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vectors a, b is a tensor

T=ah, components: T,» a,b——». (g9)

The divergence of a tensor and the gradient of a vector
are written as

are denoted by

T a, components: (T a),=P» T,»a»,

a. T, components: (a T);=+» a»T»;.

(92)

(93)

Finally,
DivT, components: (DivT), =g»(ci/c)x»)T»;, (90)

(94)
Grada, components: (Grada), » ——(r)/r)x;)a» (91)

is the interior product of two tensors, T and U, con-
The interior products between a tensor and a vector tracted twice.
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/he extension of Onsager's theory of reciprocal relations between irreversible processes, developed
previously by the authors, is applied to electric conduction in anisotropic crystals, and the symmetry
properties of the conduction tensor are derived.

l. INTRODUCTION

'"N a previous paper' the authors have extended
~ - Onsager's theory for reciprocal relations between
irreversible processes in such a way that it could be
directly applied to vectorial and tensorial phenomena

(see I, Sec. 1). Results were obtained for heat conduc-

tion, diffusion, viscosity, and cross effects. It was

assumed that external forces, taken into account, were

conservative. Thus electromagnetic irreversible phe-
nomena were not treated. It is the purpose of this paper
to apply the general theory outlined in I, Secs. 2 and 3
to electromagnetic processes. We shall consider the
case of electric conduction in anisotropic crystals at
uniform temperature. In Secs. 2 and 3 the macroscopic
phenomenological theory of electric conduction is

developed. In Sec. 4 we then derive an expression for
the entropy production in an energetically insulated

crystal in terms of local fluctuations of state variables,
as required for the application in Secs. 5—7 of the
formalism from I, Secs. 2 and 3. In such a way the

symmetry properties of the conduction tensor are
derived.

2. ENTROPY PRODUCTION IN LOCAL FORM

Let us consider a system, consisting of a rigid ion

lattice and of electrons, in an electromagnetic field.

The entropy production can be calculated as follows:
Charge conservation is expressed by

c)p,/r)t= —divi, (1)

' S. R. de Groot. and P. Masur, preceding paper )Phys. Rev.
94, 218 (1954)g, referred to in the following as I.

where p, is the electrical charge density, and r the
electric current.

Conservation of energy can be written as

ae„/Bt= —divJ„ (2)

where e„ is the density of total energy and J. the energy
Row. These are given by

c„=l„+-,'(E'+ 8')

J,=J,+cE&&8, (4)

with u„ the density of internal energy, —,'(E'+8') the
density of electromagnetic energy (E is the electric and
8 the magnetic field), and cEX8 the Poynting vector.
Relation (4) defines the heat Row J,. Subtracting
Poynting's theorem

-'f)(E'+ 8')/c)t= —divcE&& 8+i E, (5)

from (2) one obtains the equation for the internal

energy

Bu,/Bt= divJ, +—i E.

Furthermore, we need the Gibbs' equation

Trts~/dt =dB„/dt P» tl»dp»/dt~—

where 7 is the temperature, s„ the density of entropy,
pI, and pI, the chemical potential per unit mass and the
density of component t'r (ions or electrons). The time
derivatives in this equation are substantial derivatives
with respect to the center of mass motion. Taking the
velocity of the ion lattice zero we can neglect the center
of mass motion, because the ions are heavy as compared
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to the electrons. We have then instead of (7): grating (14) over the volume of the system,

TBs./Bt= BN„/Bt —(p/e) Bp,/Bt,
d;S/dt= —T ' i {grad(tI/e)+c 'BA/Bt)dV

er Fwhere p, is the chemical potential and e the charge p
unit mass of the electrons. We have taken into account
the fact that the density of the ions is constant (p, is
the electrical charge density due to both electrons and
ions).

In accordance with the approximation made above
no equation of motion is needed, whilst no convection
terms occur in (4).

From (1), (6) and (8) the entropy balance equation
can be derived

= —T '{(—p/e)Bp, /Bt+i c 'BA—/Bt) d V
J~

—T ' (pi/e) dQ (18)
~o

(9)as„/at= —div J,+0,

with the entropy Row

J,= (J, ip/e)—/T,

and the entropy source 0. from
dS/dt= —T ') {(p/e)Bp,/Bt+i c'BA/B. t)dV, (19)

V
To= J, (gradT)—/T+i {E—T grad(p/Te))

= —J, .gradT+i {E .gra—d( /pe) ) &&0.
or, taking into account that at equilibrium p is uniform,
i vanishes and all variables are constant in time,At uniform temperature (11) reduces to

To.= i {E grad—(p/e) }& 0. (12)
dAS/dt= T '{(Ap/e) —BAp—,/Bt

Expressing E in the electromagnetic potentials y and A
+hi c 'BDA/Bt)dV, (20)

where (1) has been used and Gauss' theorem applied.
The last term, which is an integral over the surface Q,
vanishes when the system is materially insulated (i
vanishes at the surface).

If furthermore the system is also insulated for heat,
it follows from the volume integral of (9) with (10),
and from (18) that the change in the entropy of the
whole system with time is

(12) becomes

grady c '—BA/Bt, ——
(13)

T~= —i {grad(p/e)+c 'BA/Bt} & 0—, (14)

is called the electrochemical potential of the electrons.

3. THE PHENOMENOLOGICAL EQUATION

With the Qux and the force occurring in (14) we can
establish the linear relationship

where conservation of charge has been applied, and
where the symbol 6 indicates the difference of a quan-
tity and its equilibrium value. Ke have obtained the
change of entropy as a function of fluctuations of local
state variables. It has the form (I, 15) required for the
application of the formalism derived in I, Secs. 2 and 3.
However, this formalism is based on the consideration
of an energetically insulated system. It is therefore
necessary to investigate whether such a condition
leaves expression (20) unmodified. For this purpose
let us write down the law of conservation of energy for
the whole system which follows from (2), (3), and (4):

i= —L(B) {grad(p/e)+c 'BA/Bt}, (16) (d/dt) ~g„dV+ (d/dt)
'

-', (E'+ B')d V
V

c—'B A/Bt= —grad(p/e) —R(B) i,

where R(B)=—L '(B) is the resistivity tensor.

(17)

4. ENTROPY PRODUCTION IN TERMS OF
FLUCTUATIONS

The entropy production d;S/dt of the whole system,
kept at uniform temperature, can be found by inte-

which is Ohm's law. Here L(B) is the electrical con-
ductivity tensor which can be a function of the mag-
netic ield strength 8. This equation can alternatively
be written as

(EXB) dQ. (21)

Energetic insulation means that no energy Auxes enter
through the limiting surface, i.e., both terms on the
right-hand side of (21) vanish. The fact that the heat
flow J, must vanish at the boundary has been used
already as a sufhcient condition to obtain formula (20).
On the other hand electromagnetic insulation of the
system, i.e., vanishing of the last term of (21), is
impossible since varying charges and currents give rise
to energy changes in free space. Therefore, energetic
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insulation must imply here the constancy of a quantity

N„d V+ i
-', (E'+ B')d V

where the erst integral is taken over the material
system, and the second is to be extended over the whole
of space. Of course the material system must contain
all relevant sources of electromagnetic fields. If now
the fields vanish suKciently rapidly at in6nity

cf (Exs) da

vanishes and constancy of (22) is achieved.

S. FLUCTUATIONS

In formula (20) we have the variables Dp, (r) of the
n type, whereas the components of AA(r) are of P-type
variables (see I, Sec. 2). They are continuous function
of space coordinates r The. quantities h(p/e), and the
components of Di are the corresponding X- and I'-type
variables. The variables Ai and Ap, are connected by
Eq. (1).

The relation (I, 11) and (I, 12) read for these vari-
ables

indicate the magnetic 6eld strengths at the positions
r and r', where the averages are performed.

&Ap, div'Ai')A, ——&Ap,
'

dsvh1)A» (28)

(Dp,{(8/dx, ')DIJ/e+P, R,,'(B')As })A„
= —&aA,'P;(a/a~, )Zs,),„, (29)

&AA, {(8/Bx )Ap/e+Pq R,s'(B')Asj, '})A„
=&hA, '{(8/Bx~) 6p/e+ P & R;s(—B)d s&})Ay. (30)

With the (23) and (24) we find that both members of
(28) vanish, whereas (29) and (30) become

(cl/c!x, ')8 (r—r') = —P; 5,, (cl/elm, )3 (r—r'), (31)

Ps R,~'(B')8,~8(r—r') =+~R,~(—B)8,~5(r r') —(3.2)

Eliminating the Kronecker 8's and the 8 functions,
(31) gives an identity whereas (32) yields the result

'7. RECIPROCAL RELATIONS FOR ELECTRIC
CONDUCTION

In order to derive reciprocal relations for electric
conduction in anisotropic crystals, we insert the law of
conservation of charge (1) and the phenomenological
equation (17) into the expressions for the microscopic
reversibility (25)—(27),

&d,p, (r)Q(r')Ap (r')/e)A„——kTQ(r')b(r —r'),

&Ap, (r)Q(r')Ai;(r'))A„=O, (i = 1, 2, 3)

&aA, (r)Q(r')Ss;(r'))„„=kTQ(r')S, ;S(r—r'),

(23)
R,,(B)=R;,(—B),

or, in matrix notation

R(B)=Rt(—B),

(33)

(34)

(s j=1, 2, 3) (24)

&AA;(r)Q(r')Ap(r')/e)A„——0, (i= 1, 2, 3)

where i and j indicate the Cartesian coordinates.

6. MICROSCOPIC REVERSIBILITY

Microscopic reversibility can be expressed as follows

&~P ( )(cl/dt)~P ( )) {BB }
= &~ .( ') (~/@)~ .( ))"{—B,—B'}, (25)

&~ .( )(~/»)~A*( ')) .{»B'}
= —&AA;(r')(cl/»)hp, (r))A„{—B,—B'}, (26)

&hA; (r) (cl/c!t)AA;(r')) A„{B,B'}
= (AA, (r') (c!/»)DA, (r))„„{—B,—B'}, (27)

which are examples of (I, 19), (I, 20), and (I, 21)
respectively. With time reversal, i.e., all particles re-
tracing their path, the magnetic Geld reverses its
direction everywhere. In formulas (25)—(27), B and B'

where the sign ~ indicates the transpose matrix. Formula
(34) is the desired result for the symmetry properties
of the electrical resistivity tensor.

We may remark that (25) did not lead to any result,
since both terms became identically equal to zero )see
(28)j.Such a behavior for a correlation between n-type
variables, when P-type variables, related to the n's, are
taken into consideration for the description of the
system, was also found in I, Sec. 8 and was first noted
by Machlup and Onsager. ' We have also seen that (26)
leads to no physical result Lsee (29) and (31)$ since it
is an identity. This means that a correlation between
n variables and a related P variable is identically equal
(but with opposite sign!) to the correlation between
this P and this n. Or in other words, the property of
microscopic reversibility is identically satisied in this
case. The complete result (34) is obtained from relation
(27) alone.

The authors are indebted to Dr. R. Fieschi for some
useful comments.

s S. Machlup and L. Onsager, Phys. Rev. 91, 1512 (1953).


