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A generalization of Onsager’s proof for reciprocal relations between irreversible processes is developed
in such a form that it can be used for vectorial and tensorial phenomena. This is achieved by means of an
extension of the fluctuation formalism used by Onsager.

The method is applied to heat conduction, diffusion, viscosity, and cross-effects in anisotropic systems,
and reciprocal relations are derived for these phenomena.

1. INTRODUCTION

NSAGER! has established reciprocal relations

between irreversible phenomena which he derived

from the property of microscopic reversibility. These

relations have found a wide field of application in the
thermodynamics of irreversible processes.??

However, as Casimir pointed out, Onsager’s proof is
strictly valid only for scalar phenomena. As a matter
of fact Onsager assumes that the irreversible fluxes can
be considered time derivates of thermodynamic state
variables. This is correct for scalar processes such as
chemical reactions and relaxation phenomena, but not
for vectorial processes (such as heat conduction, diffu-
sion and electrical conduction) and tensorial processes
(such as viscous flow).

Casimir* has proposed a method to avoid this diffi-
culty, on which he has elaborated for the case of heat
conduction in anisotropic crystals. This method can
briefly be described as follows. Equations are established
for the regression of an infinite number of local temper-
ature fluctuations. To this set of equations the ordinary
Onsager scheme can be applied since the “fluxes” are
now indeed time derivatives of state variables (here
the local temperatures). In particular, reciprocal rela-
tions between corresponding irreversible processes
(Onsager relations) are found. However, these relations
are only an intermediate result, since the equations
used are not identical with the ordinary macroscopic
Fourier law of heat conduction. Only by means of a
subsequent mathematical treatment was it possible to
find the implications of the intermediate Onsager rela-
tions on the properties of the heat conduction tensor.
In the derivation, constancy of the density of the
system (i.e., absence of motion) was assumed.

The present authors® have applied a similar method
to electrical and heat conduction in the presence of a
magnetic field.

In this paper a different method is developed, which
avoids the complications inherent in the approach
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outlined above. The method consists of a generalization
of Onsager’s original proof and enables one to derive
directly reciprocal relations for 1rrever51ble processes of
vectorial or tensorial nature.

2. FLUCTUATION THEORY

We consider an adiabatically insulated system. The
thermodynamic state of the system is described by
variables Ay, A, - -+, A, which are even functions of
the particle velocities, and variables But1, Bmys, -+, Ba
which are odd functions of the particle velocities* (the
B-type variables, or their divergences, may be time
derivatives of A-type variables: see also Machlup and
Onsager® and Secs. 6 and 9). All variables are continuous
functions of space and time coordinates. For conveni-
ence the system will be divided into a number of cells
of volume V* in which the thermodynamic variables
may be considered as uniform (here p numbers the
cells). The deviations of the state variables from their
equilibrium values are denoted by

at=A4H — (Ai”)equ: (G=1,2,---,m) (1)
:810“=ka— (Bk”')equ) (k=m+17 m+2a R %). (2)

The deviation of the entropy of the system from its
equilibrium value is given by the quadratic form

AS= 33, VeV (i gifraBy”
+ 2k B B). (3)

Since the entropy is an even function of the particle
velocities no cross-terms between « and ( variables
appear in the expression (3). The probability distribu-
tion for the a;* and the 8x* is expressed by

P H dotdBi*=exp(AS/k) H dotdB g /

f f exp(A/1) T1 davdpir. (4

The following linear combinations of parameters are
introduced:

Xit= (VE)19AS/dait=+22, V72 gi*ai®y,  (5)
Vir= (V¥)19AS/0B=—2, V"2t h'Br.  (6)

. ©S. Machlup and L. Onsager, Phys. Rev. 91, 1512 (1953).
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ONSAGER'S THEORY OF RECIPROCAL RELATIONS. I

A number of averages, which will be used later on,
can easily be found with the help of (4), (5), and (6):

()X (O))n=—kdisbus/ V¥, (7
B Y 2 ()= — Fdr1dus/ V. (8)

Average values of products of a- and B-type variables
always vanish.

Passing to the limit of continuous variables, the
indices u and » of (7) and (8), which indicate the cells,
can be replaced by r and r’, which denote space coordi-
nates, whereas the last two factors of (7) and (8)
combine into a Heaviside-Dirac 6 function. Conse-
quently (7) and (8) become

(i) X (1 )= —kdi6(x—1'), (9)
BrEH Yot £))n=—kdrid (r—1'). (10)

From (9) and (10) one can immediately derive the
formulas

()R X (¢ )= — k3:, 2 )3 (x—1'),
BrEHQE) Yot 1))n=—k5uQ(r)s (x—1'),

(11)
(12)
where Q(r) is a differential operator of the general form

QE)=2"0 05 p, q,s(X)OPTTH/921Pdx299%5°.  (13)
The coefficients @, 4, are independent of the state
variables @ and 8; the cartesian coordinates are denoted
by %1, 2s and x;.

The formulas (11) and (12) will serve as an extremely
useful basis for the straightforward derivation of the
reciprocal relations amongst phenomenological coeffi-
cients.

Remark

It may be noted that with (5) and (6) the time
derivative of (3) (entropy production per unit time)
can be written as

d(AS)/dt=3, Ve(Tiar X+ 3k BtV et), (14)

or

d(AS)/dt= f {Zio'zi(r)Xi(rHZk B(r)Yi(r)}dr, (15)

in the limit of infinitely small cells.

3. MICROSCOPIC REVERSIBILITY

As a result of the property of time reversal invariance
of the equations of motion for individual particles, the
a and B variables® satisfy the following relations:

(st ('t )= a; (' i (tt+7)n,  (16)
<ai(r)t)3k (l",t"l— T))‘\V: - <Bk (r’)t)ai (I',t+ T)>AV7 (17)
Br ()B4 7)yw= B1(t ,£)Br (t,t+ 7)) (18)
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From these three relations it follows that
(i (x,2) (8/ 0t)er; (t' £))n= (¥’ ) (8/ BE)ri (2,8) ) iy (19)
{i(r,t) (8/36)B1 (' )= — B (t',2) (3/ )i (t,1) ),  (20)
(B (x,8) (3/ 3)BL(X ;1) )n= (B (x',1) (8/ 1) B (x,2) . (21)

Of course the time derivative in the last three relations
should be interpreted on a microscope scale as a differ-
ence quotient;*? however, for all practical macroscopic
purposes this quotient can be considered as a real
derivative.

For simplicity’s sake we have not taken into con-
sideration the influence of a magnetic field® or a rotation
of the system on relations (16)—(18).

4. ENTROPY PRODUCTION IN LOCAL FORM

In order to apply the results derived so far to the
actual physical processes, the macroscopic thermo-
dynamical theory??® of these phenomena must first be
recalled (in this section and the following). Let us
consider a system of # components in which the phe-
nomena of heat conduction, diffusion and viscous flow
and their cross-effects may occur. The system may also
be subject to external conservative forces. The entropy
production can be calculated from the fundamental
laws of macroscopic physics. In the case under con-
sideration these laws are:

The Mass Laws’

odey/dt=—div]y, (k=1,2,---,n), (22)

where p is the density, ¢, the mass fraction of component
k Ok cx=1), and J; the diffusion flow of £ with respect
to the center of mass motion (3_; Jx=0). Furthermore
we have

pdv/dt=divv, (23)
with v=p, the specific volume, and v the barycentric
velocity. In both Egs. (22) and (23) d/d: stands for the
substantial time derivative with respect to the center
of mass motion

d/di=09/9t+v-grad. (24)

With (24) the formulas (22) and (23) can alternatively
be written as

dpr/ t= —div(opv)— divly, (25)
dp/dt=—div(pv), (26)
where pr=cp is the density of component Z.
The Momentum Law
odv/dt=—DivP+>; piFs. 27)

Here F; is the external conservative force per unit

7 For vector notation used here, see the Appendix.
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mass acting on component %:

with  dw,/at=0, (28)

where w; is the potential energy per unit mass of
component k. The pressure tensor P can be split into
two parts

F,= —gradw;;

P=ps+411, (29)

where & is the unit tensor, p the hydrostatic pressure,
and II the viscous pressure tensor.
With (24) and (26) one can write (27) alternatively as

9g/0t=—Div(vg+P)+2 prFs, (30)
where g¢=pv is the momentum density.
The Energy Law
pde/dt=—div],, 31)

where ¢ is the specific total energy and J, the energy
flow. These are given by

e=u+3vH2 i ciwr,
Jo=J 4 v-P+3 wids,

with # the specific internal energy and 3v? the specific
kinetic energy. Relation (33) defines the heat flow J,.

The first law of thermodynamics is found from (31)
with (23) and (27)

pdu/dt=—div],— P: Gradv+>_» Fy-Js.

(32)
(33)

(34)

Introducing the internal energy per unit volume u,= pu
and applying (26), Eq. (34) can be written as

du,/dt=—div(u,v+J,)— P: Gradv—>_; Fr-Ji.  (35)
Gibbs’ Law
Tds/dt=du/dt+ pdv/dt—_ y padcr/dt, (36)

where T is the temperature, s the specific entropy, p
the hydrostatic pressure (we consider fluids, where the
elastic stress tensor reduces to a hydrostatic pressure
only), and p;, the chemical potential per unit mass.

Entropy Balance

With the help of (22), (23), and (34), Eq. (36) can
be brought into the form of a balance equation

pds/dt=—divl,+o, (37)
where J, is the entropy flow,
Jo= o=k mdn)/T,

and where the entropy production ¢ follows from

To=—1J, (grad?)/T+>_ % Ji- {Fr—T grad (us/T)}
—II: Gradv2>0.

(38)

(39)

GROOT AND P.

MAZUR

The three terms on the right-hand side are the result of
entropy production caused by heat conduction, diffu-
sion, and viscous flow, respectively.

Another useful form of Te, which follows from (39)
when the definition (38) of the entropy flow is used, is

To=—J,-gradT—3 1 Ji-gradgz—1II: Gradv>0, (40)

where the quantity

A= prtws (41)

has been introduced.

Just as (35) follows from (34), one can write instead
37,

35,/ b= —div (s,v+I )40, 42)

where s,=ps is the entropy per unit volume.

5. THE PHENOMENOLOGICAL EQUATIONS

The entropy production (39) or (40) is a sum of
products of “fluxes” and so-called “forces” (or “affini-
ties”). Linear relationships between these quantities
can be established: these are called the phenomeno-
logical equations. Choosing the quantities occurring in
(40) one can write

Jo=—L,,-gradT— Y L, gradjs, (43)
k=1

Jio=—Lys-gradT— 3 Ly - gradis,

k=1

3
H’U= - Z Li]', mn(GradV)mn, (i, ]: 1, 2, 3)

m,n=1

(45)

where 7, 7, m and # indicate cartesian coordinates.

We are not concerned here with cross-effects between
vectorial and tensorial quantities, although such effects
might exist in anisotropic media. The present formalism
could of course be easily extended to such a case. (In
isotropic media these cross-effects do not exist according
to the so-called Curie principle.)

The quantities Lss, Lo, Lis and Ly (B, B'=1, 2,

.-, m) are tensors (of the second order). Certain
relationships between these phenomenological coeffi-
cients exist, since not all fluxes and forces are inde-
pendent. From _; Jx=0 it follows that?

Z L,=0, Z Ly=0, (k,= L2, %); (46)
k=1 k=1
2. Li=0, 2 Liw=0 (kI: 4,2, n). 47
k=1 k=1

Thus (43) and (44) can be rewritten with independent
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fluxes and forces:

n—1
J,=—L,,-gradT— 3 L, grad(fix— fin), (48)
k=1
n—1
Ji=—Ly,-gradT— 3 Ly - grad (g — fin)-
k=1
(k=1,2, -+, n—1). (49)

In (48) and (49) we are left with #? phenomenological
tensors (that is 9% phenomenological coefficients).

Let us now discuss the phenomenological equations
(45). In the most general case the viscous pressure
tensor IT has 9 independent components. We shall be
concerned here, however, with the case usually con-
sidered of a symmetric tensor II, which has six inde-
pendent components. Then in (45) only (Gradv)?, i.e.,
the symmetric part of (Gradv) remains. Rewriting
(45) for this case, we have

3
Hen=— = IL(ij)(mn)(Gradv)(mn), (50)

m,n=

where the notations (z7) and (m#n) indicate the sym-
metrical character in the indices between brackets.
Consequently we are left with 36 phenomenological
coefficients L(jy(mn), instead of the 81 coefficients
L;j mn from (45). [When (Gradv) and IT are brought
to principle axes together, only 9 phenomenological
coefficients are left. ]

6. ENTROPY PRODUCTION IN TERMS
OF FLUCTUATIONS

In order to apply the theory outlined in Secs. 2 and 3
to the phenomena described in the foregoing, one must
proceed as follows: the change of an insulated system
which in formula (3) was expressed in terms of arbitrary
parameters a and 8, must now be specified as a function
of the variables which determine the actual physical
state of the system considered in Secs. 4 and 5.

The change of entropy per unit time of the whole
system of volume V is

4S /di— f (95,/00)dV. (51)

The local change of entropy 9s,/0t can be expressed
in terms of other state variables by means of the
Gibbs’ relation (36). This relation is valid along the
center of gravity motion.® In the case under consider-
ation (isolated system), this motion is a fluctuation.
This means that in the Gibbs’ relation terms in v [see
formula (24)] are of higher order than the local time
derivatives, and may therefore be neglected.® Conse-
quently we can write

T3s/dt= du/dt+ pdv/dt—>_x urdcr/ 94,
8 1. Prigogine, Physica 15, 272 (1949).

(52)
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or alternatively, since > i cour=u—T's+pv,

Tasv/at= au,,/at— Zk pkapk/at. (53)

Introducing (53) into (51) we obtain
dS/dt= fT“l(au,,/at—Zk urdpr/08)dV,  (54)
which can also be written as

48/ dt= f (= (AT/To) T (0] 01— 5" 1apn] 1)

+ Towl (6%1;/(%"‘“2]«1 ,ukapk/at)}dV, (55)
where AT=T—T,, and where we take for T, the
equilibrium temperature. The change of total energy
E for the whole system follows from (32)

dE/di= f () -5 w01 4 9%pv?/ GH)AV.  (56)
Vv

Introducing this expression and (53) into (55), one
obtains

dS/dt= Ty dE/dt— f T3 L (AT s,/ 3t
; /

+ 2k Bxdpx/ 9t+33pv2/3)dV.  (57)
For an insulated system (constant E) (57) can finally
be written as

TodAS/di= — f (AToAs/ ot
v

Here the symbol A indicates the difference of a quantity
and its equilibrium value. Use has been made of the
fact that at equilibrium all parameters are constant in
time, T and p; are uniform, and v vanishes. Further-
more conservation of mass has been applied. In passing
from (57) to (58) the difference between p and its
equilibrium value po is immaterial, since third order
terms in (58) are neglected. For this reason, g=pv in
(58) can be considered as pov.

It may be remarked that the result (58) could also
have been found from the volume integral of o (40)
under the same conditions and approximations. The
derivation of (58) given here is, however, simpler.

It is clear that (58) is of the form (15), which is
appropriate for the application of fluctuation theory
(Sec. 2) and microscopic reversibility (Sec. 3). The
variables As, (r), and Api(r) are of the o type, whereas
the components of Ag(r) are S-type variables. (The
variables AT, Afi; and the components of Av are the
corresponding X- and Y-type variables.)
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7. FLUCTUATIONS

To these variables we apply the relations (11) or
(12). This gives

(As,(0)QE)AT (' ))a=kToQ(x' )5 (x—1'),
(Asy (0)Qr") AL (X))a=0,
(A5, ()Q(x")Av;(t"))n=0,

(Ao (DL ()AL (t)n= kT o0 Q(r)5 (r—1),
(Bpr(QX)AT (1))w=0,
(Apr()Q(r")Av(x'))n=0,
(Agi(@)Q(")Av;(x'))n=kT00:; Q2" )6 (x—1"),
(Ag(QAT (' ))n=0,

(Ag: Q) AmL(X)a=0,

where 4,7=1,2,3 indicate Cartesian coordinates.
Furthermore, there are no correlations between the
B-type variables Av and Ag, and any combination of
the a-type variables, because no cross-terms between
a’s and B’s appear in expression (3).

(59)

(60)

(61)

8. RECIPROCAL RELATIONS FOR HEAT CONDUCTION,
DIFFUSION, AND CROSS-EFFECTS

In order to derive reciprocal relations for heat con-
duction diffusion and their cross-effects the following
expressions of microscopic reversibility, which are
examples of relation (19), are needed

(Asy (1) (0/00)Asy (x') )= (A5, (x") (8/ 00)Asy (X)),
(As, (1) (9/00) A (1) )= {Api (r') (3/ 08) Asy (1) ),
(k=1,2, ---,m) (63)

(Apx(r) (9/38) Apre (&) )= (A1 (') (8/ 32) A (X)) .
(b, B'=1,2, -+, m).

(62)

(64)

Introducing into these relations the entropy balance
(42), the mass laws (25), and the phenomenological
equations (48) and (49), one obtains

(As,[div'{—s,’Av'+ L, - grad’AT’
n—1
+ X L/ -grad’ (A’ — AGa") } 0" Dav
o}
=(As,/[div{—s,Av+ L,,-gradAT

n—1

+ 2 Lo grad(Aps—Afa)} +o Da,  (65)
k=1
(As,[ Aiv'{ —pi’AV'+ Ly, - grad’ AT’
n—1
+ 2 L' -grad' (Ape'— Aa")} Dav

B=1 .
=(Apy'[div{—s,Av+ L, gradAT

n—1

+ 2 Lo -grad (A —ARa)} +0 Das,

k=1

(66)

pE GROOT AND P. MAZUR

(Api[div'{ —pi’AV'+ Ly - grad’AT’

n—1
+ ¥ Liw " -grad’ (A’ — Ag')} Dav

k=1

=(Apx'[div{ —psAv+ Ly,-gradAT
n—1
+ LZ Ly -grad(Age—Agn)} Day - (67)
77 ]

where dashes indicate dependence on v’. In these
relations occur the quantities
S AV="5,Av+As,Av,

pkAV= pkOAV+ ApkAV,

(68)
(69)

where s,° and p;° are equilibrium values.
Applying (59) and (60) to (65), (66) and (67) one
gets

div'{L,,"-grad’s (r—1")} = div{ Ly, grads (x—1")},
div'{ Ly - grad’s(r—r’)}

(70)

n—1

=div{ 2° Lo+ Gew—0ka) grads(r—r')}, (71)
frme

n—1
div'{ 22 Ly (Serr—8kn) grad’s (r—r')}

B=1

n—1
=div{ X Liwr- (e —0irn) gradd(r—r')}, (72)

K=l

since averages of third order terms, e.g. (Api’As,AV)a
or (As,c”)u, vanish.

Eliminating the Kronecker é’s and the § functions?
from the preceding relations one finds

DivL,=DivL,, (73)
Lo+ Lot= L+ LT,
DivLy=DivLi!, (k=1,2, - -, n—1) (74)
Liit Liit= Lo+ Ly,
DivLiw=DivLt, (b k=12, - -, n—1), (75)

where the symbol T indicates transposing of the Cartesian
coordinates. With the convention of taking all phe-
nomenological coefficients zero in empty space, and the
fact that these coefficients do not depend on the shape
of the sample it follows

Lss= LssT7 (76)
Lsk= LlcsT; (k= 17 27 ey, 1) (77)
ka’= Lk’kT~ (ka k/= 1; 27 e, n— 1)' (78)

Taking into account (46) and (47), relations (77) and
(78) are also valid for %, or %/, or both, equal to #.
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The formulas (76)-(78) are the reciprocal relations,
which we wanted to derive for the phenomena of heat
conduction, diffusion and cross-effects in anisotropic
media.

The preceding theory could alternatively have been
developed starting for instance from the form (39) of
the entropy production, and corresponding phenomeno-
logical equations and sets of variables in Secs. 6 and 7.

Finally, we would like to make the following remark.
It may at first sight seem surprising that relations
(77) and (78) are found only for values of k& and %’ up
to n—1, whereas in the starting point (63) and (64)
they could also be equal to #. This can be understood
because effectively one of the relations (63), and 2n—1
of the relations (64) yield no information. From (64)
for instance it is seen by summing over %, %’ that one
obtains

(Bp(r) (9/08)Ap ('))n={(Ap (x') (8/30) Ap (X))m-  (79)
Substituting (26) into this last relation this gives
<Ap diV’Agl>Av= (Ap/ diVAg)Av. (80)

According to the argument at the end of Sec. 7, both
members of (80) vanish. Machlup and Onsager® have
already discussed that correlations between a variables
of the type (79) disappear when g variables, related to
the o’s in a way as expressed by (26), are necessary to
describe the thermodynamic state of the system.

9. RECIPROCAL RELATIONS FOR VISCOSITY

Reciprocal relations for viscosity can be derived from
the following expression for microscopic reversibility,
which is an example of (21)

(Agi(r) (9/08)Ag; (x'))n=(Ag; (') (3/91) Ag:(X))m.
(i,7=1,2,3). (81)

Substituting (30) with (29) and the phenomenological
equation (50) into (81) we find
3
—Av/Agi'+ 3 L ajymm

3 0
(o2
=1 axl m,n=1
1/0Av, 9Av, AAm:
(=t S ( ) ]
2\ 0%,  Oxn' k=1 dxy

- <Ag’ [zz.: ai,{

Alegz"i" Z L(h) (mn)

m,n=1

1/0Av, 0JAv, n A Gy
x—( + ) ]+ zpk( ) ]) 82
2 E)xm ax,,, k=1 axi T AV
Here use has been made of
Z prFr—gradp=— Z or{grad (wi+tur) }r
k=1
=— Z pr(gradis)r=— Z pr(gradAfix)r, (83)

k=1
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in which the Gibbs-Duhem relation has been applied,
and where the subscript 7" means constant temperature :

>k pw(gradAgr)r=>_k pr gradAfz—s, gradAT. (84)

Since averages of third order terms vanish and since
no correlations exist between a- and B-type variables,
we find from (82), with the help of (61)

0 , 1( o
,[L ) (mny { 8ind (1—1')
21 0%y .

l,m,n 9%

0
+——b8;mb(r—1") ”
9%,

d 11 9
=2 [L<h> (mn)~= {“517»3 (r—1")
l,m,n 8xl 2 6xm

IR }] (85)

Xn

Eliminating the Kronecker §’s and the 6 functions, we
find the following results:

Lajymot Ly ay=LapymptLmiai,  (86)
2 m(98/0%m) L1jy tmiy= 2om(8/0%m) Lmiyasy-  (87)

With the convention that the coefficients vanish in
empty space this gives
(ii j! l’ m=1’ 2’ 3)'

Ljymiy= Lmay ai- (88)

These are 15 reciprocal relations amongst the 36
viscosity coefficients. This leaves us with 21 inde-
pendent coefficients.

It can be noted that in isotropic media one has two
independent viscosity coefficients, but no reciprocal
relations.

10. CONCLUDING REMARKS

In the preceding sections, reciprocal relations (76)-
(78), (88) have been derived for vectorial and tensorial
phenomena in continuous systems. In this way general
results have been found for heat conduction, diffusion;
viscosity and cross-effects in moving media. However,
we did not include chemical reactions and other scalar
phenomena into the considerations, since Onsager’s
formalism can be applied to these effects without any
extension of the theory. Furthermore, only conservative
external forces have been taken into account, which
means that electromagnetic phenomena have not been
dealt with. This will be done in a subsequent paper.

APPENDIX ON NOTATION

We use essentially the Milne system of tensor
notation.’ The exterior product of an ordered pair of

9 L. Rosenfeld, Theory of Elecirons (North-Holland Publishing
Company, Amsterdam, 1951).
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vectors a, b is a tensor
T=ab, components: Ty=a:bs. (89)

The divergence of a tensor and the gradient of a vector

are written as
DivT, components: (DivT);=>_x(8/0x)Ti;, (90)
Grada, components: (Grada)..= (8/90%;)ax. 91)

The interior products between a tensor and a vector

PHYSICAL REVIEW

VOLUME 94,

AND P. MAZUR

are denoted by

T-a, components: (T-a),= i Taax, (92)
a-T, components: (a-T);=2_ 1 axT ks (93)

Finally,
T:U=%:i Talu (94)

is the interior product of two tensors, T and U, con-
tracted twice.
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The extension of Onsager’s theory of reciprocal relations between irreversible processes, developed
previously by the authors, is applied to electric conduction in anisotropic crystals, and the symmetry

properties of the conduction tensor are derived.

1. INTRODUCTION

N a previous paper! the authors have extended

Onsager’s theory for reciprocal relations between
irreversible processes in such a way that it could be
directly applied to vectorial and tensorial phenomena
(see I, Sec. 1). Results were obtained for heat conduc-
tion, diffusion, viscosity, and cross effects. It was
assumed that external forces, taken into account, were
conservative. Thus electromagnetic irreversible phe-
nomena were not treated. It is the purpose of this paper
to apply the general theory outlined in I, Secs. 2 and 3
to electromagnetic processes. We shall consider the
case of electric conduction in anisotropic crystals at
uniform temperature. In Secs. 2 and 3 the macroscopic
phenomenological theory of electric conduction Iis
developed. In Sec. 4 we then derive an expression for
the entropy production in an energetically insulated
crystal in terms of local fluctuations of state variables,
as required for the application in Secs. 5-7 of the
formalism from I, Secs. 2 and 3. In such a way the
symmetry properties of the conduction tensor are
derived.

2. ENTROPY PRODUCTION IN LOCAL FORM

Let us consider a system, consisting of a rigid ion
lattice and of electrons, in an electromagnetic field.
The entropy production can be calculated as follows:

Charge conservation is expressed by
dpo/dt=—divi, (1)

1S, R. de Groot and P. Mazur, preceding paper [Phys. Rev.
94, 218 (1954)], referred to in the following as I.

where p. is the electrical charge density, and i the
electric current.
Conservation of energy can be written as

de,/dt=—div],, (2)

where e, is the density of total energy and J, the energy
flow. These are given by

er=1,+3(E*+B?), ©)

Jo=J,+cEXB, 4)
with #, the density of internal energy, %(E?4B?) the
density of electromagnetic energy (E is the electric and
B the magnetic field), and ¢EX B the Poynting vector.
Relation (4) defines the heat flow J,. Subtracting
Poynting’s theorem

19(E*+B?)/0t= —divcEX B+i- E, (s

from (2) one obtains the equation for the internal
energy

du,/dt= —div] ,+1i- E. (6)
Furthermore, we need the Gibbs’ equation
Tds,,/dt= du,,/dt—- Zk ,uk,dpk/dt, (7)

where 7' is the temperature, s, the density of entropy,
wi and p; the chemical potential per unit mass and the
density of component % (ions or electrons). The time
derivatives in this equation are substantial derivatives
with respect to the center of mass motion. Taking the
velocity of the ion lattice zero we can neglect the center
of mass motion, because the ions are heavy as compared



