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The free energy, F, of an assembly of interacting helium atoms is expressed in terms of the trace of the
density operator, exp ( PH),—where P= 1/kT, H is the Hamiltonian and T the temperature. The Hamil-
tonian is written as Ho+ gW, where Ho is the part corresponding to the kinetic energy and gW the potential
energy. The resulting expression for F is expanded in powers of g, the first two terms of the series being
calculated explicitly. The first term, which is independent of g, gives the free energy of the London theory,
and leads to all the usual results. In particular the transition at the lambda temperature, Ty, is of the third
order. The second term in the expansion of F raises the transition to one of the second order; all the second-
order derivatives of this term are discontinuous at Ty, while Ty and gTy/Bp are the same as in the London
theorv. Numerical values are obtained for the specific heat and the discontinuity in the specific heat. These
are &compared with experiment and it is found that there is an improvement as compared with previous
theories.

I. INTRODUCTION

'HE theories of liquid helium that have so far been
proposed, lead in some measure to an under-

standing of the lambda transition, and of the anoma-
lous behavior below the lambda temperature. These
theories are usually divided into two types according
as to whether they explain the problem presented by a
liquid, in terms of a gaseous model, or in terms of a
solid model. They are generally associated with the
names of London and Landau, respectively. Recently
Temperley' has compared these two types of theories in
a general manner. He concludes that the London type of
theory is more satisfactory near the lambda tempera-
ture, while the Landau type gives better results at low
temperatures, particularly near absolute zero. This is,
of course, exactly what might be expected from the
diferent assumptions inherent in the two approaches.

The original model proposed by London" was,
however, very crude in that the mutual interactions
between the helium atoms were not taken into account.
The purpose of this paper is to present an extension of
this thoery in which this defect is partly remedied.
There have been several attempts to improve the orig-
inal theory. The first was by London himself. 4 This
was based on the assumption that the density of single-
particle states, with wave vectors it, lying between ir

and it+dlr, was to depend not on k'dk but on k'rdk. The
constant, y, was determined so that the lambda transi-
tion became a second-order transition. The results of
this assumption are too well known, ' ' to require any
elaboration. For our purpose it is sufficient to note that
the assumption has never been justified theoretically.
SchiG' showed that London's theory was the first-order

'H. N. V. Temperley Proc. Phys. Soc. (London) A65, 490
(1952).' F. London, Nature 141, 643 (1938).' F. London, Phys. Rev. 54, 947 (1938).

4 F. London, J. Phys. Chem. 43, 49 (1939).'F. London, Proceedings of the International Conference on
Low Temperatures, Cambridge, 1946 (Physical Society, London,
1947).' R. B. Dingle, Advances in Physics 2, 111 (1952).

7 L. I. Schiff, Phys. Rev. 59, 751, 758 (1941).

term in a "quasi" virial expansion of the partition
function. He calculated the next term but found that
there was practically no improvement over the original
theory. Such an expansion is necessarily divergent
for a liquid phase in any case. Other treatments
have been given by Bijl, de Boer, and Michels, '
Goldstein, 'and Matsubara. "All these theories, however,
contain assumptions of an arbitrary nature, which have
not so far been justified. In what follows, a new mode of
analysis will be given. This consists in expanding the
free energy J, in powers of a coupling constant g. The
way in which g enters into the theory is readily seen if
the hamiltonian of the system, JI, is written in the form,

H=Hs+Q goi(r;r),

where Hp is the kinetic energy of the system, and the
other term in Eq. (1.1) is the potential energy due to the
interactions between the helium atoms, the positions of
which are given by the vectors r;. By using Eq. (1.1),
the free energy may be written in the form

P Q gnP
n=p

(1.2)

s Bijl, de Boer, and Michels, Physics 8, 655 (1941).' L. Goldstein, J. Chem. Phys. 9, 273 (1941);10, 472 (1942)."T.Matsubara, Progr. Theoret. Phys. Japan 6, 714 (1951).

where the F„are independent of g. We shall calculate
Pp and P&, only.

We can employ our theory to interpret the experi-
mental facts in two diGerent ways, which may be
termed loosely the qualitative and quantitative aspects.
If we make g very small then we might expect that the
first two terms in Eq. (1.2) would give an accurate
account of the behavior of a weakly coupled Bose-
Einstein assembly. This aspect of the theory is of im-

portance, as considerable doubt has been thrown on
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London's original theory. ""These doubts arise from
the fact that it is dificult to see how the behavior of a
liquid can be represented in any way by means of an
ideal gas. Indeed, many have considered the qualitative
agreement of the theory with experiment to be no more
than fortuitous. Thus as our theory takes into account,
in a rigorous manner, the first order departures from the
ideal gas model, it should provide evidence for or
against London's theory. Quantitatively we can com-
pare the result of the theory with experimental data,
using for g the value determined by de Boer" from
calculations of the second virial coef6cient of helium at
higher temperatures.

In the next section the terms Fs and gFi in Eq. (1.2)
are calculated. The result is expressed in terms of a
general interaction potential between the particles in
the assembly. In carrying out this calculation in detail
certain approximations are made; with these approxi-
mations it becomes obvious that the lambda tempera-
ture itself, and the dependence of the lambda tempera-
ture on the density, are the same as in London's theory. ~

In the third section the thermodynamic properties of
the model are investigated from a qualitative point of
view. It is found that aII three second-order derivatives
of Il, with respect to T and V, are discontinuous at the
lambda temperature. This is in agreement with experi-
ment, " and marks a definite improvement over the
London theory. Computations of the speci6c heat have
been carried out for two types of interaction, and the
results are compared with experiment in Sec. 4. With
de Boer's potential, " it is. found that the shape of the
specific heat curve below the lambda temperature is now
much nearer that found experimentally. The magnitude
of the specific heat at the lambda temperature is correct,
for very reasonable values of a parameter ro which

appears in the theory. The sign of the discontinuity in
the speci6c heat is, however, opposite to that found
experimentally. If, however, we use a potential that
approximates closely to the potential of the @seam force
between helium atoms, then the break in the specific
heat has the correct sign, while the results below the
lambda temperature are unaltered. Thus we can con-
clude that both qualitatively and quantitatively the
model gives results which are an improvement over
previous theories. Unfortunately it does not seem pos-
sible to calculate explicitly any of the higher order
terms in Eq. (1.2).

II. THE EXPANSION OF THE FREE-ENERGY

Z= Zp+gZi+O(g'),

where, in Eq. (2.2),

Zs ——P [Gi exp( —PZ$),
and

Zi ———PgiGiWii exp( —PZi).

(2.2)

(2.3)

(2 4)

In Eqs. (2.3) and (2.4), Gi is the number of states
associated with the energy level E&, and 8'« is given by

(2.5)

The functions 7t& in Eq. (2.5) are the correctly symme-
trized solutions of the wave equation for 2V perfectly
elastic spheres, the EE being the corresponding eigen-
values. The above equations are equivalent to Eqs.
(1.17) and (4.16) of I. The free energy F is given by

F= —P-' logZ

Consequently, to the 6rst order in g,

(2.6)

Eq. (1.1) in the form,

H =Q pP/2m+ gW, (2.1)
i~1

where p; is the momentum of the ith particle, and gS' is
the potential energy of the system. The analysis that is
required, to expand Ii in powers of g, has been developed
in a previous publication. "It was shown there that the
partition function, and hence, the free energy, may be ex-
panded in powers of g provided that either (a) the po-
tential energy oi(r;,) has no singularities at which it be-
comes positively infinite, or (b) that o&(r,,) represents the
interactions between particles that have finite incom-
pressible cores. If, however, the potential energy is
positively infinite only at isolated points then it is
impossible to expand the free energy in this manner.
The case where oi(r, ;) becomes negatively infinite is of
no physical interest and will not be considered. Quite
generally it is clear that the potential energy of any two
atoms or molecules must become very large and positive,
and eventually infinite, whenever the two particles
approach sufficiently close to one another. Therefore, if
we wish to expand the free energy for an assembly of
helium atoms in powers of g, then we must assume that
they have 6nite incompressible cores. This seems to be
perfectly justi6ed, and such potentials have been used
in many previous calculations. Thus, &o(r,,) =+on for
( r;—r, ( =r;; &2rs, where rs is the radius of the incom-
pressible core. Ke now use the formulas developed in I;
the partition function Z is given by

Consider an assembly of 1V helium atoms each of
mass nz in a rectangular box of volume V. Ke write

F= —P-' logZ, —gP-'Z, /Z, . (2.7)

"L.D. Landau, J. Phys. (U. S. S. R.) 5, 71 (1941).
n N. N. Bogolyubov, J. Phys. (U. S. S. R.) ll, 23 (1947)."J.H. de Boer and A. Michels, Physica 5, 945 (1938)."W. H. Keesom, Helium (Elsevier Publishing Company,

Amsterdam, 1942).

From Eqs. (2.7) and (1.2) it follows at once that

Fp= —P IogLP &G& exp( —PE&)g, (2.8)

"G.V. Chester, Phys. Rev. 93, 606 (1954). This paper will be
referred to hereafter as I.
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Fi——QiGiWii exp( —PEi)/QiGi exp( —PEi). (2.9)

We notice that since Fp depends on fp, it is not inde-
pendent of the parameters specifying the interaction
potential. It is probably impossible to evaluate either
G~ or 8'~~ rigorously, and to made further progress it is
necessary to find suitable approximations for them. In
the case of helium the radius of the incompressible core
rp has a value of about 1 1&(10 cm. Furthermore the
volume available to each atom V/37 is, at the densities
we are interested in, about 5X10 "cm'. On the other
hand, the volume of the incompressible core is about
5&(10 " cm'. We shall therefore make the approxi-
mation of replacingGiin Eqs. (2.3) and (2.4) byGis, its
value for the free-particle system. To this degree of
approximation, Fp is the free energy of an ideal Bose-
Kinstein gas. We next make the approximation of
replacing the elastic sphere wave functions x& in Eq.
(2.5) by the correctly symmetrized free-particle wave
functions 4~. The region of integration S~ is, for the mo-
ment, left unaltered. This insures that 8 ~~ remains
finite. From Eqs. (1.1) and (2.5) it is seen that 8'ii is
the sum of a number of terms of the form Jsioi(r;;)
&dr& dr~. In each of these terms we shall make the
further approximation of extending the restricted
integrations over the coordinates that do not appear in
the potential function, oi(r;;), to cover the entire volume.
The integrations over the coordinates that do appear in
the potential function are still to be restricted to that
region of configuration space, for two molecules, such
that r;,&2rp. It does not seem to be worth while investi-
gating more refined approximations until the results of
these very simple ones have been established.

With these approximations, Fp and Fj become

The function Ek, k is given by

The nk are the mean values of the ek that appear in Kq.
(2.12), the means having been taken with the free
Particle weights exP(—PEi)Gis/Zs. They are therefore
identical with the free-particle occupation numbers of a
Bose-Einstein gas, and from Eq. (2.13) satisfy the
relation 1V= pknk. Now it is this relation that defines
T& and BT&/Bp, where p is the density. Both these
quantities will consequently be identical with those of
the ideal gas approximation. This last statement brings
out the essential nature of the approximation of re-
placing G~ by G~'. If this had not been done, Fp would
have been dependent on rp and therefore the zero-order
approximation to Tk and BTk//Bp would have been
dependent on rp, and would be diGerent from the values
they have in the ideal gas approximation. Thus, if a
more accurate evaluation of G~ could be carried out, it
should be possible to obtain a value of Tq nearer to that
found experimentally. For convenience we list the
properties of the nk..

nk [exp(Xk'+is——)—1j—', all k; T)Ti„

nk [exp(Xk') —1j ', k——)0; T&Tk, (2.16)

Irt —r2I )2ro

Xexp[—2ir s(k—k') . (r,—r,)]dridrs (2.14)

while Es——Ek, k and is thus independent of k. Com-
bining Eqs. (2.11) and (2.12), we obtain

cV(X—1)
&i= s Z Z haik&k Ek, k+ Es. (2.15)

krak'

Es ———P ' log+ iGi' exp (—PEi), (2.10)
no ——S—Q nk, T&Tg.

k+p

~1 ZiGl IVll exp( PEi)/ZiG—i' exp( PEi) —(2 11)

An explicit expression has been given for Fp by London. "
We shall therefore confine our attention to F~. The
function lV~E, to our degree of approximation, can easily
be calculated in the usual manner. It is given by

In Eq. (2.16) X=h'/2nskT, where ft is Boltzmann's
constant. The statistical parameter o. is determined, as a
function of T and V, for T)Tz, by the relation gknk

. =37. For T & T& n is identically zero. The condensation
temperature T~ is given by

where f'(ss) is the Riemann zeta function of order —,'.
It is convenient to reduce F~ to a still more explicit

form. In Eq. (2.15) we replace the Xkk by their
average values, the averaging being done over all
angles in k and k' space. This is legitimate because we
are eventually going to replace the summations in (2.15)
by integrations, and the only angular dependence comes
from the Ek, k the nk depend only on Ik(. This means
that we can carry out the angular part of the integra-
tions at once. Thus, dropping the irrelevant constant,
F~ becomes

The symbols nk in Eq. (2.12) are the set of numbers that
define the state t. That is the state of the system is
taken as being defined by the set of numbers, (nk), that
specify the number of particles with wave vectors k.
The ek run from 0 to E and satisfy the relation

(2.13)

1V(X—1)
1V«=s Q Q nknkEk, k+ Ep. (2.12)'

's F. London, Phys. Rev. 54, 947 (1938).
~l s Z Z nkiik'(Ek, k').

Ikl4lk'I
(2.18)



LIQUID HELIUM

In Eq. (2.18), venience later; they are defined by,

(Ek, k.)= ~ t ca(r) sin(27rkr) sin(2mk'r)dr~drp,
U kk'~

r )2rp

where r=
~
r~ r—p ~. The above expression can be readily

reduced to the form,

S =Q exp( —n'r'/eX)/w~'.
n=1

Using these results, together with the relations

np ——iV(1—r'), and (~/Xp) "=X/Ul (-,'),
where

(2.26)

X( ——(X)r p„, and r=T/Tk,16~
(Ek, k )= —

~ &u(r) sin(2orkr) sin(2mk'r)dr. (2.19)
kk'V" 2rp we have finally,

Fl F1 2 Q nknk'(Ek, k').
il t~tl 'I

(2.20)

When the summations in Eq. (2.20) are replaced by
integrations, care must be taken not to suppress the
state ~k

~

=0, by using a density of states proportional
to k', which is zero for ~k~ =0. This can be avoided by
writing,

Fl =
p Q Z nknk (Ek, k )+no g nk(Ek, 0). (2.21)

I & I & I
&' t&p ]k/gp

The summations may now be safely replaced by inte-
grations. The states )k) = )k'(+0 contribute nothing to
the double integral. This is because the integrand, and
all its derivatives with respect to T and V are measur-
able on the line k= k', and these points form a set of zero
(plane) measure. The quantity (Ek, k ) has already been
calculated in Eq. (2.19), while (Ek, p) is given by

Sm p"
(Ek p) = co(r)r sin(2orkr)dr.

kV~ g,p,
(2.22)

Combining Eqs. (2.22) and (2.19) with (2.21) and re-
placing the summations by integrations, we have

where

Fg =8pr u)(r)[UI'+nprI jdr,
2rp

(2.23)

I=
~

I k sin(2~kr) [exp(Xk') —1$ 'dk (2.24)
p

Unfortunately I cannot be calculated in terms of
known functions but it can be easily expressed in the
form,

I= (or/X) &(r/2)Sp, (2.25)

where the functions S„have been introduced for con-

The lower limit, 2ro, in Eq. (2.19) occurs because in Eq.
(2.14) the integrations over r~ and ro are restricted to
the region r12~&2rp. It is now convenient to divide the
calculations into two parts corresponding to tempera-
tures below and above the lambda temperature:

(a) T(Tk. In this range of temperature we have

xp

X[(r'/21)(S, )'+r-:(1—r:)S, ]dx, (2.27)

where xo 2ro/p. , P=——4vrR1Vo'/t (p) kU, and 8 is the gas
constant. The variable of integration has been changed
from r to x= r/a. , and So is now given by,

S„=P exp( ax'—/n)/e'",
n~l

where a= pr'a'/X.

(b) T) Tk. We now have,

Fi=Fi"= p p nknk(Ek, k).
l & I& l

&'
I

(2.28)

(2.29)

When we pass to the continuous-spectrum approxima-
tion, and replace the summations by integrations using
a density of states proportional to k', we shall
suppress any contributions from terms of the form
no P~k~gonk(Ek, o) and (no)'(Eo, o). The latter should not
be present in any case, as the summation is over un-
equal t kt and tk't. The former should be present. It is
easily seen however, that because np is of order E'1' these
terms are of order Ã'~' at most, and so are statistically
negligible compared with the rest of the sum which is of
order g'. Thus it would not matter whether these terms
are present or not, provided that we merely required the
function Ii 1+. We are, however, concerned not only with
Fl, but also with its erst and second derivatives with
respect to T and V, and the derivatives of the sup-
pressed terms are not statistically negligible at the
lambda temperature; thus Bnp/BT and 8'np/BT' are
both of order X at Tk. In Eq. (2.29) the nk depend on
n, Eq. (2.16), so when F&+ is differentiated with respect
to T it will also have to be diGerentiated with respect
to 0. because of the implicit dependence of 0. on T. Thus
terms will arise in the differentiated series which were
not present for T&Tq. For example, in the erst diflI'er-

entiation we get terms of the form [exp(Xk'+a) —1j '.
When we now pass to the continuous spectrum approxi-
mation a term such as this will give rise to an integral
which diverges, as n—+0, in the same manner as the

series P e "~/nI diverges for n-+0. However all such
m=1

integrals are multiplied by factors of the form Ba/BT,
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F,+=&," x2oi(x) ro/21 (S+)'dx —-'(n )2(&o, o)) (2.31)

where

S„+=+ exp( ax'/—n nn)/—I""
n~1

and r and I' have the same meaning as before.
From Eqs. (2.2'7) and (2.31), Cv, and Cvi+ may be

calculated, where Cy~ and Ci ~+ are the contributions
to Cy the specific heat at constant volume from gF~
and gF&+, respectively; as the calculations were limited
to the region T&T& we shall merely quote the result
for Cpg .

Ev'g
Cvi = x2id(x) —fi(x) —f2(x) dx. (2.32)»*o

The functions fi(x) and f2(x) are given by

fi(x)=3S2 (21 So ) —6sso (1 —So )—
—.(s,-) y. s,-O-S,-)

and

where
f2(x) = ,'S2 3sso +sos—r, —

s= ax2/X and f=1 (22).

The discontinuity in the specific heat can also be cal-
culated from Eqs. (2.27) and (2.31). It is found to be
given by

(ACvl) = (Cvl Cvl )T =Tx,

—FT)21—1(B2n/BT2)T Ti )
. x2oi(x)Soy, dx (2 34)

&0

where

8;=P [1—exp( —ax'/n) $n-'',
m=l

(Bon/BT2)T =Ti, is given in the Appendix, and So is the
common value of 53 and 53+ at T~, that is for e= 0.

which go to zero, for n~0, just suSciently fast for the
product to yield a finite result (Appendix). It is just
these terms which make up for the apparent suppres-
sion of terms like Bno/BT Z~2~~on2(E2, o). However,
terms will now arise in the double sum, which give
contributions of the form (Bno/BT)2(Eo, o) and (B'no/
BT')no(Eo, o). These terms should not be present since
they arise from terms for which ~kl = ~k'~ =0. This
difficulty can be easily overcome by writing Eq. (2.29)
as,

Fi+= —', P P n2n2 (Ek, a )—2 (no)'(ICo, o), (2.30)
lk i

= lk' l

where in Eq. (2.30) the summation is to be over equal
values of ~kl and Ik'l, and the second term exactly
cancels out the unwanted contributions from the states
lk( = jk'l =0; the states tkl = ~k'(+0 give no contri-
bution to the integral for the same reason as was given
previously for the case T& T&. We may now safely re-
place the sums by integrations and get

alld
(BFo/Bn) =0,

(BFi/Bn) QO.

(3.1)

(3.2)

Equation (3.1) is equivalent to the relation X=+&n&,
and follows immediately when Fo is calculated in the
usual manner. '2 io Equation (3.2) is obvious from the
form of Eq. (2.18). It follows from Eq. (3.1) that the
nth derivatives of Fo depend only on the (n —1)th de-
rivatives of n. Thus, as the first discontinuous deriva-
tives of 0. are of the second order, the first discontinuous
derivatives of Fo will be of the third order; for example
the gradient of the specific heat. This of course is a well
known result of the ideal gas approximation. On the
other hand, from Eq. (3.2), the nth derivatives of Fi
will depend on the eth derivatives of n, and hence the
first discontinuous derivatives of Fi will be of the second
order. Now we have

, (B2F) f Bp) ( B2F

( BT') & BT) EBTBV)

('F &

EBV) T LBV2)

Thus, the theory predicts that all three quantities on the
left-hand side of relations (3.3) will be discontinuous
at Tq. This is in agreement with experiment, and repre-
sents a considerable improvement over the London
theory which predicts that all these quantities should
be continuous. It should be noted, however, that the
experimental values correspond to discohtinuities in
derivatives of the to/al' free energy, whereas we have
only examined the behavior of the first and second
terms of series (1.2) for F. But it would seem to be
purely accidental if the discontinuities arising from the
higher order terms in series (1.2) exactly cancelled
those of the first two terms.

Our general qualitative conclusions concerning the
discontinuities depend directly on the statistics of the

"B.Kahn, dissertation, Utrecht, 1938.
'2 A. R. Fraoer, Phil. Mag. 42, 156, 165 (1951).

III. THE THERMODYNAMICS OF THE LAMBDA
TRANSITION

We shall now use the expressions given by Eqs.
(2.11) and (2.18) to deduce the qualitative behavior of
the model at the lambda temperature. Our main interest
is to determine the nature of the discontinuities in the
derivatives of F. These arise from the discontinuities in
the derivatives of the ni, which in turn depend on the
discontinuities in n. As the 6rst-order derivatives of o,

are all continuous at the lambda temperature (Appen-
dix), it follows that the first-order derivatives of F are
continuous at this point. In particular the entropy,
S= —(BF/BT)v and the pressure, P= —(BF/BV)T are
continuous at T&. To study the second derivatives of F
we require the followihg relations,
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particles. They therefore lend considerable support to
London's hypothesis that the anomalous behavior of
liquid helium is closely connected with the type of
statistics obeyed by the helium atoms.

4R.

IV. COMPUTATION OF SPECIFIC HEAT—
COMPARISON WITH EXPERIMENT

The contribution Cy~, to the specific heat C~, has
been calculated for two types of interaction potential.
The first type of potential was identical with that used
by de Boer" to calculate the second virial coe%cient of
helium at low temperatures. That is, gto(r) was assumed
to be given by

3R.

0 25 o50 075 l.oo t'25

g is identical with the quantity 4e in de Boer's paper,
and o is the scale factor introduced in Eq. (2.27). The
constants e and 0- were assumed to have the same values
as used by de Boer, namely &=1.41)(10 " erg and
0-= 2.561)&10 8 cm. This potential was substituted into
Eq. (2.32), the integrand tabulated as a function of x
for various values of 7-, and the integration performed
numerically. The results are shown in Fig. 1, curve C,
while curve A represents the experimental results. "
The value of ro was chosen so that the specific heat had
the correct experimental value at the lambda tempera-
ture. With a value of ro ——1.09&(10 cm there is re-
markably close agreement, below the lambda tempera-
ture, between the theoretical and experimental results.
Moreover, this value of ro is in good agreement with the
value of 1.1&(10 ' cm obtained from kinetic theory.
However, at the lambda temperature itself the dis-
continuity, calculated from Eq. (2.34), has the wrong
sign and is very large (~5R). The gradient of the
specific heat on the high temperature side of the lambda
point has also been computed and is found to be very
small and negative (~—IR). Thus, the theoretical
behavior at T), is in complete disagreement with
experiment. This is perhaps disturbing in view of the
excellent agreement below the lambda temperature.
With the value of ro that we have chosen, the speci6c
heat becomes negative for v &0.3. This clearly indicates
that the approximations we have made are breaking
down in this region of temperature. This is not alto-
gether surprising considering the nature of the approxi-
mations. It may be mentioned that with a slightly
smaller value of ro the specific heat would be positive
over the whole range.

In view of the marked disagreement with experiment
at the lambda temperature, it was thought worthwhile
to see if any improvement could be obtained by using a
diGerent type of potential. From the numerical cal-
culations it was obvious that merely changing the value
of ro would not alter the qualitative results obtained

"W. H. Keesom and A. P. Keesom, Physics 2, 557 (1935).

FiG. 1. The specific heat of liquid helium. A—experimental
values; 8—London theory; C—theory of this paper using de
Boer's potential I Eq. (4.1)j for the interaction between the helium
atoms; D—this paper using approximate potential of the mean
force.

with de Boer's potential. It was however clear that if
the potential was assumed to have a "repulsive hump"
at a distance given by x= 1.6, then the discontinuity in
the speci6c heat would have the correct sign and the
gradient on the high-temperature side of the lambda
point would be large and negative. Now a potential of
this kind corresponds closely to the potential of the
meae force between helium atoms. Furthermore, by
using this type of potential we are taking into account
more accurately the fluctuations in density of the num-
ber of atoms in the neighborhood of any particular
atom. Thus, although the introduction of this potential
is somewhat arbitrary, it is not unreasonable on physical
grounds.

It was not considered worthwhile to attempt to
represent this type of potential in any great analytical
detail and then perform a numerical integration to
obtain the specific heat. It was assumed that for our
purpose a suSciently good representation of it could be
obtained by simply changing the sign in de Boer's
potential at a distance given by x= 1.6. The main defect
of this potential is that it does not go to zero for large x
as —x ', but as +x '. However, the contribution to the
integrand is very small at these values of x and this
defect will therefore not be very important. The results
obtained with this potential are shown in Fig. 1, curve
D. To obtain the correct value for the specific heat at
T~, it was necessary to change ro slightly to a value of
1.11)(10 ' cm. It is seen that below the lambda temper-
ature the curve is indistinguishable from that obtained
with De Boer's potential. At the lambda temperature the
discontinuity in the specific heat has the correct sign,
while the specific heat itself falls oG rapidly above the
lambda temperature. The break in the speci6c heat is,
however, too small. It seems almost certain that with a
suKciently refined "mean force potential" the behavior
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at the lambda temperature could be still further im-
proved. Such calculations are hardly justified when it is
remembered that the lambda temperature itself is not
correctly predicted by the theory.

In conclusion it is worthwhile considering whether
the present treatment exhibits any sort of gas-liquid
condensation phenomenon. This question is obviously
important, because if it could be shown that the present
treatment does in fact exhibit a gas-liquid type of tran-
sition then this would lend considerable support to the
simple ideal gas theory of London. Unfortunately, there
appears to be no simple method of answering this
question. The most straightforward method would
seem to be to plot a number of isotherms and see if they
show any signs of "critical behavior. " This would in-
volve a very large amount of numerical work which has
not, as yet, been carried out. It is, however, doubtful
whether the present method would exhibit any really
realistic gas-liquid transition. This is because only two
terms in the expansion F have been calculated (approxi-
mately); it is very likely that many more terms in the
expansion would have to be calculated before a realistic
transition occurred.

The numerical work in this section was first carried
out on a desk machine. It was subsequently checked by
Dr. M. P. Barnett on a punched card machine, using
techniques previously developed" for the evaluation of
molecular integrals. The author wishes to thank Dr.
Barnett for the care with which these calculations were
carried out. He also wishes to thank Mr. F. Booth for
considerable help in the preparation of the manuscript.
The author is indebed to the Central Research Fund of
London University for the loan of a Marchant calculat-
ing machine, and to the Department of Scientific and
Industrial Research for a maintenance grant.

APPENDIX

where )t=h'/2mAT. Equation (A.2) holds for T)Tq,
for T=Tq, n=0, and Eq. (A.2) becomes

»= (~/) o) *'Uf(5), (A.3)

where 1 (s) is the Riemann zeta function of order s, and
)ts ——()t)r r~. Dividing Eq. (A.2) by (A.3),

tv l=P e—"'e—-'*

n=1
(A.4)

where l (p —p) is the Riemann zeta function of order
p —p, and I'(1—p) is the gamma function of argument
1—p. This expansion is valid for ~n( &2m, and all p. It
is easily shown, using (A.S) and (A.4) that for small u
(T)Tg),

(n)' 3
3 g/2

2To
(A.6)

Thus Bn/t) T—&0 as n—+0. Moreover, as r)"u/8T"
—=0(e&1) for T(Tq, it follows that Ba/BT is con-
tinuous at T= Tq. In a similar manner,

(tlsrr/t) Ts) s = rq —9D (—')gs/8s. Tqs (A.7)

showing that 8'rr/r) T' is discontinuous at T= Tq.
From Eq. (A.4) the following results can be easily
deduced:

From Eq. (A.4) the derivatives of rr may be calculated
by direct di6'erentiation. The calculations are made very
much easier if the formula given by Robinson" is used.
He obtains an expansion for P„e "~e I' of the form

- (—1)'
2 e-" ~-"=I'(1—~) "-'+2 '&(~—p), (A.s)
n=l

The statistical parameter, o., is defined as a function
of p and T (that is as a function of T/Tz) by the equa-
tion,

3 00

1 (-,s) =lim P e
— e—l

e~0 n=l
(A.8)

»= Psns (n). (A.1)

In the continuous spectrum approximation, this be-
comes

3 1 (l)
lim +e ~ll

I

—Q e "n—
T&2 n 0 n 1 Kr)T) e 1 BTs

(A.9)

»= (s./)t) lU Q e e l,
n=j

I M. P. Barnett and C. A. Coulson (to be published).

(A.2) These relations have been used repeatedly in the text.

"J.K, Robinson, Phys. Rev. 83& 678 (1951).


