conductivity ¢ in terms of the mobility
u of the unassociated vacancies, as follows:

N;(1-p)
’————-—————’e
vV

g

u. (18)

In the absence of interactions between the impurity
ions and the cation vacancies, # is independent of
concentration and may be calculated in the way used by
Mott and Gurney.! To be definite let us again take the
face-centered cubic lattice; we then find that

w=4a%ew,/kT, (19)

in which wy is the field free probability that a vacancy
will jump to one particular neighboring position in unit
time. This probability w is a quantity explicitly in-
dependent of the impurity concentration. We may
write it in terms of a frequency factor » and a barrier
height U as

wo=ype UK (20)
(see Seitz, reference 2, particularly Sec. 122). In general
this restriction is perhaps too naive, for we must expect
that the introduction into the lattice of foreign ions and
their accompanying vacancies will give rise to distor-
tions such as to alter the barrier height U. This point
has not received much attention so far,’® but at least
for the system NaCl4-CdCl, to which we shall apply
these equations the distortion at the limit of solubility
is teo small to be observable (private communication
from Professor H. Pick). In deriving Eq. (19) it has
been assumed that the field acting to make the vacancy
jump preferentially in one direction, is the macroscopic
internal electric field E (“pipe” field), and not a
Lorentz internal field depending on the polarization of
the crystal. The reasons for regarding this as a good
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F1c. 3. Curves of ¢/ac against as showing the difference be-
tween the simple association theory (dashed lines) and the theory
presented here (full lines). The numbers on the curves are the
corresponding values of 7°/T,.

19 The theory of a similar problem in metals has been given by
A. W. Overhauser, Phys. Rev. 90, 393 (1953).
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approximation are contained in Sec. 5 in Chapter 1,
reference 1.

At impurity concentrations where the Coulomb
forces become important Eq. (19) for the mobility is not
sufficient. The long-range interactions lead to the same
relaxation effects as occur in the electrolyte solutions.?
The tendency of a vacancy to be held back by its
“atmosphere” of impurity ions requires us to multiply
(19) by some factor f<1, in order to get the true mo-
bility for substitution into (18). The theory of Onsager,?
gives -

e

s — (21)
3ekT (24V2)

fo=1

Here we have dropped the electrophoretic term, which
has meaning in a liquid where the ions can drag the
solvent along with them, but no meaning in connection
with our crystal. The factor (21) has been previously
used in the present connection by Teltow.'® However,
the formula (21) omits to take account of the closest
distance of approach of the ions. Fortunately the elec-
trolyte theory has been recently extended by Pitts,* and
in place of (21) we shall take

f=1- = - (2
SGkT(\/Z_—I- 1) (1+K7’1) (\/7+m'1)

We may substitute for « in terms of p, ¢, and 7', so that
for our face-centered cubic lattice, (22) becomes

2(2mV2)} (1= p)H(To/T)?
30V2+1) (A4#r1) V2+kr)
kn=2ka=4(rV2)i(1—p) (To/T)L.  (24)

Collecting together (18), (19), and (23), we obtain as
the expression for the ionic conductivity:

) (23)

with

2€2wO

T~6(1—;1>)
2020V2)} H(1—p)H(To/T)?
- (@r2)! (1—p)H(Ty/T) e
3(\&‘*‘1) (1+K1’1)(\/7+K7’1)

in which p is the solution of (13). The simple association
theory as expressed by Egs. (7), (8), (18), and (19)
leads to a conductivity ¢’ given by

o=
a

23271)0

akT

¢(1=p®). (26)

’
o =

If we abbreviate 2¢’wo/akT by 1/a, we may write (26)
with the aid of (7) and (8) as

c=ac’+12eT0/T (ao’)2. 27

2 See Chap. IX of reference 14, or alternatively H. S. Harned
and B. B. Owen, The Physical Chemistry of Electrolyte Solutions
(Reinhold Publishing Company, New York, 1950), second
edition, Chaps. 2 and 4.

2t 1. Onsager, Physik. Z. 28, 286 (1927), Eq. (45).

2 E. Pitts, Proc. Roy. Soc. (London) A217, 43 (1953).
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Fi16. 4. Curves showing the effect of “background” impurity on
plots of ¢/o against ¢ (¢ in ohm™ cm™). The straight line corres-
ponds to Eq. (29), as used by Etzel and Maurer to describe ex-
perimental results for the system NaCl4 CdCl,. The numbers on
the curves are the concentrations co, of background impurity in
units of 1075,

The conductivity ¢ given by (25) does not satisfy any
such simple relation. We can see from (27) that a plot
of ¢/ad’ against as’ will give us a straight line. On the
other hand, from Fig. 3 it is quite clear that the curves
of ¢/ac against ao are only approximately straight lines
at the higher concentrations; at lower concentrations
the curvature increases and, in fact, as ¢ and thus ¢ tend
to zero the gradient d(c/ac)/d(ac) diverges as ¢~} We
also notice from Fig. 3 that the curves of ¢/ac against
ao bear no simple relation to the particular straight
lines corresponding to (27), i.e., their gradients cannot
be simply related to the corresponding values of
exp(To/T).

Before proceeding to study the experimental results
in the light of Eq. (25), we must first draw attention to
the effects of having a small constant background of
impurity cations in the lattice, in addition to the much
greater number deliberately added. This is the situation
existing in practice since no crystal can be obtained
absolutely pure. Suppose then that in addition to the
concentration ¢ of divalent impurity purposely added,
there was also, unknown to us, an amount ¢, already
present. Then taking Eq. (27) as an adequate relation
between the conductivity ¢ and the total concentration
¢+co of cation vacancies, we would have

¢/o=—co/c+a+12a%"/Tg. (28)

A plot of ¢/o against o would then be a straight line only
at concentrations ¢>>co. As ¢ and therefore o decreased,
the curve would bend increasingly downwards as shown
in Fig. 4. Such a curvature would entirely mask the
smaller effects of the long range interactions between
the unassociated impurity ions and vacancies. Fortu-
nately this difficulty is easily overcome; the experi-
mental results may be corrected by adding to ¢, a value
of ¢o inferred from the conductivity of a “pure” crystal
in its “structure-sensitive” or low-temperature region.!?
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In the next section we shall consider the experimental
data collected by Etzel and Maurer" for the system of
NaCl+4-CdCl,. As suggested by the theory, we analyze
the plots of (c+co)/o against o at various temperatures.
(This has been made possible by Dr. Etzel’s courtesy in
supplying us with numerical data not contained in
reference 11). Other systems which have been studied
experimentally, but which we shall not consider here,
include KCI4CaCl,, BaCly, SrCl,® NaCl+CaCl,>
and the silver halide systems referred to above.

IV. THE DATA OF ETZEL AND MAURER

In Table I we give the experimental values of ¢ and ¢
as obtained! for the system of NaCl4CdCl, at four
different temperatures. By a least-squares method
Etzel and Maurer fitted these data directly to a para-
bolic equation of the type (27) resulting from the simple
association theory, i.e.,

¢=Fo+ Lo> (29)

The values which they deduced for ¥ and L were given
in Table IIT of their paper, and it appears from their
Fig. 3 that the fit is very good. However, as suggested
by the results of the last section, we have plotted
(c+co)/a against o at the four temperatures of Table I
(Fig. 5). For ¢, we have taken the value 0.45X 1075,
corresponding to 10'7 vacancies per cc in the “pure”
NaCl as found by Etzel and Maurer.!! That this is a
reasonably good value may be checked by plotting o
against ¢ from Table I; the negative intercept on the
¢ axis is co. (It is nevertheless rather unsatisfactory that
there is so much scattering of the experimental points
in view of the importance of the ¢, correction, but we
note that we can argue that ¢y cannot be greafer than
0.45%X1075.) Looking at Fig. 5 we see definite evidence
at all four temperatures of that gentle curvature in the
¢/o versus o lines which Fig. 3 indicates should result
from the Coulomb interactions of the unassociated ions
and vacancies. But if this really is the case, F and L
cannot have the significance they would appear to have
from a comparison of (29) with (27); thus for example

TasirE I. Experimental values for the electrical conductivity of
the system NaCl4CdCl, at 403°C, 344°C, 295°C, and 256°C as a
function of the molar concentration of CdCls.

Concentration, Conductivity (ohm~! cm™1), X10°
5

¢X10 at 403°C 344°C 205°C 256°C
66.32 24 200 6200 1440 360
38.752 14 500 3900 950 242
19.0 8600 2230 565 147
8.8 4400 1170 300 81
5.0 3200 860 21§ 58
5.1 2580 680 173 46
3.6 2380 610 156 41
1 1080 290 73 19
0 220 64 17 N

& Mean of two values.

2 H. Kelting and H. Witt, Z. Physik. 126, 697 (1949).
% C. Bean, thesis, University of Illinois, 1952 (unpublished).
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F16. 5. The experimental data for NaCl4-CdCl; given in Table I as represented by plots of (c+c¢o)/o against o (o in
ohm™ cm™). For ¢y we have taken 0.45X 1075 as indicated in the text. The theoretical curves are obtained from Eq.
(25) by taking Toy=3900°K and wo as given by (19) and (30).

L/F?isnot 12 exp(T'o/T) and cannot be used to find the
binding energy of the Cd*+: vacancy complex as Etzel
and Maurer attempted to do. We therefore propose a
new analysis of the data of Table I based on Eq. (25).
This is complicated by our not knowing either 7y which
is a constant or w, which is a function of temperature.

We shall not give the detalils of the derivation of these
unknowns but only a summary of the method. Firstly
we draw a set of smooth curves (not marked) through
the points shown in Fig. 5 and from these we obtain, at
each temperature, the values of the conductivity o,
corresponding to selected values of the concentration,

=lnuT

F16. 6. The temperature dependence of the limiting mobility, u,
in cm?/volt sec; see Egs. (19) and (30).

c+co. (The highest concentration we used was 5X 1074,
ie., below the highest concentration studied experi-
mentally.) We aim first to derive To; we therefore
eliminate the factor wy by calculating the ratio o/a (5
X 10~%) at each of the selected concentrations. This ratio
equals ao/as (5X 10~%) which by (25) depends only on ¢,
which we know, and 7/7, which we do not know. By
graphical interpolation we can now obtain, at each
concentration, a set of values of T/T, corresponding to
the four experimental temperatures. We average these
to get just one set, from which knowing the experi-
mental temperatures we derive a set of (four) values for
To. Despite the many uncertainties, the four values
which we obtained ‘in this way showed no systematic
variation with temperature and none differed by more
than 7 percent from the mean. This mean value was
3900°K, corresponding to a binding energy for the
complex of 0.34 ev. This may be compared with the
theoretical value of 0.44 ev calculated by Reitz and
Gammel.B3 o

Having determined 7', a direct comparison of the
experimental o versus ¢ curves with the corresponding
theoretical ao versus ¢ curves now gives o at each of the
four temperatures. Knowing a we can calculate the
limiting vacancy mobility #, in the absence of inter-
actions [Eq. (19)]. In Fig. 6 we plot In(#7) against 1/T.
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The four points appearing there are well fitted by the
equation

uT=21,200 exp(—9750/T) cm?/volt sec. (30)

The coefficient occurring in the exponential, which we
interpret as the barrier height U in Eq. (20) is in close
agreement with the valueobtained by Etzeland Maurer.
The theoretical curves which follow from (25) and (30)
when T, is 3900°K are shown in Fig. 5. We have
verified that these values for 7' and U are not affected
more than a few percent by starting from different
“smooth curves” drawn through the experimental
points.
V. CONCLUSION

We conclude with a note on the shortcomings of our
theory. If we calculate T, from Eq. (2), it comes out to
be about 7000°K for NaCl, i.e., almost twice the value
we get by a direct comparison with experiment. One
may therefore question the usefulness of comparing
our simple model with real systems in which the im-
purity ion-vacancy interactions depart so appreciably
from (2) at short distances. Now in our model, T fixes
both the binding energy of the complex and the magni-
tude of the interactions at large separations. Hence, by
choosing T so that &7 is the real binding energy of the
complex, we alter the scale of the interactions at large
distances, making them too small in this case. Therefore,
as we have applied our theory, it underestimates the
effect of the long-range interactions among impurity
ions and vacancies. This defect can be corrected by
taking explicit account of the non-Coulombic inter-
action between a vacancy and an impurity ion. This
non-Coulombic part will only be significant at small
separations, but it is not sufficient to suppose it is
important only when the pair forms a complex. If it
were, we would simply repeat the above calculations,
replacing the binding energy €?/eaV2 everywhere by its
correct value. If we did this for the system NaCl4-CdCl,
and used the complex binding energy calculated by
Reitz and Gammel,”® namely, 0.44 ev, we should be em-
ploying a model in which the binding energy of a com-
plex was less than that of a pair at the next nearest
neighbor separation. The calculations can be extended
therefore only when we first know the non-Coulombic
part of the interaction energy at all the separations

IMPURE POLAR CRYSTALS 37
where it is not negligible. We may then proceed with
the statistics of the problem by extending the definition
of association so as to include all those pairs with an
appreciable non-Coulombic interaction. We would, in
fact, be dealing with an assembly of complexes some of
which would be in their ground state while others
would be in excited states.

This raises the question of the legitimacy of the idea
of excited complexes; or rather, since a little reflection
convinces us of the arbitrariness of the idea of associa-
tion, the question is really at what separation ought we
to draw the distinction between an unassociated pair
and an associated pair. This question has been fully
discussed by Fuoss,® for electrolyte solutions. He con-
cludes that it is legitimate to divide the ions into two
classes—those that are associated and those that are
unassociated—provided the dividing distance is taken
to be in the region of

g=¢*/2¢kT. (31)

The predicted properties of the solution are nevertheless
insensitive to the exact distance which is chosen. For the
temperatures of interest in connection with our problem,
this implies that it makes very little difference whether
we take the limiting separation to be 2a or 10a. We have
verified this directly for our simple model by treating
pairs up to eighth neighbors (at 4a¢) as associated. In
regard to future calculations, which include the non-
Coulombic interactions, we can therefore say that there
is no point in taking the concept of association further
than is necessary to include the significant non-Cou-
lombic terms.
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