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by Meek and Saxe that, during the passage of the
streamer tip in long sparks, there is a cusp-shaped
luminosity that extends out radially at least 10-cm
beyond the streamer axis as sensed by their photo-
multiplier. After this passes, the streamer channel is
largely dark until the return stroke illuminates a
channel of some 3-mm radius or less. In the case of
lighting discharge, the radius of photographed vigorous
steps with heavy currents runs out to some 10 meters.
In such strokes, the channel at the cloud end of the
stroke may remain visible for some little time. In this
case the pilot leader invisible to the camera advances
20 to 200 meters with an active conducting channel
of R=10cm illuminated by the return stroke from
ground some 10 milliseconds later, and has as well the
expanded channel of positive space charge of radius R'
which, with its roughly 5)&10" electrons per cm', is
illuminated only by the step Qash from the cloud end
within some 10—100 microseconds. After ionization and
illumination, the step ionization of radius R decays,
and it is only the original channel of R=10 cm which
has sufficient conductivity owing to the field X, to
carry the return stroke.

It will be noted from Table III that the observed
values of what might be R' are less than those com-

puted. This is not surprising, for, as radial expansion
continues, the time rate of ionization and accompanying
excitation decline, and what is preceived by photo-
multiplier or photographic plate corresponds to values
considerably less than R' depending on the sensitivity
of the detector. Amin could observe only at a value
of radius greater than 0.05 cm from the streamer axis.
That he did not observe luminosity between 0.05 and
0.1 cm is not surprising. That, however, there was a
transient luminosity after the intensely luminous peak
passed the slit, is shown by the shoulder of luminosity
following the tip and of such shape as only to be
accounted for by ionization and excitation occurring
long-after even an especially broad tip had passed the
slit. The resolving power of Meek and Saxe's system
was not such as to have revealed the details of the fine
structure of the tip luminosity as observed by Amin,
while their radial transient tip expansion could well be
observed with their heavy currents. From the evidence
presented, even though observed luminosity and cal-
culated values R agree only in order of magnitude, it is
believed that the nature of the transient tip shape and
luminosity is accounted for. The transient space charge
expansion described is illustrated schematically in Fig. 2,
which is self-explanatory.
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The statistical theory of turbulence is applied to the problem of density fluctuations in the troposphere
and the ionosphere. For suitable wavelengths, for which the so-called similarity region (Kolmogoroff
spectrum) of the spectrum of turbulence is relevant, a closed formula can be given for the scattering cross
section. It contains as only parameter the turbulent power dissipation S, and its angular dependence is
given by (sin-, 8)'31', 8 being the scattering angle. The values of S required to explain ionospheric scattering
are in excellent agreement with values found from investigations of meteor trails. Tropospheric data cannot
be fitted with the assumptions of dry-air turbulence alone. The inference is that humidity Ructuations play
an essential part in tropospheric scattering. A preliminary study of these latter fluctuations gives satisfactory
results. Further investigations (and experimental data) are needed, however, to work out a quantitative
theory.

IGHT waves are scattered by random fluctuations
- & of the refractive index. In what follows we derive

the scattering of elementary waves by random fiuc-

tuations which are produced by turbulent perturba-
tions. The general idea underlying this study has been
suggested by a number of authors, especially Megaw'
and Booker. ' It will be shown that, under certain con-
ditions, the scattering produced by these Ructuations

*The research in this document was supported in part by the
U. S. Army, Navy, and Air Force under contract with the Mass-
achusetts Institute of Technology.

'E. C. S. Megaw, Nature 166, 1100 (1950), and Proc. Inst.
Elec. Engrs. (London) 100, 7 (1953).

'H. Booker and W. K. Gordon, Proc. Inst. Radio Engrs. 38,
401 (1950).

can be expressed in terms of only one parameter, the
turbulent energy S dissipated per cm' per sec. The
conditions of validity of this relation are well fu16lled
for the scattering of meter waves in the E layer of the
ionosphere; for tropospheric scat tering other parameters
such as the inhomogeneity of potential temperature
and specific humidity play an important part.

A. SIMPLE DERIVATION OF THE SCATTERING
FORMULA

l. Scattering Cross Section

In this section we derive the expressions by simple
qualitative arguments and leave the exact derivations
for Sec. B.
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We calculate the scattering which a light beam with
the wave vector kp suffers in a region of space of volume

V, which contains a medium whose dielectric constant
e fluctuates: e= ps+as, where he is a function of space.
We assume that the time variations are sufficiently
slow and do not aGect the scattering. Then the scattered
electric field amplitude (E=E,e't"' ~"&) at a distance
R from the scattering volume (R»V') is given by

k= fk, f= fk, f=)(-.
We introduce the cross section o-dQ for the scattering
per unit volume of the scattering volume into the solid
angle dQ:

and get

with

odQ= (E'/V) (E,s/EP),

o.dQ=
f
M(' sin'gdQ/VK4(4s. )' (3)

dry e (r)e ~K ~ r (3a)

For the ionosphere, we assume that Ae is due to Auc-

tuations in electron concentration, proportional to the
density Ructuations Ap of the carrier medium:

and
~e= g~p/p) (4)

g = —
pp pP/rp'; oi pP = (I/ep) (Xe'/m), (5)

where E is the density of free electrons in the medium.
In the troposphere, we will have to cope with fluctuations
in density, potential temperature and humidity. Because
of the large dipole moment of the water molecule, ' this
latter contribution is particularly important. The dielec-
tric constant may be written as

~

drAe(r)e'"' sinx.
4~EH "v

Here Ep ls the electric-Geld amplitude of the incident
wave (E;„,=Epe'&"' "p'i), K is the wavelength divided
by 2m, x is the angle between the direction of the inci-
dent Geld and the scattering, and

E= (K( = (kp —ki
f
=2k sins', (2)

develop a description of the density fluctuations Ap
from a statistical dynamics of turbulence. Since the
problems involved in the discussion of the humidity
fluctuations Lsecond term in (6a)$ are of rather difFerent
nature we shall discuss them separately, and presently
we shall discuss the density Quctuations in dry and
isentropic air only.

2. Density Fluctuations in Homogeneous
Turbulence

First we connect the density Quctuations with the
velocity Quctuations by means of Bernoulli's law:
Local velocity differences Av will be accompanied by
pressure differences Ap, and density differences Ap,
according to

~p/p=~P/P = (»)'/eH (7)

where esr' is the average square of the molecular velocity.
We now concentrate our attention on the velocity
Quctuations under conditions of homogeneous tur-
bulence. ' We may picture this situation as follows: there
are external causes which constantly produce large
eddies of a certain dimension Lp and velocity ~p. These
eddies divide soon into smaller eddies, say, of size
L&=nLp, with a&1.The velocity of these smaller eddies
embedded in the larger ones is ei. (Measurement of e,
is relative to the environment, i.e., relative to the
motion of the large eddy. ) These eddies divide again
into smaller ones L2=e'Lp, with a velocity e2 relative
to their surrounding. In this dividing process, the energy
fed into the largest eddy is transferred to smaller and
smaller ones. A constant amount of energy per volume
and time is fed into the larger eddies from an outside
source. The dividing process ends with that eddy size
at which the eGect of the molecular viscosity is large
enough to dissipate the energy into heat.

We now establish the quantitative relations which
exist in this process. The energy per unit volume con-
tained in one eddy is of the order pv„. The lifetime of
such an eddy will be of the order I'„=L„/e„. Hence, the
eddies of size I.„lose energy to smaller ones (size E.„+,)
with a rate (energy/time volume):

5 pe s/1.„.
Since we have a stationary process, the loss S„ I of the
eddies one size larger to those of size n must be equal
to S„;hence, S is a constant independent of e:

pe„s/i. „=S.

P ~mba p'(mb~.—1=1.55X 10-
f

(+0.74—
f (. (6)

T ( 'Ki Ts ('K.si

(Sa)In (6), P is the pressure of air, p' the partial pressure
of water vapor. Since p/T p, we best express he in
terms of density Ructuations:

S is the energy transmitted through the eddies from the
energy source (larger eddies) all the way down to the
smaller ones. The order of magnitude of S is given by
the transfer from the largest eddies:

S=peps/I p. (»)

( g $ Dp' p' fg/ c)m
6e= 0.456p

f
(+3.4&& 10s AT- —

Ecms) T T' & 'K i
(6a)

In (6a), p refers to the density of air, p' to the density
of water vapor, both in g/cm'. In what follows, we shall

' C. M. Crain, Phys. Rev. 74, 691 (1948).

4 The theory of turbulence as used here was irst suggested by
A. N. Kolmogoro6 (Compt. rend. acad. sci. U.R.S.S. 30, 301
(1941)).Onr treatment is closest to the ideas of G. F.v. Weizsacker
PZ. Physik 124, 614 (1948)g and W. Heisenberg t'Z. Physik 124,
628 (1948)g.



F. VI LLARS AN D V. F. WE I SSKOPF

We can use the magnitude of 5 in order to determine
the size of the smallest eddies: the energy per cm' and
sec dissipated by molecular viscosity is given by

rf(dv/dx)', where dv/dx is the rate of change of v per
unit length. The smallest eddy is the one in which this
energy reaches S. Since (d v/d x)~( v„/L„), we get for
the smallest eddy, whose velocity is vq and whose L
ls Ls)

rfvs'/Ls'=S

Using the relation (Sa): pvs'/Ls S, and——also (Sb), we
get

Lo/Ls= (p»Lo/~)'" (9)

In words, the ratio of the sizes of the largest to the
smallest eddies is the ~3-power of the Reynolds number,
associated with the eddy-producing large scale kine-
matics.

We can identify the velocities e„with the magnitude
Av used in (6). We consider regions in space of the linear
size L, L fu16lling the relation

L«L&L,. (10)

Let us then assume that L„=L; then Ae=v„ is the
average deviation from its surrounding of the velocity
in that region. We then get from (6) the average density
deviation (Ap)r. from its surrounding in a region L:

(~p)&=p(v /vsr) =p(vo/vsr)'(L/Lo)*' (11)

vs ——10' cm/sec, Ls= 10' cm, (12)

and, therefore,
I

8=1 8X10', Lo/Ls=1 55X10, Ls=0 65 mm,

5=0.36 erg cm ' sec '.

The smallest eddies are a fraction of a cm large.
(b) In the E-layer of the iorsosphere at 100-km height,

we have p= 2)& IO ' g cm '. The viscosity is independent
of pressure, and, therefore, again g=2)&IO 4g cm '
sec '. From the very scant data about velocities and
eddy sizes we infer roughly:

~0=5)&10' cm sec ' Lo——5&10' cm,

and hence'

2=2.5X 10', Lo/Ls =2X 10s, Ls= 2.5X 10' cm,

S=0.5X10 s erg cm s sec '. (13b)

We now proceed to discuss the hlmidity/franc&uafions
A rough estimate of the order of magnitudes indicates

~ This estimate is in good agreement with the values given by
C. dejager LMem. soc. roy. sci., Liege, Series 4, XXI, 223 (1952)g
and obtained from an analysis of meteor trails.

Let us illustrate these results by a few examples:
(a) In the froposphere, at 10-km height, we have

p=3.6&10 '
g cm ', q=2&(10 '

g cm ' sec '. We
estimate the order of magnitude of size and velocities
in turbulent gusts to 1 km and 10 m/sec, respectively.
Hence we may put

3. Calculation of the Scattering Cross Section

Ke now determine the magnitude 3f appearing in
(1) and defined by (2). With (4)' we write

M= —
~ droop(r)e'*'

P, J
(14b)

6 See Electrical Engineering Research Laboratory, University
of Texas, Reports Nos. 47, 1950, and 53, 1953 (unpublished).' Electrical Engineering Research Laboratory, University of
Texas, Reports Nos. 54, 1951, and 6-01, 1953 (unpublished).' In case of tropospheric scattering, the dry-air term of (6a)
gives g =0.45p (g/cms).

that the eGects of humidity in the troposphere are prob-
ably much stronger than the effects of the fluctuations
of the density of the dry air. As can be inferred from
(7) and (19), the average mean square fluctuation
(hp')A, of the latter density is of order p(v, /vsr)'. With
the data as given by (12), and with vier 4X10' cm/sec,
we get

(1/p )(~p'). -0 4X 10 '. (14)

We infer from (6a) that for p' 10 'p, T 300', a
(Ap")A„/p" or (AT')A, /T' of magnitude (14) produces a
(Ae')A„ twice as large as the dry-air density 8uctuation of
(14). Meteorological evidence indicates, however, that
the fluctuations (Ap")A„and (AT')A, may be considerably
larger: Measured (d T')A,/T' values are of order of mag-
nitude IO ' unfortunately humidity measurements
are scarce, but indicate~ fluctuations that may be con-
siderably larger. Practically nothing is known about
the process of turbulent mixing of inhomogeneously
humid air. Thus no information about short-range cor-
relation of humidity in turbulent air is available. Kith
some knowledge of the dynamics of turbulence it
should, however, be possible to calculate approximate
correlation functions from measured large-scale fluc-
tuations (over dimensions of the order Ls). Thus, for
instance, we may assume that, in an atmosphere with
a negative gradient of potential temperature, convection
produces large "wet" eddies (they need not be actual
clouds) embedded in comparatively dryer air. The dis-
sipation of this "surplus humidity" into the surrounding
medium is then to follow closely the dissipation of the
kinetic energy of the wet eddy by the breaking-up
process described above. This leads to the tentative
conclusion of a spectrum of humidity fluctuations very
similar to the spectrum of the Ructuations of v', and
this again is equal to the density fluctuation spectrum.
Should this indeed be the cas- a close study of this
point is under way —the knowledge of large-scale
humidity variations (Ap)s would serve to determine
the humidity fluctuations (Dp')r, in a volume of order
L compared to its surrounding.

In fact we would get from (11)

(~p')r/(~p')s= (~p)r/(~p)o=v. '/vo'= (LILo)'. (14a)

Unfortunately very little is known about the large-scale
humidity fluctuations (Ap') s.
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where po is the average density, and we try to determine
this magnitude on the basis of our picture of homoge-
neous turbulence. These concepts will be applicable
only if the length E ' lies between L~ and Lo.. Lo '&2k sin-,'e&Ls '. (22)

The validity of this expression is limited by the condi-
tion (10). It is only applicable as long as

Le((2k sin20) '(Io. (15)

The integral appearing in (14) is a Fourier coefficient
of the density fluctuations. We can expand the density
p(r) in a Fourier series within the scattering volume V
(which we may assume to be a cube):

p(r) =—P p(k, )e-'"",
p

with the inversion

p(k, ) =)"drp(r)e'"" (17)

It is then clear that 3S, as given by (14), is nothing but

/i"/'= (g/po) p(K). (18)
4

We shall now have to establish the relation between
p(k) and the quantity (Ap)z, introduced in Sec. (2).
Now (Ap) r, is built up by the fluctuations whose spatial
period is of order L. Because of the random nature of
these Quctuations, diGerent wavelengths will not
interfere, and we have

where F(x) is a function which is equal to unity for
x))1 and which falls o6 rapidly for x&I. We then get
a factor fF(X/2Le sin-', 0) f' multiplied into the cross
section (21). Hence, the scattering falls o8 more
strongly with decreasing X or increasing 0 if (2k sin-', 8) '

&Ls.
pA"

(Ap)1 ——Z~ I p(k) I

=
I I

i"
Pdy I p(k) I

V& k UL V2 (2~2/ JAg B. QUANTITATIVE THEORY

1. Cross SectionThe interval k"—k' is of order 1/L itself and centered
about X=1/L. (V/24r')k'dk is the number of Fourier
components with wavelength between k and k+dk.
This gives us roughly:

With Eqs. (1) and (2), we can write the cross section
(1) as

g2 2

droop(r)e4K. r sin'XdQ.
(4n)' K4p'V "y

(~p) i'= I
p(1/L) I'

6m2 Vl.'
(19) Now

Ke 6nd that the turbulent conditions enter the cross
section only in the form vo'/Lo'/4, hence, the cross section
is proportional to (5)4" and depends only upon the
energy dissipation S.

We note the characteristic angular dependence
(sin-,'8) "/'. The dependence upon the wavelength is
different in the troposphere and in the ionosphere. In
the former, g' is independent of X, and we get 0~)'/'.
In the latter, we get from (Sb) a wavelength dependence

mls/3

If the conditions (22) are no longer fulfilled, we expect
deviations from (21). The case where L= (2k sin-', 8) '
is comparable to or smaller than L8 is of special interest.
In this case, the eddies of that size are attenuated by
molecular dissipation, and (d,p)i is then smaller than
(11). In particular, it will fall off stronger than L'/'
with decreasing L. Let us put instead of (11), for
example,

(Ap) ~=p(~o/~~)'(L/Lo)"'F(L/Le) (23)

Hence,

fM f'=6~'f —
f

VL'(&p)~'
4 po& I= tt/X

and inserting (Ap)1,' from (11), we get

) 4 L18/3

f
~

f

~ —6~2g2 V f/

E 4/M) LO I =1/K

Inserting this into (3) gives

|''vo) L / sill+.dQ=g
f

—
f

dQ,
L04" K4

(2o)

1 2

droop(r)e'K'
p2 Q

dre'K' —
~

dRAp(R)Ap(R+r)
p2

(Ap')A.
~dre' 'V C(r). (24)

p2

Defining the Fourier-transformed C(k) of the corre-
lation function C(r) by

C(r)=
f
—

f

' dke '~'C(k),
&24r) ~

a' 1 ~(&p')"i
O.dQ= —

f
fC(K) sin2xdQ,

(4~)2~4& p~
g ('eo )r=

f

—
f f

——
f (2 sin —'0) " ' sin'x.

Lo 44Ar) EL, &

(21)
with E=2k sin-', 0.

where a factor of order unity (3/8) is omitted. Setting we get
L=E ' and using (2) gives, finally,

(26)
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k
vk+i Q(k v«)vk «+ k'v—«+i p«—=0.

k' P P

We shall assume an incompressible medium

(k vk)=0.

(27)

(27a)

This may sound paradoxical in view of our attempt to
calculate the density Quctuation Ap. Actually our as-
sumption merely implies that the divergence free part
of the velocity field is dynamically much more im-
portant than the irrotational components. It also
amounts to assuming that the potential energy stored
in density variations is much smaller than the kinetic
energy of the vortices. Kith this in mind, we shall now
simply calculate the pressure fluctuations hp, and then
calculate Ap with the aid of

p(r) =p, t p(r)/p, ]~, (28)

pp pp being average values of density and pressure, and
y=Cv/C, =1.4 (for diatomic molecules). Multiplying
(27) with k and realizing that for k %0

we have
Pk +Pk)

~pk= —(pp/k')Z'(k vk)(k»-k)
and hence

~pk= —(po/Vpp)'k 'pk (k.vk)(k vk k). (29)

2. Velocity and Density Spectrum in the Statistical
Theory of Turbulence'

Ke shall use a Fourier series expansion of the velocity
field as given in Eqs. (16) and (17);" this enables us
to write the fundamental Navier-Stokes equation in
the form

The 6rst term on the right-hand side describes the
transfer of kinetic energy to different wave numbers k',
the second term the viscous dissipation of energy We
shall now de6ne a stationary situation within a region
(Lp') completely enclosed in the domain over which
(27) holds: this region then contains a largest eddy of
linear dimension Lo and characteristic velocity vo. This
eddy is coupled to the outside of that region by virtue
of the "transfer" term in (30a). We assume that the
eGect of this coupling is to maintain the average
ve1ocity eo of this eddy by means of a power supply So.
Provided 50 is constant in time, an equilibrium will be
reached in which the average v(k) is also independent
of time.

From (30a) we see that Sp must be of the form

Sp= p(vo'/Lp). (31)

If the Reynolds number Rp=pvoLp/rl is sufficiently
large, the dissipative term will enter into p1ay only for
wave numbers k))1/Lp. It will affect eddies of size Ls
and velocity ~z, for which the "local" Reynolds number
has dropped to I:

pL svs/rt= 1. (32)

Once wave numbers of order 1/Le are reached, the
frictional power dissipation replaces the power transfer
to higher wave numbers. So we get another equation
characterizing vq and Lq.

Sp ——np (vp'/Lp),

with n an absolute constant (independent of the values
of vo and Lp), depending only on the large scale geometry
of the power-supplying region outside Lo'. Subse-
quently, we shall put n= 1 and define So by

So we now turn our attention to the velocity field v(k).
Equation (27) gives, upon multiplication with v( —k),

Sp ——
rt (vs/Le)'. (32a)

=zp P (k'vk') (v k' vk —Ie)+rl Qk k (vk' v—k) ~ (30a)

'Much of the content of this section is to be found in G. K.
Satche1or's recent pub1ication on the theory of homogeneous
turbulence )The Theory of Homogeneous Turbuleuco (Cambridge
University Press, London, 1953)) as we11 as Heisenberg s original
paper (reference 4)."We also use vo=o(h).

p d—(Vk' V k) = Zp Qk'(k' Vk') (V k' Vk k')
2dt

+rtk'(Vk V k). (30)

We recognize spv(k) v( —k) as the mean kinetic energy
density carried by the wave number k, since

2p(v'(x))&„= sp gk(vk. v k).

Summing over all k's in (30), we get the total power
balance:

d fpS= ——
(

—P&(vk v,) ~

dt (2

We shall use (32) and (32a) to define the two quantities
va and L8.'

»= (Son/p')'"; Ls= (v'/Sop')'" (33)

(In this definition, isotropy of the velocity spectrum
has been. assumed. ) The dissipative term in (30a) is
then

2rl t dkk'F(k). (33)

%e see that the three "external" parameters 50, g, p
set an absolute scale of length and velocities for the problem
of energy transfer and dissipation in turbulent Row.

To carry this idea through in a more quantitative
way, let us define a sPectral intensity distribution F(k)
for the velocities:

-', Pk Vk V k ——J" dkF(k).
0



SCATTERING OF ELECTROMAGNETIC WAVES

Since (35) represents the total power absorbed, we from dimensional arguments:
have, with y= kLq.

So= (2q/LB') dyy'F(Ls 'y). q'(k) =constX p dk'LF (k')/k"j'. (38)

Using (32a), we see that F(Le 'y)=vs'L&E(y) defines The value of the constant can be estimated from the
a universal function F(y) normalized to 1: argument that rf'(k) should be large compared with rt

for k&1/Le and becoming equal rt at k=1/Le. Hence,

1= ~ dy2y'F. (y).
Jo

(36) F00

t) = constX p dk'[F(k')/k" j';
&/L s

Determination of E(y) or F(k)

(a) Inertial range

Provided Le«LO, there is a region k«1/Ls, in which
the shape of the velocity spectrum F(k) is determined

by the transfer mechanism and not aGected by the
viscous dissipation. In this range F(k) should be inde-
pendent of t), or ve'LBE(kLs) independent of rt. Clearly
this can only be satisfied with a power law for E, since
Lq contains g. Putting

E(kLs) =constX (kLB)",

we get, with (33):

and independence of r) gives n= —5/3.
To normalize Ii approximately, we can tentatively

assume that this spectrum holds for all k values between
1/Lp and 1/Le and that beyond both these limits the
spectrum is cut off. On the high wave number side, the
viscosity is certainly to act as a cutoff, whereas on the
low end the power source produces naturally eddies
of a certain maximum size Lo. With these assumptions
the normalization condition (36) gives us:

~/LB

const X (2rf/Sp)
1/Lg

dkk'= i.

(We see here that the exact shape of the spectrum at
the lower end is immaterial as far as the normalization
goes. ) Hence,

and
const=-', (So/tt)Ls'"= s (Sp/p)'",

F(k)=-,'(So/p)lk '".

(k) Tail of Velocity Spectrum

For this region no really good solution of the problem
has been given. The simplest way to deal with the
problem is to consider the transfer of kinetic energy
from small to large wave numbers as a damping eGect
on the motion of the large eddies. Thus the concept of
an eddy viscosity rt'(k) is introduced to describe the
drain of energy on an eddy of size k ' by eddies of size
&k '. If we assume that rt'(k) can at all be expressed
in terms of F(k') (k'&k), a unique expression results

Sp ——2[rt'(k)+rt] ' dk'k"F (k').
0

(4o)

The condition of stationary transfer implies that no
energy is accumulated in a given wave number interval
and hence that 5& is independent of k and equal to Sp.
With (38) we thus get the following equation for F(k):

So=2 p I dk'[F(k')/k"]'*jrt I dk"k'"F(k"). (41)
~I, 0

The solution of this equation is found to be"

F(k) = (85o/9p)'ask '"(1+(k/k8)') '",
with

k s ——(35op'/8rts) "4.

As we see, for k«k8, we find again our result (37) with
a slight —and for our purpose, immaterial —change of
the normalization constant. Also the value kq is essen-
tially identical with 1/LB as given in (33). For k))ks,
F(k) behaves like k ":

F(k)=8 't'(5pp/rt)'k- (43)

It might be interesting to compare here ks with kp = 1/I p

and kM ——1/I.M, LM being the mean free path of the
molecules of the gas: From simple gas kinetics, we have

and
(rt/p) = (2v/3) vM/kM,

+= voLO/vMLM (Reynolds number).

From (33) we then obtain:

kg ——R4/'ko,

[see also (9)] and
kM= (SM/Sp) ke)

(44a)

(44b)

"The solution of Eq. (41) is due to J. 13ass,'Compt. rend. 228,
22 (1949).

with (37), this gives:

const= (4/3)ass —1.

We can now picture our stationary power transfer as
a dissipation process whereby the energy SI, dissipated
in eddies k'&k or transferred to the velocity com-
ponents vk, with k') k is given by
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where we have introduced S~=pe~'k~ in analogy to So.
Equation (44a) shows that kz))kp if only the Rey-

nolds number is large enough.
Equation (44b) decides the more subtle question

whether hydrodynamic concepts apply at all in the dis-
cussion of the dissipation process. k~&&kg is a necessary
condition for it, and it holds only provided the power
supply So is not too large. We shall discuss the nu-
merical aspect of these conditions in Sec. C.

Our analysis of the velocity spectrum is now essen-
tially completed, and we shall presently return to a
discussion of the density Quctuations as given by Eq.
(29).

The correlation function C(r) introduced in (24) may
be expressed in terms of the pk (PA ——»k for k40):

(»')AC(r) =(»(R)d p(R+r))A,

1
t dR»(R)»(R+r

Since we need only the Fourier-transformed C(k)
of C(r), [see (25) and (26)j, we write the k sums in
terms of Fourier integrals with the aid of the substitu-
tion

p k~ V(22r)
—' dk.

Introducing at the same time F(k) by (34a), we get

((~p')"/p') C(r)

=2r(p, /ypo)'(2m) 2)t dkk 'e'k'

kpk'2 —(k.k')2) 2

X ~dk'F(k')F(lk —k'I)
I( k2(k —k')2 )

or, in view of (26):
I

kPkP —k Ae

[Note: The remaining averages —once the space aver-
ages are carried out—are time (phase) averages. )
With (29) and (p')A„=pp', we get

(k'k" —(k k')2i '
XF(Ik—k'I)

I I
. (45)

k'(k —k')'

(po &'
C(r)=I I Zk 'e"' Z((k»)(k»-k)

E yPp) k k'k"

We shall first evaluate (45) for a case

k,«k«k&. (46)

X(k vk )(k vk" k))A.

The sum pk k'' can be collapsed if we notice that only
the combinations

(a) k'=k", k-k'=k-k",
(b) k'= k-k", k —k'= k"

give nonzero contributions in the average. Thus gk k

reduces to

2+k.((k.vk.)(k v A))A, X((k.vk A)(k vk' —k))A, .

Furthermore, since the incompressibility implies (k vk)
=0, we have:

((k vk )(k v k))A, =((k~ vk )(ki v A ))A„—,'Ivk fp—k~—2,

where

k, =k—n'(k n'), n'=k'/k',

and, therefore,

k 2 —[k2ki2 (k.ki)2j/ki2
This gives

((»')"/p') C(r)

=2(pp/'vip) 2 k e 2 (lvk'I )A(lvk —A'I )A

[k'k"—(k k')]2
X

4k'(k —k')2

X [(r '—r2')' —2 (ri'+ r~')+ 17'/16

= (g5'p/9P)'" (2~k—'")H (kp/k. ks/k) (47)

H is a dimensionless integral and with (46) approxi-
mately an absolute constant. So we have

((»')A/P')C(k)=2~'(Pp/vPp)'(5'p/p)"'k ""H (4g)

An approximate integration gives for H, assuming (46),

H=1 2+1 6(k/2ks)'ip+ (49)

(In all practical cases, k is probably very much larger
than ko and not so far from k~. We, therefore, did not
evaluate corrections ~ kp/k in H.)

In the limit of very high wave numbers k,

k»ks, (50)

In that case, we shall use the spectrum F(k) as given
by (37) and use a straight cutoff at k&~ks, as well as for
k ~& ko. We shall see, however, that with the assumptions
of (46), the k' integral is essentially independent of the
two limits. The k integral in (45)—let us call it J(k)—
is most easily evaluated in bipolar coordinates:

dk'= 22rk'rir 2drldr2

This gives for J'(k):

J(k) = (SSp/9p)'"(2m. k '") t t dridr2(rir2) ""
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the main contribution to J(k) will arise from the shaded
regions of Fig. 1. So we may write

&(k) = "dir'F(k')F(~ k —ir'~) sin'a

—2, dk'F(k')F(k) sin'u.
o' (A;s

Introducing again dimensionless variables z: k'=kz,
we get

J(k)~2(8S /gp)'"k '/o(ks/k)"/o

with

~ z& k8/k

dms-513 sin4~,

ks))k (50), sin'ro=sin'q (see Fig. 1),

and hence

and

dzs / sin4n —2or(3/4) (ks/k) /'X (16/15),
2k

(k) (8So/9p)4/o2ork
—r/o)( (8/5) (ks/k)so/o (51)

So H(ks/k) is 8/5 (ks/k)' /', compared with 1.2 for the
case k((ks. We see that the two expressions (47) and
(51) for H(ks/k) give almost identical values for k= ks.'

II= /. Z and 1.6, respectively.

Ke, therefore, conclude that the formulas hold up to
(or down to) values rather close to that limit and that
an interpolation should be easy.

Let us finally write down the cross-section formula
corresponding to the two cases k&&kg and k&)kq.

According to (48) and (16) we have

g2

odQ, = (po/ypo)'(So/p)'"E " 'H(E/ks) sin'xdQ.
SX4

Now (po/ypo) = (3/ivor'), where vtte' is the mean square
molecular velocity, and p= 1.4 for oxygen and nitrogen.
Then finally, with E=2k sin-', 8,

dfl~tgo(S 4/ov —4)

&(X'/'(2 sin!8)—"/oH( 2—sin-', 8
)

sin'}tdQ
( k

E ks

So, for the two cases, by using the extreme values (49)
and (51) for H, and substituting So from (31), we

finally get

o~0.6g'(vo/vor) 4}(t/'Lo—4"[2 sin (8/2) ] ""sin'x,

[2k sin(8/2)«ks); (52)

o.—0.8g'(vo/ver)'X'Lo 'Loe '[2 sin(8/2)$ "sin'x,
2k sin(8/2)))ks. (53)

FIG. 1. The integral J(k).

C. APPLICATION' TO SPECIAL CASES

1. Ionospheric Scattering

We apply our scattering formula (21) to the experi-
ment of Bailey et u/. ,

"in which radiation of 50 Mc was
scattered by the E layer. By using the same geometry
as Bailey et al."we obtain for the ratio P„/Pe of the
power received to the power transmitted:

P„W.—= 40-
sin (8/2) D'

where b is the thickness of the scattering layer and 3
is the aperture of the receiving antenna. We use the
following numbers which correspond to the setup in
their experiments:

X=10' cm, 3=3&10'cm' D=1.2)&10 cm,
b=5&10' cm, 0=24 .

For g' we use (5) with o/~= 1.5 Mc and the turbulence
constants as given in (13a).

Substituting these values, we get

P„/Pe 1.0)&10 "[theoretical f——rom (21)],
whereas the experiments have given

P„/P& ——0.36)& 10 'o (experimental).

This is a remarkably good agreement. We note that
L= (2k sin-', 8) '=250 cm, which, according to (13b),
is just equal to Iz. Hence, we actually should expect a
somewhatsmaller resu. lt than (21) and a steeper
falling-off than (21) when. going to larger angles or
smaller wavelengths.

ro D. K. Bailey e/ al , Phys. Rev. 86, 141. (1952}.
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2. Tropospheric Scattering

We have compared our results with the data of the
experiments of (a) Round Hill, Massachusetts;"
(b) Cheyenne Mountain, Colorado;" (c) the North
Sea" and (d) the Caribbean Sea"

In experiment (a), we have (see Fig. 2): D=3&&10s
m; X=1.5 cm; n=antenna lobe width=0. 6'; 8=scat-
tering angle=2. 4'; and H=minimum height of inter-
section =1.8 km. The useful scattering volume is
V—(sr D sinsrcr) s/sin().

Throughout, in these four experiments, we shall
compare the actual received (through scattering)
power, I'„, to the power received in free space over
the same distance P~. Thus the antenna characteristics
are eliminated, and we get

P„/Pg= 4(4o V/D'). (54)

Using (54) with (53), and with vs, I.p as given in (12),
and g=0.45p, corresponding to the dry-air term of (6a),
we get

P„/By=10 ".
The experimental data indicate a ratio of order 10 ',
that is, a factor 104 stronger.

FIG. 2. Geometry for tropospheric scattering (narrow beams).

"Private communication.
'4 Chambers, Herbstreit, and Norton, Nat. Bur. Standards,

Report No. 1826, 1952 (unpublished).
's E. C. S. Megaw, Nature 166, 1100 (1950); Proc. Inst. Elec.

Engrs. IIl, 100, 1 {1953).
"For these and similar experiments, see T. J. Carroll, Nat. Bur.

Standards, Report No. 1416, 1952 {unpublished).

In experiment (b) (and the following ones), we have
a slightly diferent geometry: the beams are wide, and
it is the form-factor of the scattering cross section
rather than the lobe width which determines the useful
scattering volume. We take, as a representative case
in (b), a result obtained with D=3.6&(10' m, X=10cm,
0= minimum scattering angle= 3'14', and H =minimum
height of intersection = 2.54 km, and get P„/Pr= 10. "&

compared to an observed 10 '. Again, we are a factor
10 4'.

That the Cheyenne mountain experiments are quite
typical is seen from the data from (c) and (d). The very
weak X dependence of the cross section ( ~ V") makes
comparison easy, as far as orders of magnitudes go.

D. DISCUSSION

Further ionospheric experiments would be necessary
to tell us whether the proposed picture of the dynamics
of turbulence represents a reasonable approximation.
Since in the troposphere the Reynolds numbers are
generally much larger than in the ionosphere, we expect
in general that our model is even better suited for
tropospheric application. But there, in terms of dry-air
Quctuations, an increase of the turbulent power output
by a factor 10' would be necessary to account for the
observed data, and this seems entirely inconceivable.

A natural explanation seems then to hold fluctuations
in humidity responsible for the effect. If the assump-
tions made at the end of Sec. 2 are valid, we infer from
(6a) and (14a) that, with say p'=10 'p, T—300', only
a very small value for the large-scale humidity Quc-
tuations (Ap')s is necessary to explain the observed
scattering: (Dp)ss/p"=2)&10 '. No measurements of
(&p')o' and the humidity fluctuation correlations are
available yet. Measured large-scale humidity Ructua-
tions in and outside cumulus clouds" give variations in
Dp'/p' of the order of 10percent over distances of 500 m.
Fluctuations in a cloudless atmosphere are probably
much smaller but might still be sufhcient (1 percent) to
explain the effect.

A detailed investigation of the humidity efFect (and
concurrently of the temperature effect) appears to be
most important, and is under way.

We wish to thank Professor Henty Booker (Cornell)
and Dr. J. de Bettencourt (M.I.T.) for many stimu-

lating discussions.

"J.S. Malkus, Sci. American 189, 31 (1953).


