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Quantum Theory of a Damped Electrical Oscillator and Noise. II.
The Radiation Resistance*

J. WE~ED
Glenn L. Martin College of Engineering and Aeronautical Sciences, Universsty of Maryland, College Park, Maryland

(Received October 8, 1953)

The results of a previous paper are extended to include damping and noise due to a radiation resistance.
The average electromagnetic 6eld energy of an oscillator of natural frequency co, with inductance L, coupled
to a radiation resistance E, as a function of time 3 is given by
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Using 6rst-order perturbation theory and quantum statistics, an expression is derived for the radiation
resistance of a circuit. This agrees exactly with the classical value.

For an oscillator damped by a radiation resistance the vacuum fluctuation noise, and available noise
power are shown to be the same as for an oscillator damped by a lumped resistance. All of the previous
results are shown to be applicable to cavity resonators.

INTRODUCTION

'"N a previous paper, ' hereafter denoted by I, we
~ ~ discussed some quantum e6'ects in damping and
noise. The vacuum Quctuations were shown to be
directly observable in noise experiments. The assump-
tion was made that the circuit did not radiate. In a
subsequent paper it will be shown that the vacuum
Quctuations can be observed as noise induced in an
electron stream which interacts with a circuit. To do
such an experiment coupling holes would have to be
provided, and a radiation resistance would be thereby
introduced. For this reason the results of I are extended
to include the radiation resistance. It will be shown
that the radiation resistance affects the system in
essentially the same way as an ordinary resistance.
Also for some purposes a cavity resonator is more
suitable than a circuit composed of lumped elements.
It will therefore be shown that the results already
obtained are applicable to cavity resonators also.

* Supported by the U. S. 0%ce of Naval Research.
' J. Weber, Phys. Rev. 90, 977 (1953). We have used the

notation of the previous paper except that in this paperthe
variable q of the circuit is written as qz.

ELECTRICAL OSCILLATOR DAMPED BY
RADIATION RESISTANCE

Ke assume that the radiation resistance is a series
element, as in Fig. 1. For the Hamiltonian of Fig. 1,
we have

K= —', (pt'+to'qt')+Et tt+H, '

+Q&, 1/2ntq(pq —eqA/c)'. (1)

p& and q& are the field variables employed in I, and
the first two terms of (1) are the Hamiltonian of the
dissipationless oscillator. The term H~@ is the Hamil-
tonian of the unperturbed radiation fields, and the
term II,' represents part of the unperturbed Hamil-

FIG. 1. Electrical os-
cillator damped by a
radiation resistance.
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tonian of the electrons. t The last term is a summation
over all of the electrons, and represents the interaction
between the electrons and the circuit and radiation
fields. m), is the mass, p) is the momentum, and e), is
the charge for the Xth electron, and A is the magnetic
vector potential of the radiation fields. We assume that
no resistance other than radiation resistance is present,
for simplicity. If both kinds of resistance are present
additional terms are added to the Hamiltonian and the
effects can be shown to take place independently.

We consider our oscillator to be weakly damped, and
employ first-order perturbation theory. The term in 3'
in (1) can be neglected. The Hamiltonian becomes

e,p, A
X= ', (p p'+(v'q p-')+H pn+H, —Q . (2)

m), c

We have included the term QA(pA'/2m&) in the term
B,. We expand the radiation fields in normal modes,
A=+~; A, (r)q;()'). The last term in (2) can then be
written

In Eq. (6), (Ii ')A, is an average over all direc-
tions of (F„)', the symbol (EeaI q IEs~+ho)) indicates
the matrix element of the operator q between the quan-
tum states of the radiation fields with eigenvalues E~I~
and Esa+ho). (EA IqrIEr+ho)) has the corresponding
meaning for the fields of the circuit. p(Erg+ho)) and
p(Epa h(n) a—re the density in energy of the quantum
states of the radiation fields in the vicinity of
(Era+ho)) and (E&a ho)),—respectively. We assume
that initially the circuit is in an eigenstate, but that
only the temperature of the radiation fields is known.
We therefore need to average Eq. (6) over an ensemble
of similar systems. Now the density in energy of the
quantum states of the radiation fields depends only
on the frequency and not on the energy, so that
p(Emir+ho)) =p(E&e, ho)) =o)'/2—n'hc' By. employing
the harmonic oscillator matrix elements and the relation
E»——(m+-', )ho), the average of the squared matrix
element (Erg I q„I EFie+ho))' can be shown to be

eApA A eApA A~;q. ,=ZZ

cubi

X

For a circuit this becomes

eApA A,q; eI(r)
P A,q.,"dl.

(3)
&&E~n' I q- I Ere*+h~)' exp( E»;/kT)—

P exp( —E»;/kT)

Q h(m+1) exp[ —(m+-,') ho)/kT7
0

We can write the current I(r) as I(r) =I()f(r}, where

f(r) is the current distribution function and I() is the
current at some reference point. We define F; by

f(r)A,"dl,

and we define the inductance L by the relation LIO'
=q&'o)'. By utilizing these relations, Eq. (4) can be
written:

e)eP)k ' Aeeeqkee (k)qs

Z Z = E q-'I'-;.
mAC CQL eee

The term (5) is an interaction term which will cause
transitions with exchange of energy between the circuit
and the radiation fields through the coupling furnished
by the electrons. The transition probability can be
shown to be

2' QP

(~.).. p(E-+h-)(E-Iq. IE-+h-)
ck

gp
X +g +g Ll p +pa kgb

X(e e(q. (S„—k )'(S S +k . (6)
QL,

t Our circuit consists of perfect conductors in series with a
radiation resistance. The electrons referred to are in the radiation
resistance.

2o) P exp[ (m+s)h(e/kT7

h —. (8)
2o)[1—exp (—ho)/k T)7

We can calculate the ensemble average of the squared
matrix element (E&rrIq„IErrr ho))s in the same —way
and employ Eq. (8) and Eq. (7) to write Eq. (6) in
the form

(~.')A.
2irhe' 1—exp (—ho)/kT) .

X ~y +s —Ace

gL,

+(S Z +k exp( —k /kr) . (9)
QL,

By inserting the harmonic oscillator matrix elements
for the circuit, Eq. (9) becomes

co2

(~.') A.

4L,rrc' ~. 1—exp( —ho)/kT)

&([n+ (n+1) exp( /ho)Tk)7—(10).
In (10) the 6rst term of the last factor represents

the eGect of a downward transition and the second
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term represents the eGect of an upward transition. The
rate of change of the 6eld energy associated with the
circuit is the difference of the two terms multiplied by
Ro and is

dU
(F.')A.

dt 4L7rc' 1—exp( —ko)/kT)

&([(e+1) exp (—lto)/k T)—ej. (11)

Fzo. 2. Electrical oscillator
and a voltage generator.

For an ensemble, expression (11) holds for all time; the transition probability is
we can integrate Eq. (11) to obtain

U= —,'Ao)+
exp (Ao)/k T) 1—

( o)

X 1—expI — [(F ')«lt
I

4L7rc'

+ Uo expI — [(P„')«)t I. (12)
4L7rc' )

z.V'(o))
[(~ Ip I~+&)'

GOAL
+(&pI ppI&p &~)'3 —(15)

In Eq. (15) the mean-square value of the voltage
over a range do) is V'(o))do). Inserting the harmonic
oscillator matrix elements, Eq. (15) becomes

vr V'(o))
WG —— [(n+1)+nj.

2AGOL

For large energy (classical limit) the second term is
the only significant one. Comparing (10) with the
well-known classical result U= Voe ' ~&', we obtain

Q)2 ~2
(F„'),„= ~f(r)A„.dl '

4mc' 4m'c'. ~, —Av

In order to compare the transition probability
induced by the voltage generator with that induced by
the radiation resistance we employ Eq. (13) to write
Eq. (10) in terms of the resistance. With this substi-

(13) tution, Eq. (10) becomes

(13) is a formula for the radiation resistance, it
agrees exactly with the classicaP value. In terms of
Eq. (13), Eq. (12) is

U= -', ko)+ (RIL)tj
exp (ko)/kT) —1

+ Uoe '"'i" (12A)

R (I+1)+m
+e .

L exp()rto)/kT) —1
(17)

(18)

Comparison of Eq. (16) and Eq. (17) shows that the
transition probability will be the same insofar as the
first term of Eq. (17) is concerned if

EQUIVALENCE OF RADIATION RESISTANCE
AND A NOISE GENERATOR

H = —,
'

(p p'+o)'g p') —(p p V (t)/o)QL); (14)

In I we showed the equivalence of a noise current
generator and a conductance. In this section, we will

show the equivalence of a noise voltage generator and
a radiation resistance. We imagine that the radiation
resistance is removed and replaced by a voltage
generator. In order that the transition probability be
proportional to time the generator needs to have a
continuous spectrum in the vicinity of co. The Hamil-
tonian of the system of Fig. 2 is

Expression (18) is the Nyquist formula in the voltage
representation, modified for quantum effects. There is
still the last term in Eq. (17). This term is seen to be
the transition probability at T=O, that is, the transition
probability if the resistance is in its lowest state and
the quantum number of the circuit is m. We conclude
that for the radiation resistance the transitions required
by Eq. (17) will be produced by a noise voltage gen-
erator described by Eq. (18),plus spontaneous emission,
that is, plus the efI.'ect of the absorber in its lowest state.

We can also imagine the second term of Eq. (17) to
be equivalent to a voltage generator which can only
induce downward transitions; comparing the second
term of Eq. (17) and Eq. (16) we see that the equivalent
voltage for such a generator is

'L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), p. 251. In calculating the average
of (F„) two polarizations need to be included for each direction
of propagation A„.

2
V'(o)) =—Ao)E. (19)
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This result is formally analogous to that of' Park
and Epstein in their treatment of spontaneous emission.

MEAN SQUARED NOISE VOLTAGE AND
AVAILABLE POWER

To calculate the observable noise voltage we obtain
the equilibrium value of [fE.d17' over the ensemble.
Proceeding as in I, letting C be the capacity, one
obtains the result that

2

s .—s )pexp[ —(n+-', )(A /br)]
C

By making use of Eq. (13), Eq. (23) becomes

dV k~-
p

dt I. &1—exp( —kai/kTt))

X ((is+1) exp( —ha/kT, )—e)

R2

~ 1—exp( —k(o/kTs))

X ((ted+1) exp( —ha/kTs) —e) . (24)

(20)(&')A =

1

(exp(AM/kTt) —1 exp(kai/kTs) —1)1 L7 L7
(&')A, =——+

C 2 exp(Aai/kT) —1 (Ri+Rs). (25)

g exp[ —(as+-,') (Ae~/kT)] In order to calculate the noise power transferred to
n the system by RJ we first determine the stationary

value of ts by setting Eq. (24) equal to zero, the value is
Equation j20j is identical with Eq. (27' of I, and the

value of (V')A, is R R2

AGl AGO

~21 +
2 exp (ka&/k T)—1

(21)

The first term of Eq. (21) represents the effect of the
vacuum Quctuations and the second term represents
the eGect of the thermal fluctuations. In I we proved
that the first term of Eq. (21) cannot be removed by
making formal changes in the Hamiltonian which
remove the zero point energy, and the same proof
applies here. This is because such changes in the
Hamiltonian do not aGect the wave functions and
therefore do not affect the summations in Eq. (20).

In order to calculate the available power, we consider
an arrangement similar to Fig. 1, but with two series
resistances R~ at temperature TJ and R2 at temperature
T2. The Hamiltonian is

H= ,'(P p'+ei'qp')+-Hr g+H,

Ptransferred by R1=
I, exp (Sar/kTi) —1

Ri Rs

&exp�(kai/kTi)

—1 exp(hei/kTs) —1)

(Ri+R,) . (26)

This is the most probable value of e a long time after
Ri and Rs (at temperatures Ti and Ts) have been

coupled to the circuit. We calculate the power trans-
ferred to the system by RJ by inserting the value of e
given by Eq. (25) into expression (11) for the power
transferred by R& when the quantum number of the
circuit is n. The result is

Mgp Equation (26) will approach a maximum if R,/R, —+~,
+ [Z q~~Pt~'+»~iZ (22) Ts +0; the maxim—um value which is approached is

R]AM 1 AGOAGD

The rate of change of 6eld energy can be obtained p, —& , (27)
in the same':manner as Eq. (11) was obtained, the ~ . exp(&ai/kTi) —1 exp(@ai/kTr) —1

result is
and this is the same as expression (34) of I.

d U Ace' 1
(~t.')A,

dt 41.7rc' 1—exp (—Bra/kTi)

XL(I+1) exp( —5(o/kTi) —ej

+(&s.')A
1—exp (—k(o/kTs) ..

X[(ts+1) exp( —Itch/kTs) tsj . (23)—

' D. Park and H. T. Epstein, Am. J. Phys. 17, 301 (1949).

CAVITY RESONATORS

The results of I and this paper, may be extended to
apply to a single mode of a resonant cavity in the
following way. For the dissipationless cavity the
Hamiltonian for a single mode is identical with that for
a circuit, and the interaction terms which bring in the
dissipation will be the same in form. A study of the
theory developed here shows that for any mode we

can de6ne an equivalent capacity C by the relation
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Uetecrric= dz'= sC E ' dl
& 8~

(28)

The value of C obtained by Eq. (28) can be used in
the noise formulas to calculate (V')A„——LJ;E dl]', over
the same contour which appears in expression (28). For
the quantities G/C and R/L which appear in (19a) of I
and (12A) of this paper we substitute the ratio,

co Energy dissipated per cycle—X—
7

2+ Maximum stored energy per cycle

and compute this ratio classically.

CONCLUSION

Expressions (21) and (27) are the same as expressions

(28) and (34) of I. We see that for a circuit damped

by a radiation resistance the vacuum Quctuations are
observable in electromotive force measurements at low

temperatures. The available power tends to zero as
the temperature approaches zero. The radiation resis-
tance is seen to have the same classical and quantum
effects as regards damping and noise, as an ordinary
resistance. To first order there are no additional terms
in the radiation resistance formula due to quantum
effects.
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An electron stream interacting with a damped oscillator is considered. The vacuum fluctuations and the
thermal fluctuations can be observed in the noise. It is shown that an electron stream provides a means for
precisely measuring the mean squared electromotive force for certain modes.

INTRODUCTION

' 'N previous papers, '' to be referred to as I and II,
~ - we have shown that for a damped oscillator the
results of precise measurements of the mean squared
electromotive force are given by

1 5M Sco
(I")A.=——+

C 2 exp (ttco/kT) —1

squared electromotive force can give precisely the
value above.

INTERACTION OF AN ELECTRON STREAM WITH
A DAMPED ELECTRICAL OSCILLATOR

Consider an electron stream which interacts with a
damped electrical oscillator (Fig. 1).

In Eq. (1), C is the capacity, and &o is the natural
(angular) frequency of the oscillator. The first term of
Eq. (1) represents the effect of the vacuum fluctuations,
and the second term represents the effect of the thermal
Ructuations. We consider here the possibility of ob-
serving these small Quctuations by allowing an electron
stream to interact with the oscillator and observing the
resultant electron stream noise.

It is well known' that the use of electrons as test
charges does not in general lead to precise field meas-
urements. We will show, however, that in the experi-
ments to be discussed a measurement of the mean

FIG. 1. An. electron
stream interacting with
a damped oscillator.

~ A brief report of this work was given at the June, 1953,
Rochester Meeting of the American Physical Society.

t Supported by the U. S. Once of Naval Research.' J. Weber, Phys. Rev. 90, 977 (1953).
e J. Weber, preceding paper, Phys. Rev. 94, 211 (1954).
'W. Heitler, The Quantnrn Theory of Radiation (Oxford Uni-

versity Press, London, 1944), p. 78.

E.LECTRONS~~',

The interaction can be imagined to take place by
sending the stream of electrons near the condenser
plates, through holes in the condenser plates, or through


