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Density Fluctuations at Low Temperatures
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The applicability to a quantum liquid of the standard classical formula connecting the compressibility
with the coherent scattering cross section for large wavelengths, questioned by the author in a previous
paper, is examined. The correctness of the standard formula is proved (a) at absolute zero (the density
fluctuations being infranormal); (b) under quantum conditions for all temperatures at which the Wigner
expansion converges (it is conjectured that for liquid helium the expansion may diverge below the lambda-
point); and (o) for a one-dimensional crystal for all temperatures. These results, while they stop short of a
complete proof of the standard classical formula for all conditions, do extend considerably our knowledge
of its range of validity.

I. INTRODUCTION
' 'N the coherent scattering of radiation by a mon-
~ ~ atomic liquid, the scattered intensity is proportional
to'

where x~ is the isothermal compressibility and ~ is
Boltzmann's constant, one obtains the standard relation
connecting the scattering factor E with thermodynamic
magnitudes:

R(0) =pxTxr. (5)
g(lkt —ksl) =1+p h(r)e'&"' "»'d'r

aJ In a previous paper' (to be referred. to here as I) the
formula (5) was called in question for the conditions at
low temperatures where quantum physics determines
the state of the assembly, such as in liquid helium.
Formulas (1) and (2), which are derived from a purely
geometrical analysis in terms of the reduced prob-
ability distribution rts(rr, rs) for the positions of a pair
of atoms, remain valid irrespective of the mechanism
determining that distribution —whether thermal Quc-
tuations or the zero-point motion are dominant. It was
argued in I that (4), on the other hand, cannot remain
valid as the temperature tends to absolute zero, because
the right-hand side then vanishes, while the left-hand
side, which then measures the quantum Quctuations of
M for the ground state of the assembly, cannot be zero
since the observable M (the function Ii of I) does not
commute with the Hamiltonian and is not a constant
of the motion. (Stated in another way, the fluctuation
of M could be zero only if the distribution function
rttv(rr r~) were a combination of delta functions
giving every atom a 6xed position; and this is impossible

by the uncertainty principle. ) It was suggested that
(4) and (5) hold only for temperatures where classical
mechanics applies.

Further consideration has shown that the above
argument about the limit of (4) as T~O is not a valid
one. The vanishing of the factor pI(:Tgg may imply
merely that the fluctuations in M are t'Nfrartorrrtul: that
(M') —(M)' does not increase "as fast as (M)" when the
volume of the cell, n=(M)/p, increases (together with
N) indefinitely. For example, the Rnite size of a (still
large) cell may be taken into account by an extension

where p is the number density of atoms, supposed
uniform over the scattering volume, 1+k(r)=g(r) is
the normalized radial distribution function, and kt
and ks are the wave vectors in the incident and scat-
tered directions. Consequently, for large wavelengths
the atomic scattering cross section is multiplied by an
interference factor

(2)R(0)= 1+p) h(r)4rrr'dr.
0

This factor is proportional to the mean square Quc-

tuation of the number of atoms in a fixed region, or
"cell," in the liquid, which is given by

f
(M') —(M)'={M) 1+p h 4srr'dr,

where M is the number of atoms in the cell in a single
observation, the bracket ( ) denotes an average over a
large number of observations, (M) is small compared
with the total number 1V of atoms in the assembly, and
the linear dimensions of the cell are large compared
with the values of a for which J;"r'Itdr is appreciable
compared with Jo" r'hdr. By combining (2) and (3)
with the Gibbs Quctuation formula

(4)(M') —(M)'=(M)p.Tx„

*Now at Watson Scienti6c Computing Laboratory, Columbia
University, New York, New York.

' For derivations of formulas (1)-(5), see J. de Boer, Repts.
Progr. in Phys. 12, 305 (1949), Sec. 10; H. S. Green, The 3fotee sP. J. Price, Phys. Rev. 86-, 495 (1952).
ulor Theory of Ftuids (Interscience Publishers, New York, 1952), ' I am indebted to G. Placzek and L. van Hove for drawing my
Secs. 3.1, 3.2; J.Yvon, F/ectlations en Deesitd, Actualities Scienti- attention to this possibi ity and its relevance, and for championing
fiques et Industrielles, No. 542 (Hermann, Paris, 1937), Chap. 1. the universal validity of (4).
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of (3) to Then it follows at once that'

(M') —(M)'= v p 1+p 4vr'hdr
0

or
(lk Ilt) = (4o I O'Into) =P'*&(&),

p„l ~ [s=~s*z(u).
pCG 00

+A p' ~ ds 27rr(s r)hd—r, (3')

@=+cos(k r,), (6)

and

44s=f=Z ~.4".
v=o

4 This inequality, and the outline of the derivation presented
here, are due to L, Onsager (private communication, 1953).

where A is the surface area of the cell, provided the
integrals converge. The coefEicient of v may then vanish
while the fluctuation of 3f remains finite, being in the
limit of large e proportional to A. However, it remained
true that, more generally, (4) had rot beee validly proved

except "for classical conditions. " If it should never-
theless be correct in general (giving the coefficient of
the asymptotic normal part of the fluctuation of 3I),
such a simple connection between the temperature and
thermodynamic compressibility, on the one hand, and
the quantum fluctuations of M for pure states of the
assembly, seemed physically mysterious. It therefore
seemed worthwhile to investigate whether (4), and
hence (5), could be satisfactorily proved (or disproved)
for quantum conditions.

In this paper it is shown that (4) holds certainly for a
part, and possibly for the whole, of the range of tem-
perature in which quantum mechanics applies. In Sec. 2
it is proved that the expression (2), E(0), is in fact zero
for the ground state, so that (4) and (5) hold at absolute
zero (the fluctuation of 3II being infranormal). In
Sec. 3 it is shown that (4) must hold in quantum
conditions at all temperatures for which the %igner
expansion, as dined there, converges. The interpreta-
tion of these results for liquid helium is discussed. In
Sec. 4 we consider a condensed system for which a
complete exact solution is possible, namely a one-
dimensional crystal, and prove that the equivalent of
(4) is correct for all temperatures. For absolute zero,
the explicit infranormal dependence on (3E) of the
fluctuation of 3E is obtained. These results stop short
of a proof of (4) for all conditions, though they extend
considerably our knowledge of its range of validity.

2. ABSOLUTE ZERO

%e shall prove that for the ground state of a liquid
&(k) ( (const. )k,4 and hence that E(0) is zero. Let the
normalized wave functions of the stationary states of
the system be fs, p&, , lt„, , with energies Ep,
Er, , E„, , where Ps and Es refer to the ground
state. I,et

Secondly we note that, with the Hamiltonian of the
system of form

H= —(P/2m)Q V' '+C (rr, rs r~) (9)

(where C may depend also on spin coordinates), the
expectation (PIP—

Eall')

may be transformed, by sub-
tracting a vanishing surface integral, to

7'/2m) (0o I I Z. I
~.4 I

s0 I4o),

and hence to (ls'/2m)-, 'ÃO'. Thus,

P, I a„
I
'(E —Es) = (5'/2m)-', cVk'. (10)

To obtain the third relation which is required to-
gether with (8) and (10), we imagine the system per-
turbed by the addition of a smal/ potential QP, where

p is given by (6) and Q is a constant. The Hamiltonian
of the perturbed system is then H'= P+QP. An
"ordinary" liquid behaves like an ideal elastic Quid in
that the change in the internal energy E=(B), on per-'
turbation by a potential 6eld, may be expressed in
terms of the redistribution of the number density p'.

L ( ') —(p)3d'r

and hence the tota/ perturbation energy in this case-
the minimum of E Es+QJ'p cos(k—r)d'r —would be:

perturbation energy = LV/4e" (p) )Q'+0 (Q'), (12)

where V= X/p is the volume occupied by the assembly.
A justification of (12) for the ground state of a quantum
liquid is given in the appendix. Then, comparing (12)
with the standard formula of second-order perturbation
theory, we have

Z."'I~.I'/(E. —Eo) = s&/pe" ( ) (13)

where the sum P.&" excludes v=0.
Now,

2 "'I~ I'(E —E)2 "'l~ I'/(E —E)
(E —E„)s=E."' Z."'l~, l'l~. l' 1+-

2 (E„—Es)(E„Es)—
& (Z."'

I
~.I')'.

'The relation (8), and hence the inequality (15), is actually
true only when k takes one of the "spectrum values, "which are
those for which the integral of qb over the volume of the ensemble
vanishes. However, the spectrum values may be made as close
as we please by choosing X large enough (at constant p); and
R(0), given by (2), is to be understood as the limit of R(k) as k
tends to zero through spectrum values.
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With k one of the spectrum values, ' as ——0 and hence or, by (16),
we have

w= [)i~/M! J[X~ ~/(S —M)!]

X d'ri, d'ry exp[(F—C )/x Tl. (19)

Substituting (8), (10) and (13) into (14), we obtain
Onsager's inequality:

E(k) &~k(4nspe") ik, (15) e(t
(2o)

for the ground state. In terms of the calculated velocity and if (r) is effectively zero outside a definite sphere of
of sound c, given by influence, then it is obvious that the terms

(15) may be written

E(k) & (ls/2nsc)k. (15')

It follows from (15) that R(0)—the coefficient of the
normal density fluctuations, and the scattering factor
for long wavelengths —vanishes at absolute zero. The
above proof is independent of the symmetry —Bose,
Fermi or classical Boltzmann —of the wave functions
(which simply determines the definition of the g„)),
and of the spin of the atoms. It clearly applies equally
to one (monatomic) component of a mixture.

may be omitted from C

=Cz+C»+Czar

in (19) without
appreciably aRecting the value of the integral, provided
3E and E—3f are large numbers. Then, on dropping
C~ii from C in (19), the integrals over A and over 8
are two independent factors and by (17) and (18)

3. FINITE TEMPERATURES: THE WIGNER S)&RIES

w exp[ —n(M —Ms)s), n= V/2xTXrMp(X Ms).
(21')niv(ri, riv) = (X /1U!) exp[(F—C)/xT]t (16)

Hence, with Ms«X, we obtain (4). The addition of
three-atom, four-atom, etc. , terms to the two-atom
potential (20) does not affect the above argument,
provided the terms Cgq, consisting of the contribution
"acting across the cell boundary" of interactions linking
atoms 1 M in A to M+1. S in 8, may still
be neglected in evaluating (19). Obviously, if C is
composed of various e-atom interactions of type
Pg(ri, ,r ), only up to some definite degree q &~n,

then this condition may be fulfilled merely by choosing
v large enough (with e/V kept small) for the mean
number of atoms in the cell, Mo= pv, to be large com-
pared with q'.

The classical distribution (16) is of course correct
only at high enough temperatures, but the validity of
the above argument may be extended to lower tem-
peratures by expressing the distribution given by
quantum mechanics as a series in ascending powers of
Planck's constant 2~5.' I.et us do this by replacing 4

where C is the interaction potential and F the free
energy, and X is a function of the temperature T only.
The free energy is accordingly given by

X!exp( —F/ T)s

=X~ ' d'ri . dsr~ exp( 4/aT), (17)—
4

where the S' integrations are each taken over the
volume of the assembly. For lV large, P is given by

F(cV,V, T) =Nf(.V/V, T).

The probability of finding M atoms in a cell A of
volume v, and S—3f atoms in the remainder 8 of the
space, is

w(M) = [iV!/M!(iV —M)!j
~A ~A ~B ~B

d'ri ~ d'r
~

sr''rsr+i.
~

d'rg ng, ' E. P. ~igiier, Phys. Rev. 40, 749 (1932); M. L. Goldberger
and E. N. Adams II, J. Chem. Phys. 20, 240 (1952).

In this section we set out the proof of (4) for a classical
liquid, and then examine how far this proof may be This expression (21) hasamaximumforM=vX/V=M, .
extended to temperatures at which quantum mechanics Then for M —Mo(&MO we may expand the exponent in

must apply. For a classical liquid, the probabil. 'i.ty dis- powers of M —Mo as far as the square only, and hnd
tribution of atomic configurations (ri, r~-) is
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in (16) by

4*=4+A(A'/2maT)" 8„(ri, rg, T),
n=1

(22)

the lambda point and (but not including) absolute
zero. On the other hand, if the Wigner series (22) does
converge for all temperatures then the above argument
shows that (4) and (5) hold for all temperatures.

where 8„ is given by a sum over multiple interactions

up to, say, q„atomic. The 6rst of the 8„ is given by

68 =P P' 'C —(1/2aT)
~

V',C ~'). . (23)

If C is given by (20) (pair interactions), then (23)
becomes

681 2 Dr|i"(r.i)+ (2/r. i)e'(r-) (1/—itT)I y'(r. i)j')
s(t

4. ONE-DIMENSIONAL CRYSTAL

In this section we take the case of a one-dimensional
"crysta1, "a linear chain of atoms with nearest-neighbor
harmonic interactions, and show that the analog, for
this case, of (4) holds for all temperatures. Let the
number of atoms in the chain, each of mass m, be E,
and let their static equilibrium spacing be a. Let the
coordinate of the rth atom in the chain be

—(1/2gT)g P g(ri, r~„/rural„)P'(r~, )@'(ri ), (23') z„=ra+ x„, (24)

where r&, r&„means x&,x& +y&,y& +z&,z& . Thus, with

pair interactions (q=2) for the actual potential C, we

have qi ——3 (and, in fact, q, =6). More generally, q„
increases monotonically with e. If, therefore, the series

(22) may in practice be terminated at some point—say at 0„, so that C* contains "cluster" functions up
to q„atomic —then the previous argument leading to
(21') still applies and (4) is still verified. We may
expect, however, that as quantum effects become more
important (at lower temperatures) the series (22) has
to be taken to an increasing number of terms in evalu-

ating (19) with sufFicient accuracy, and hence pro-
gressively higher cluster-numbers are involved. (Looked
at a little differently: if the terms of C* were regrouped
in inverse powers of aT, we would expect the coefIj.cient
of (aT) " to contain cluster functions up to q=e+2;
and thus with decreasing temperature higher clusters
should. have to be taken into account. ) Thus, if at some
temperature the series (22) ceases to converge as a
functional of C [which could happen without the onset
of a discontinuity in F, as calculated by (17) in terms
of C*) then the above argument for (4), based on re-

stricting C* to clusters of not more than some definite
degree q, ceases to be valid at that point. The argument
of this section furnishes a proof of (4) under those
conditions where the Wigner series, in the form (22),
converges.

It might be conjectured that in the case of liquid
helium (He4) the lambda transition, where there are
singularities in the second derivatives of Ii, marks the
position of a divergence of the Wigner expansion. (There
is some recent experimental evidence, which is of
interest in this connection, that the effective range of
interaction between atoms through C* increases very
considerably from 2.5' to the lambda point. ) In this
case, the above argument does not exclude the possi-
bility that there is a departure from (4) and (5) between

r Equation (23) refers to the series for classical (Boltzmann)
statistics; but similar series may be established for the Bose and
Fermi cases Lsee H. S. Green, J. Chem. Phys. 19, 955 (1951)g,
and the argument which follows covers all three.

s D. F. Brewer and K. Mendelssohn, Phil. Mag. 44, 559 (1953).

so that x„ is the displacement from equilibrium. Vjl'e

shall determine, instead of the Quctuation in the linear
density of atoms (which does not have a convenient
definition for a lattice), the equivalent mean square
deviation of the distance between two atoms,

N
e=p[p„'/2m+-', mcoo'(x, +i—x,)'j, (26)

where the P„are the momenta conjugate to the x„.
Taking S as even for convenience, the Hamiltonian is
made separable by the transformation to normal coor-
dinates:9

N/2

x,= (2/S) & P [u, sin(rs8)+z, cos(rs8)),

N/2

p, = (2/X)& p [o, sin(rs8)+r, cos(rs8)), (27)

where 8=2rr/N. o, and r, are t'he momenta conjugate
to the normal coordinates e„v„and fulfill with them
the standard commutation relations. Then Btransforms
to

H =P [(o '/2m+-'ma~ 'u ')+ (r '/2m+-'me) 'v ')j
=g,[B,&"+H. &'&j (28)

where
ce, =2coe sin(-', s8). (29)

From (29) the velocity of long waves, under the con-
ditions of classical mechanics, is co=aoro. Each of the
normal coordinates thus represents an harmonic oscil-
lator; and hence, for a stationary state of the ensemble,

' The center-of-gravity coordinate corresponding to s=0 is of
no interest in this analysis and may be ignored.

=((x +„—x,)'), (25)

as a function of ((z~„—z,))=ma. It is convenient to
adopt cyclic boundary conditions, treating the 6rst
atom as the (&V+1)th. Then the Hamiltonian of the
assembly is
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or for any equilibrium state,

(u,v, )=0,

(u,u, )=(H.&'&)8„/m~, ',

(t,s, )= (H. ts&)8„/mo&, '.
(30)

is essentially Fejer's integral, "and has the property

Lim(I/n) = (s./2) Lim F (x),
&~00 ~-++p

provided F(x) is integrable in (O,s/2). In the present
case F(+0)=G(0) = 1, and hence

From (27) and (30),

(x,x +,)= (2/N)Q, -', ((u,s)+(t&.')) cos(ns8),

((x„+„—x,)')= (2/N)P, 4 sin'(-', ns8)-,' ((u.s)+(r&.s)),

6„=(2/N)P, [sin'(-'ns8)/m'o&ss sin'(-', s8)j
&& l ((H "')+(H."')) (31)

For the ground state of the assembly,

(H i'&) =(H i'&)=-'ho&, = ho&s sin(-', s8),

Lim (t1„/an) = a T/arne&ss
n~m

(35)

Vp =—,'mcop'a'E (36)

to take account of the change in the total energy, E,
on compression of the lattice. Then ( O' E/8 a) &v, r
=@mop E'. The isothermal compressibility is thus

for all T. To relate (35) to the one-dimensional com-
pressibility, we have to regard a as a variable. The
expectation of H (26) is a function of o&s, T and N, and
does not depend on a; but we shouM add to the potential
energy in (26) a term

and. hence
NI2

&fr aN/[a'——(O'E/Ba') ~ r]= 1/arne&ss; (37)

5„=(h/mo&s) (2/N) P [sin'('sns8)/sin(ss8) j. (32) and (35) may be written

h„~(a'n) paTxr, 1&&n&&N, (38)
If N is large, and n«N, we may replace the sum (32)
by an integral over g= —,'s8:

( h ) 2 i
~"stn'(~)dQ

E~,jw&, sing
(32')

The integral in (32') is

P (2P—1) '~ const. +rslogn+O(1/n).
@=1

where

(aT y2
G(y)

Lmo&ss) s. "s
sin (~)

dy, (34)
sing

G(g) = [ho&s sing/xT] coth[ho&s sin&/aT|.

The form of the integral in (34),

I„(F)=)
0

F(x)[sin (nx)/sinx)'dx,

Hence 6„/an +0 as n +co—, an-d the fluctuation is in fra
eorma/. Although 6„ tends to infinity when ws does, it
does not increase "as fast as e" but only "as fast as
loge. "

For thermal equilibrium at a temperature T, we have
for the time average of the expectation energy of an
oscillator:

(H&'&)=(H f'&)=xTe cot'he

where e=ho&, /2aT= (ho&s/aT) sin(-,'s8). Making the
same transformation as from (32) to (32'),

where p=1/a is the linear density of atoms. Formula
(38) is the precise analog of (4), in terms of the int&erse

of a mean linear density n/(s„+„—s,.), and has been
found here to be correct for all temperatures.

APPENDIX

For the ground state of a quantum liquid, we may justify (11)
and (12) by assuming

(a) the energy of the unperturbed state is given by an expression
of the form NLe(p)/p), being otherwise independent of the shape
and surface area of the boundary enclosing the assembly provided
the ratio of volume to surface is large enough compared with a
characteristic length t (p);"

(b) the internal energy of the ground state when it is perturbed
by an external Geld (such as gravity) tends to that of the unper-
turbed state as the gradient of the field tends to zero; and

(c) the energy of the perturbed ground state is not appreciably
affected when the volume is bisected by a thin solid boundary
wall, provided the two subvolumes are each large compared
with l times the area of the new surface.

Then, choosing k small enough, by (c) we may, without appreciably
changing the energy of the assembly perturbed by the potential
Qp, partition the volume by thin walls into cells each with linear
dimensions small compared with 1/t, . After this move, the per-
turbed system is replaced by a large number of subsystems, each
with a fraction of the original E atoms, with the same total in-
ternal energy. On removing the perturbing potential, by (b) the
internal energies of the subsystems are not appreciably changed.
Hence by (a) the internal energy of the original perturbed system
is given by a sum over the cells which may be replaced by the in-
tegral J's(p)d'r taken over the whole volume of the assembly;
from which (11) follows.

' See Whittaker and Watson, A Course of Modern Analysis
(Cambridge University Press, London, England and Macmillan
Publishing Company, New York, 1947), p. 170.

u For liquid helium (He4), t may be as large as ~10 ~ cm (see
reference 8).


