QUANTUM THEORY

E2 2
Ueecssio= f —dv=%C[ f E-dl]. (28)
8 e,

The value of C obtained by Eq. (28) can be used in
the noise formulas to calculate (V2),=[ fiE-dl}, over
the same contour which appears in expression (28). For
the quantities G/C and R/L which appear in (19a) of I
and (12A) of this paper we substitute the ratio,

3 Energy dissipated per cycle

2  Maximum stored energy per cycle’

and compute this ratio classically.
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CONCLUSION

Expressions (21) and (27) are the same as expressions
(28) and (34) of I. We see that for a circuit damped
by a radiation resistance the vacuum fluctuations are
observable in electromotive force measurements at low
temperatures. The available power tends to zero as
the temperature approaches zero. The radiation resis-
tance is seen to have the same classical and quantum
effects as regards damping and noise, as an ordinary
resistance. To first order there are no additional terms
in the radiation resistance formula due to quantum
effects.
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An electron stream interacting with a damped oscillator is considered. The vacuum fluctuations and the
thermal fluctuations can be observed in the noise. It is shown that an electron stream provides a means for
precisely measuring the mean squared electromotive force for certain modes.

INTRODUCTION

N previous papers,!? to be referred to as I and II,

we have shown that for a damped oscillator the

results of precise measurements of the mean squared
electromotive force are given by

(Ve 11w fiw .
""_c[ 2 +exp(ﬁw/kT)—1]' o

In Eq. (1), C is the capacity, and w is the natural
(angular) frequency of the oscillator. The first term of
Eq. (1) represents the effect of the vacuum fluctuations,
and the second term represents the effect of the thermal
fluctuations. We consider here the possibility of ob-
serving these small fluctuations by allowing an electron
stream to interact with the oscillator and observing the
resultant electron stream noise.

It is well known?® that the use of electrons as test
charges does not in general lead to precise field meas-
urements. We will show, however, that in the experi-
ments to be discussed a measurement of the mean

* A brief report of this work was given at the June, 1953,
Rochester Meeting of the American Physical Society.
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squared electromotive force can give precisely the
value above.

INTERACTION OF AN ELECTRON STREAM WITH
A DAMPED ELECTRICAL OSCILLATOR

Consider an electron stream which interacts with a
damped electrical oscillator (Fig. 1).

F1c. 1. An electron
stream interacting with
a damped oscillator.
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ELECTRONSJ!

The interaction can be imagined to take place by
sending the stream of electrons near the condenser
plates, through holes in the condenser plates, or through
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a cavity resonator. The circuit is assumed to be in
thermal equilibrium with the conductance which is
maintained at temperature 7. If the damping is small,
the effect of the conductance is mainly to determine
the average electromagnetic field energy of the circuit.
The wave-functions for the quantized fields of the
circuit will not be significantly different from those of
the undamped oscillator. Under these conditions we
can employ the following Hamiltonian to discuss. the
interaction between an electron and the fields associated
with the circuit, or a single mode of a cavity resonator:

3C=P2/2m—+31 (p*+w?q® — (¢/mc)A-P. (2)

A is the magnetic vector potential, and we let
A=Ay(r)q(f). The variable p is canonically conjugate
to ¢. P is the operator corresponding to the electron
momentum. It is unnecessary to include terms in (2)
representing the conductance because there is no direct
interaction between the electron and the conductance.

We assume that the circuit is in an eigenstate of its
unperturbed Hamiltonian before the interaction begins.
For the perturbed wave functions of the system we
assume the expression

V=3",;aahbb;exp[ — (i/ ) (EtEjt], (3)

where ¢; is an unperturbed wave function for the fields
of the circuit, ¢; is an unperturbed wave function for
the electron.

At the time interaction begins: ¢,=1, b,,=1, a;,=0,
i#n, b;=0, and j=m.

It can be shown? that at any time ¢ during the
interaction time,

lax®)b:(8)]?

4| Hgiww' |? sin¥{ [ (Ex+Ei— Ex— Eu)/201t)
(Ex+E—Ex— En)*

, (4
where

€
Hrivy'=— ¢K*¢l* (A'P)¢N¢Md7¢d7¢- (5)
mc

Referring to (4), it is much easier to calculate ax
than to calculate b;, and we use a method and approxi-
mations first suggested by Smith.® We consider the
electron to be localized, so that A-P is a very slowly
varying function of position over the region of the
electron and the electron energy is not known during
the interaction time. Following Smith® we write

f¢l* (A * P)¢Md’7'«,z (A P)A\,BIM,

4 W. Heitler, The Quantum Theory of Radiation (Oxford Uni-
versity Press, London, 1944), g 88.
5 L. P. Smith, Phys. Rev. 69, 195 (1946).
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and expression (5) becomes

e
Hrws' =~ Hgn'Pudir=AoPadinErx|q| Ern)—.
mc

(54)

In (5A), (Erx|q|Ery) is the matrix element of ¢
between the quantum states of the field with quantum
numbers K and N. P, is the average value of the
electron momentum over the initial and final quantum
states of the electron. We assume that there are elec-
trodes in the system beyond the interaction region
which limit the electrons observed to those with
velocities fairly close to the original electron velocity,
and that the electron velocities are ultimately observed
when the electrons have travelled a considerable dis-
tance beyond the circuit interaction gap. Making use
of (5A) and the initial condition d.,(f)=1, we can
write (4) in the form

462/1 Q2PA\,2[<EFKI(]IEFN> I 2 sin2 (%wKNt)
lax () |?= .

(©)

m2chw K N2

In (6) wky is the natural frequency of the oscillator,
and (6) gives us the probability that the field has gained
or lost a quantum at time ¢ It is interesting to note
that (6) can also be obtained directly from the Hamil-
tonian (2), if we quantize the field but treat the electron
classically, by not regarding P as an operator.

We assume that the interaction gap is small and of
length [. The interaction time 7 will be given approxi-
mately by

r=lm/| Pun]|. (7)

From Eq. (5) of I we have
(B)=(1/pXAd), pP=CV*=C(ED™. ©))

For a resonator, (8) defines C.
Making use of 6, 7, and 8, we can write Eq. (4) at
time 7 in the form

e sin(3wgnt)\?
k(1) |?=—|(Erx|q|Ern)|* —).
Jax() = {(Erelq| En) (= ©)

QWKNT

We let wgny7T=0, where 0 is the electron transit angle.
Making use of the matrix elements for the quantum
states of the field we obtain for (9)

e rsinif P /N+1

lag(r)|?= J(——) for K=N+1, (10)
hwCL 360 2
e [sinid 2 /N

lax(7)|?=—o J(——), for K=N—1, (11)
wCL 36 2

|ax(7)]?=0, for K=N+1. (12)

Expression (12) states that the exchange of energy
takes place in one-quantum steps. Equation (10) is
the probability that the field will gain a quantum from
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the electron, and (11) is the probability that the field
will lose a quantum to the electron. We assume that
the experiment is so arranged that (9) is small and
therefore only single-quantum exchanges are significant.

Suppose that M electrons interact with the circuit,
and that a sufficiently long time elapses between inter-
actions so that the circuit can return to a state of
equilibrium with the conductance. This will be the
case if the current in the electron stream is very small.
Under these conditions we will have |ax(7)|2x—ni 1M
electrons lose a quantum, and |ax(7)|%x—y_1M elec-
trons gain a quantum. If an electron neither gains nor
loses energy we can say that the electromotive force of
the circuit during that interaction time was zero. If
an electron gains or loses a quantum we can say that
the electromotive force during that interaction time
was V=fw/e. The mean squared noise voltage for a
circuit whose quantum number is NV is

2 Ve
()=

2,2

=;2—AZ[ |ak (7) [Px—ny1t | ax (7) [Pk v M

Fiew sinif 2
(5.

1

(13)

If we consider an ensemble, the ergodic theorem
guarantees that the measured value at temperature 7°
will be the ensemble average. The ensemble average of
N is '

_ZN N exp[ — (N4 $)hw/kT ]

NAV—
2w exp[ — (W+$)fiw/kT]

1
=\ (14
exp (hw/kT)—1 (%

Inserting (14) into (13) we obtain

- 117w fw sinif ? (15)
¥ AV—E[—2_+exp(hw/kT)—1]( 10 ) '

If the transit angle 6 is small, (15) becomes

<V2>M=3_[ﬁ_‘°+_L]-

(16)
CL2 exp(hw/kT)—1

A circuit, and a cavity, will have many modes. An
experiment can be so arranged that the only electrons
studied are those with energies between values Enax
and Enin. This limits the number of modes considered
to a definite number, namely those of frequency lower
than wmax= (Emax— Emin)/#%, because we are consider-
ing one-quantum processes. The modes of frequency
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higher than the lowest mode can be made to have a
very small contribution because the transit angle will
be large and the factor (sin}f/36)? appearing in (15)
will be very small.

Accordingly we say that the contribution of all modes
other than the principal mode can be made very small.
We see that (16) agrees with (1) and that the electron
stream provides a means for precisely measuring the
mean squared electromotive force (including quantum
effects) as given by (1), provided the transit_angle is
small.

CONCLUSION

We have studied the random changes of velocity of
an electron stream interacting with a damped oscillator.
The vacuum fluctuations are directly observable as
noise in the electron stream if the circuit is at low
temperature.

One might wonder why the vacuum (radiation) fields
outside of the circuit do not also contribute to the zero
point electron stream noise. The radiation fields outside
do not contribute because a free electron cannot radiate.
This is well known and results from the fact that the
conditions of conservation of energy and conservation
of momentum cannot be simultaneously satisfied. The
electron can exchange energy with the fields of the
circuit because during the interaction time the electron
is not free. Its momentum is not precisely known
during the interaction time, because its position is
known to be localized in the interaction gap. The
electron can therefore undergo spontaneous emission to
the circuit, even if the circuit is in its lowest state.
This loss of energy by the electron is a purely random
process and therefore contributes to the noise. This is
the origin of the zero point noise contribution in this
case.

A factor which must be considered in doing a low-
temperature noise experiment, is the noise (such as
shot® noise), present in the beam before interaction
with a resonator. The amount of this noise will depend
on the manner in which the beam is prepared. The
uncertainty principle does not preclude preparation of
a low-current beam in which the electron velocities are
closely grouped within a range substantially less than
the velocity increment due to loss of a high-frequency
microwave quantum. The vacuum fluctuation noise
could be observed in the random changes of velocity
of the electrons, after interaction. In any case, it is
not essential that the noise in the electron beam before
interaction, be less than the vacuum fluctuation noise.
This is because the latter noise can be observed as an
increment in the noise already present. Somewhat
similar procedures are employed for temperature meas-
urement by microwave radiometers.”
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