
PRODUCTION OF E M ESONS

We finally introduce an approximate correction for
the conservation of angular momentum g(W):

I=g (W) rt' (3)
for both E mesons and pions, where g(W) decreases
from 0.67 at the threshold for pion production to 0.51
at extremely high energies. ' Within these limits the
correction is somewhat arbitrary.

III. RESULTS AND DISCUSSION

The results of these calculations for prt collisions are
given in Table II. They are only slightly different for
pp collisions. For the mass of the X meson, sn= 0.69 has
been used. The values at high energies are taken from
our previous paper, ' and the experimental values were
found by the Bristol group. '

For the comparison of our results with experiment,
one should keep in mind that, although the calculated
values are for nucleon-nucleon collisions, the observed
values are for nucleon-nucleus collisions. It is dificult
to state the effect of the nucleus quantitatively, but,
qualitatively, it should reduce the ratio for two reasons
(a) the energy available in secondary collisions inside
the nucleus is only a fraction of the primary energy,

5 D. H. Perkins, Rochester Conference, Dec. 1952 (Interscience
Publishers, New York, 1953) and private communication.

TABLE II. Comparison with experiment.

Energy
in Mc2
in lab,
system

4
6

10
15
20
50

100
200

n+
0.08
0.17
0.30
0.47
0.63
1.17
1.64
2.25

Calculated

n nn/n
0.93 0.09
1.14 0.14
1.40 0.22
1.62 0.29
1.78 0.35
2.34 0.50
2.85 0,57
3.43 0.66

Observed

nx/n,

0.09&0.03

0.20~0.02

0.5~0.2

Kothari
(calcu-
lated)

nsr/n
0.52
0.040
0.036
0.034

hence the production of K mesons becomes less prob-
able; and (b) there is a chance for a E meson to be
reabsorbed in the same nucleus in which it was created,
and a pion may even be emitted on this occasion. ' We
would expect this process to occur more frequently at
low energies where the E particle is slow than at high
energies. In view of these arguments the agreement with
experiment does not look unreasonable. One should
also note that the whole theory contains only one
parameter, the characteristic volume.

' B.Peters, Cosmic Ray Conference, Bagnhres-de-Bigorre, 1953
(unpublished) .
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A theoretical justi6cation for the infinite subtractions, which have to be made in the renormalization of
the S matrix, is given along the lines suggested by Gupta and developed by Takeda. It is shown that this is
equivalent to working with the renormalized 6eld variables of Dyson, and that the method deals very simply
with overlapping divergences and the "wave function" renormalization associated with external lines. It
also gives directly Ward's identities and brings out their essential dependence on gauge invariance. The
method is applied to free and bound electrons in electrodynamics and all renormalizable meson theories.

In the later sections the new method is related to the original method of Dyson; the Bethe-Salpeter equa-
tion is renormalized and closed forms are derived for the renormalization constants.

INTRODUCTION

'HE general proof of the renormalization of the
charge expansion of the 5 matrix of interacting

fields' falls into three distinct parts. Firstly the number
of types of infinity (primitive divergents) in the theory
is determined. (If this number is finite the theory is
renormalizable. ) The second step is to define a subtrac-
tion procedure which removes these infinities. The third
step is to provide a theoretical justification for these
subtractions. A general outline of this proof, applied to

' F. J. Dyson, Phys. Rev. ?5, 1736 (1949).

electrodynamics and various meson theories, has al-
ready been given by us.' The purpose of the present
review is to assume the results of the first two parts of
the proof for any renormalizable theory, and to give,
in detail, a treatment of the third part, which has pre-
viously presented the greatest difhculty. The central
idea is to treat all divergences of the theory by means of
infinite counter terms, as has always been done for the
mass renormalization. This was first suggested by

'P. T. Matthews and Abdus Salam, Revs. Modern Phys. 23,
311 (1951).
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Gupta' and the idea was developed along the lines pre-
sented here by Takeda. 4 The derivation of the required
counter terms was given by Dyson. '

The great advantage of the present method is that it
reduces to trivialities the two main problems of Dyson's
original approach, ' concerning the treatment of over-
lapping divergencies and of external lines.

This program occupies the first five sections. In
Secs. VI and VII the present approach is related to the
point of view adopted originally by Dyson' and fol-
lowed in our general review. '

In the final sections the theory of the renormalization
of the Bethe-Salpeter equation is given and closed forms
are derived for the renormalization constants.

We would like to stress that this paper is intended
mainly as a review and contributes little that is essen-
tially new to the general theory. We feel that the sub-
ject matter is sufficiently important to justify its repeti-
tion in a complete and relatively simple form.

I. ELECTRODYNAMICS

The usual treatment starts with the Lagrangian:

L=Lp+Lr,

Lo(~) = —4F"(*)F"(~)—s LV.A. (*)3s
—C*(~)Lv.V,+ j4(*), (1.2)

Lr(x) = ieA„(—x)tl*(oo)y„tent(x)+3trsl*(ot)sit(oo) .(13)

Here ~ is the observed mass and is related to the "bare"
(or mechanical) mass Kp by

(1.4)

However, e is the "bare" charge. ' The Hamiltonian
corresponding to this Lagrangian is

H =Ho+ Hr.

If one transform to the interaction representation (IR)
by applying the transformation U=exp[iHp(t —t )] to
the Schrodinger representation, defined at some fixed
time t', the new equation of motion is

8
i 4)=)—Hr(Q*,Q,A, e)d'x%),

Bt

where P*, iJ, and A are interaction representation opera-
tors which annihilate and create bare particles with the
observed mass. If one uses the subtraction procedure
defined by Dyson, as extended by Salam to deal with
overlapping divergences, ' one obtains finite matrix
elements for the S matrix defined by this equation.

' S. ¹ Gupta, Proc. Phys. Soc. (London) A64, 426 (1951),
4 G. Takeda, Progr. Theoret. Phys. Japan?, 359 (1952).
o F. J. Dyson, Phys. Rev. 83, 608 (1951).' We denote by it*(%'~) the quantity which appears elsewhere

in the literature as%'. it~ it $y4. LSee J. Schwinger, Phys. Rev. 74,
1439 (1948)).

'Reference 1, Secs. I-VI; Abdus Salam, Phys. Rev. S2, 217
(1951),Secs. II and 111;and Phys. Rev. 84, 426 (1951).

The finite part of the theory is defined in such a way
that it is both Lorentz and gauge invariant.

It is necessary finally to justify the apparently arbi-
trary dropping of the divergent terms. This is the part
of the proof which will be given here in detail.

The subtraction procedure is defined in terms of
infinite constants' A(e) and B(e), C(e), and 1.(e), the
sum of the true divergences" from electron, and photon,
self-energy parts and vertex parts, respectively. We
now take the essential step in the proof. 4 Define re-
normalized Heisenberg variables and observed charge
by the equations

where

C=~sitI, i,

A =Zs&Ai,

8=ZiZ2 Z3 ei

Z, =1—I, (ei),

~s =1+&(&i), ~s =1+C(si).

(1.6)

(1.7)

(1.8)

Lio =Lo(ilti, ilii*,Ai) (1.10)

is the same function of the new variables (provided we
redefine the VA term which has no physical effect) and
(see reference 24)

Lit = —ieir 1—I (ei)]At„gi*y„gi
—8 (ei)Jr*Le„V„+x7g,+Z,3xq,*g,

——,'C(ei) F,„„F,„„. (1.11)

The corresponding Hamiltonian is

Hi =Hip+Hit.

Now transform to the renormalized interaction repre-
sentation' (R.I.R.) by the transformation

Ui= expLiHio(t —t') j
' We use Dyson's notation, except that factors 2v (or 2') have

been absorbed in A, 8, and C.
Some care is required in deriving the Hamiltonian and the

commutation relations in the renormalized interaction representa-
tion (R.I.R.). Firstly, all velocities dP/dt must be eliminated from
the Hamiltonian, which must be expressed in terms of the Geld
variables and their canonical momenta, P& and oo&, say, where

equi(gati)
s (dPi/dt)

After transforming to the R.I.R. the interaction Hamiltonian is
the same function of the new canonical variables P~r (soil.i), where

$1——Ul 'plsUi,
71-1= UI 'mI, Ug,

where the suffix s denotes the Schrodinger representation. This
shows that m & and @& satisfy the equations of motion determined
by P&0. Therefore 71-& is determined by the free Lagrangian only,

gi, pi*, and Ai are identical with the renormalized
Heisenberg variables which have been discussed at
length by Dyson, ' but for our purposes they can be
taken as defined by (1.6), (1.7), and (1.8). Expressing L
in terms of renormalized Heisenberg variables, one
obtains

L=—Li=—Lio+Lir,
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on the Schrodinger representation. The resulting equa-
tion of motion for the state vector is

8
4)—

J
Hlr(fl $1 A i el)d a+)

BI
(1.12)

where II~z is essentially equal to —L~y apart from 'sur-
face-dependent' terms which can safely be neglected
since they cancel exactly with similar terms from the
I' brackets in the 5 matrix. '

The new field variables pi*, lf i, and Ai are operators
which annihilate and create a new type of bare particles
which have not only the observed mass but also the
observed charge. They will be referred to as renormal-
ized bare particles. We now show that the new Hamil-
tonian contains just the right counter terms to cancel
all divergences, provided b~ is chosen so that

Z,by=A (ei), (1.13)

but
S (P)&&[S (P)li(P)]=0, (1.15)

t S (p)S '(p)3&&&(p)=4(p) (1.16)

The ambiguity is only removed if an adiabatic switch-

ing on and oB of the charge is introduced to make (1.14)
determinate. " However, working in the R.I.R. The
counter terms are defined so that all the radiative cor-
rections to an external line vanish identically. The
analog of (1.14) is unambiguously

~.'(p) =s.(p). (1.17)

No adiabatic switching is required. The renormalized
bare particles entering or leaving a scattering process
can be identified with true free particles. All graphs
containing insertions in external lines can be ignored.

namely
&I-io(4 i)

aj,
Hence, lIt &*, p&, and A & satisfy the ordinary free field commutation
relations (with no Z factor), and are correctly normalized to
annihilate and create particles. The last equation can be used to
express H~r in terms of velocities in the R.I.R., to give (1.12).' P. T. Matthews, Phys. Rev. 76, 684 (1949)."F. I. Dyson, Phys. Rev. 83 608 (1951), Sec. X. See particu-
larly the remark following Eq. 178).

and that it leads directly to the finite results of the sub-
traction procedure.

It should be noted, firstly, that in this formulation
no difhculty arises from self-energy insertions in ex-
ternal lines. If one works with ordinary bare particles in
the interaction representation (I.R.) based on (1.3) these
give rise to terms of the form )reference 1, Eq. (37)).

~ (p) =~(p)+S.(p)~(px (p)

=f(P)+S (P)B(&,)S (p)P(p), (1.14)

where, to obtain the second equality, the linear di-
vergence of Z*(p) has to be canceled by 8x and the rest
vanishes because it operates on an external particle.
The remaining term is ambiguous because

Now consider the separation of internal divergences.
When no overlaps occur, all graphs can be built up
unambiguously by insertions of vertex and self-energy
parts into all the vertices and lines of irreducible
graphs. Whenever vertex parts or proper self-energy
parts are inserted, one may also insert the appropriate
new counter term of Hir which, using (1.13) automati-
cally cancels the infinities and carries out correctly
Dyson's' subtraction procedure.

When overlaps occur, one must use Salam's prescrip-
tion. ' This is equivalent to Dyson's when no overlaps
occur. Since this case has already been dealt with,
Salam's prescription need only be applied explicitly to
graphs involving overlaps, that is to say, in electro-
dynamics graphs.

Consider any self-energy graph —to be referred to as
"the original" graph —of any degree of complexity, but
built up of vertices at which only the main interaction
term, ieA„P*y„f, is operating. If there exists a subpart
of this graph, which is divergent, Salam s prescription
is that one must subtract the infinite part (true di-
vergence) of this subgraph, multiplied by the rest of
the graph (reduced integral) obtained by shrinking to
a single vertex the divergent subpart in the original
graph (to be referred to as the "shrunk" vertex). If
the graph has nz nonoverlapping divergent subparts,
with true divergences D~, , D, then the true di-
vergence of all the subparts together is defined to be
(—1)~DrDs D„,and the reduced integral is the graph
obtained by shrinking each of the m divergent sub-
parts to a single vertex. A subtraction must be made for
all possible ways of splitting the graph into divergent
subparts and a reduced integral, including the case in
which the subpart is the whole original graph. Finally,
all self-energy graphs and their subtractions (up to
some given order in the charge) must be summed.

Consider a particular way of splitting the original
graph into a divergent subpart and a reduced integral.
When the summation over all graphs is made, there
occur a set of graphs all of which have the same reduced
integral and the same type of subpart (vertex or self-

energy), but in the set this part appears in all possible
forms. Adding together the subtractions which must be
made for this particular splitting of this set of graphs,
one gets the reduced integral multiplied by the sum of
all the true divergences (again up to the same given
order in the charge) of all possible forms of the divergent
subpart. But this is exactly the term which will arise
from the Hamiltonian Hrz of (1.12) if the appropriate
counter term is operating at the "shrunk" vertex of this
set of graphs. This argument is readily extended to the
case when the splitting of the original graph involves
two or more nonoverlapping subparts, and leads to a
subtraction term with two or more "shrunk" vertices
at which the appropriate counter terms of B~~ are
operating. Summing aver all possible graphs given by
Hrr, one sees that also when overlaps occur the sub-
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traction procedure is automatically carried out by the
Hamiltonian B.

The "subtraction procedure" is thus not a mutilation
of the original theory by the arbitrary dropping of
infinite terms, but a simple reinterpretation brought
about by a change of normalization —(infinite) change
of scale—of the charge and 6eld variables. This is its
justification, and any 'subtractions' which can be in-
terpreted in this way will be referred to as renormaliza-
tions.

Lie =Ls(&i*,&i,Ai'*+A i)

and additional terms in the 'interaction. '

(2.1)

L„'*=—ieif1 —B(ei) jA i„'*&i*v„&i

sC(ei)$2—Fi»'*Fi»+Fr„~'*Fi»'*j (2 2)

These will be referred to as the external interaction term
plus three external counter terms. If the external field is
weak, so that an expansion in terms of it is suitable, the
renormalization argument goes through just as before.
The three external counter terms being just those re-
quired to cancel the infinities, which involve the ex-
ternal interaction term. The last one makes finite the
vacuum-to-vacuum expectation value of the 5 matrix
which appears as an essential factor in the matrix ele-
ment of any process if the external field can create
pairs.

of more interest is the case of a strong external field,
the outstanding example of which is of course the theory
of the Lamb shift in which the electron under considera-
tion is bound in the potential of the nucleus. For these
problems we include the external interaction term in

H~t), and put only the external counter terms in H~~.
With this splitting of the Hamiltonian one can pass to
the renormalized bound interaction representation
(R.B.I.R.). This is similar to that introduced by
Furry" in that the electron 6eld operators annihilate
and create electrons in bound states and the electron
propagator Sp' is now the Feynman sum over bound
states. It difFers from Furry's bound interaction repre-
sentation in that it contains counter terms with con-
stants defined by the free I.R. Now any divergent graph
(self-energy or vertex parts) in the R.B.I.R. will in-
volve Ss' (p) at least once. This can be replaced by the

"R. P. Feynman, Phys. Rev. 76, 749 (1949}.Abdus Salam, and
P. T. Matthews, Phys Rev. 90, 690 .(1953}.

n W. H. Furry, Phys. Rev. Sl, 115 (1951).

II. THE BOUND INTERACTION REPRESENTATION

For many problems it is convenient to split the elec-
tromagnetic field into the radiation field and an ex-
ternal part, due to external sources, which is assumed
to be given classical function. For this purpose we re-
place A above by A'*+A, where A now means the
quantized radiation field. Following through exactly
the same argument as before one obtains

III. WARD'S IDENTITY

It has been shown above that a theory with diver-
gences of the type which appear in electrodynamics can
be renormalized even if no relation exists between the
'true divergences' of self-energy and vertex parts.
However, the infinite constants have in fact been de-
fined in such a way that the finite 5-matrix elements
given by the subtraction procedure are gauge invariant.
This implies that if these finite elements can be derived
from a new Lagrangian, this new Lagrangian must also
be gauge invariant. Therefore the terms involving gi
and either A~ or 7' in I.~ must combine to give an ex-
pression involving only

7+i eiA, . (3 1)

Since the original Lagrangian was gauge invariant, this
is equivalent to the condition

/

It follows that
eIAI ——eA. (3.2)

(3 3)
and hence that

L (ei) = —~ (ei). (3.4)

This is Ward's identity. "The above derivation brings
out very clearly its direct dependence on the gauge
invarance of the theory. This argument is due to
Takeda. 4

IV. MESON INTERACTIONS

It is clear that exactly the same argument can be
applied to any renormalizable meson-nucleon inter-
action. Consider, for example, the pseudoscalar inter-

's M. Baranger, Phys. Rev. S4, 866 (1951)."N. M. Kroll and F. Pollock, Phys. Rev. 86, 876 (1952)."J.C. Ward, Phys. Rev. 78, 182 (1950).

exact expression,

S~'*(p)=S~(p)+SF (p)vA'*(p)SF(p)
+Sp(p)yA'*Sp'*(p)yA '*SF(p). (2.3)

In this way any divergent expression involving Sp'
may be expressed as a divergent expression involving
Ss plus a finite expression involving Ss" Lthe terms in
Sg' are finite since at least two extra external lines
have been introduced, corresponding to the two factors
A'* in the last term of (2.3)$. But since the first two
terms in the right-hand side of (2.3) are the beginning
of the expansion of 5~'* in terms of the external field,
the internal lines of all the divergent parts obtained in
this way, are identical with those obtained in the re-
normalized free interaction representation. Since the
infinities were canceled there by the counter terms, they
will be canceled here too by the same counter terms to
any order in the charge. Thus the R.B.I.R. gives di-
rectly finite results for any cross section or energy shift.
This is the theoretical basis of the subtraction procedure
adopted by Baranger" and by Kroll and Pollock. "
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where
p =Zs'*$1 A =Zs"Ar

Zs ——1+8(ei),

Zs= 1+C(er).

(4.4)

(4.5)

This gives the required self-energy counter terms. To
cancel these in the main interaction terms and intro-
duce the required factors in L and E, we must define

where

Then

e =Z3 ZyZ2 e

e2 Z —1Z —1Z e 2

Zi= 1—L(ei), Z4= 1—'E(ei).

(4.6)

(4 7)

Lir ieit1 L(ei) jA——1„(&1—V„rt11* &„$1 41*)—
—er't 1—&(ei)$A1'4141*+5m'Zs4t141*

+QEZ1 @1 $1 4C(el)~1 ~1

&( )(~.~—~.~ *+~'~ ~ *) (4.&)

The subtractions defined by Salam, ' whether over-
lapping divergences are involved or not, take place
automatically when the S matrix is based on this
Lagrangian, which thus provides the theoretical basis
of the finite theory.

By this approach we have avoided all the compli-
cated argument required when the Z factors are intro-
duced and justified by the method of Salam" (following

'4 Abdus Sa1am, Phys. Rev. 86, 731 (1952).

action of pseudoscalar mesons. All that is required is to
replace the free photon terms in the Lagrangian by

L = ——,'L(qy)s+„sysj, (4.1)

Lr = —igPQ*y, Q+ s5ysg'+Q, P4+8sit1*$, (4.2)

where the masses are already renormalized and the
necessary contact interaction &&4 has been introduced.
Changing to renormalized variables as in the previous
section, produces a Lagrangian which leads directly to
the finite theory.

An even greater simplification is brought about by
this approach in the interaction of spin-zero mesons
with the electromagnetic field, where the overlapping
of divergences can be very complicated. Here L con-
sists of the free meson and photon terms, and

Lr = ie'A„(4t1w„y* V„tt4—y*) e'A'y—y*

+5psgg*+Q. P*'Ps. (4.3)

e is supposed equal to e' (so that L is gauge invariant)
but we distinguish, for the moment, between charges
in the linear and bilinear terms. The S matrix based on
this interaction is infinite, but can be made finite by
subtractions which are defined in terms of infinite
constants I., 8, C, E given by Salam. "The next step
is to define renormalized field variables, which intro-
duce the required counter terms into the theory. It is
not hard to see that we must take

Dyson), or the ingenious, but far from perspicuous
manipulations involved in the proof due toWard. "Also,
as above, no ambiguity arises from external lines.

Further, by the argument given in Sec. III, the re-
normalized Lagrangian is gauge invariant. Therefore

eA =e'3 =egAg. (4.9)

Z$ Z2 Z4 ~ (4.10)

It is clear that these considerations can be extended
immediately to the combined interaction of three fields.

This completes our main purpose of providing, in a
simple way, a theoretical justification for the infinite
subtractions which occur in the renormalization of a
divergent S matrix.

where

L=—Lt=Lpj+Lrt, (5.1)

Lpt = ——4'zsF 1„„F,„„—-',zs (v„A,„)'
—Zsq*(~„~„+s)q, (5.2)

Lrt = ieiziA1 $1 'y $1+zs5KQ1$1 (5.3)

and define a new interaction representation" in terms
of Lpt in which the variables are denoted by $. In this
representation the complete electron and photon
propagators are infinite, that is S~i', not S~', is gener-
ated by making all possible self-energy insertions in a
simple line. However, the simple propagator contains
infinities coming from the Z factors in Lpt. Thus
Spf(x) =Zs 'Ss(x), Ds j(x)=Zs 'Ds(x). Again the Z
factors in Lst gives rise to Z factors in the commutation
relations of pi*t, $1$, and Art' so they are not cor-
rectly normalized for annihilators and creators of bare
particles. To avoid this and to get graphs with simple
propagators Ss rather than S~j we express the inter-
action in terms of ZpArt', Zs&pi*t' and Zs&$1$. Or
equivalently we continue to work with unrenormalized
field variables and introduce only the charge renormal-
ization (1.7). This gives the original Lagrangian (1.1)
but with the interaction expressed in terms of the re-
normalized charge

Lr —— ie,Zs &Z,Zs 'A „P*—y„P+8ePP, —

which again must lead to a finite S matrix when ex-
pressed as a pow'er series in e~. This is the formulation

11 J. C. Ward, Phys. Rev. 84, 897 (1951).' S. Kamefuchi and H. Umezawa, Progr. Theoret. Phys. Japan
7, 399 (1952).

V. ALTERNATIVE FORMULATIONS

We have shown that the Lagrangian (1.9) leads to
an S matrix in electrodynamics which is finite, term by
term, in the charge expansion. The result of course
does not depend on the particular split between the
"free" and interaction parts. We may, alternatively,
write exactly the same Lagrangian in the form
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given by Dyson, ' but established quite differently (6.7), (6.8), and (6.9) are the relations which Dyson'
by him. uses to defoe the Z factors. It should be noted that they

are not required for the general proof of renormaliza-
tion as presented here.

For completeness we now derive from our definitions,
the relations by which the Z factors were defined by
Dyson.

By definition

—;s.(y-r ) =(2(~(r),~*(r')))., (6 1)

where T is the chronological product as defined by
Wick."It follows immediately from the graphical defini-

tion of S~', as the electron propagator modified by all

possible self-energy insertions, that

——;s,'(r —y') =(r(s,p(y), ll*(y')))o/(s)o, (6.2)

where ( . )s is the bare vacuum expectation value and

E=Sp'Sp' — Sp'Sp'GE. (7 1)

Define the renormalized two-particle propagator

VII. THE BETHE-SALPETER EQUATION

The derivation of the Bethe-Salpeter" equation for
pseudoscalar coupling given by Low and Gell-Mann"
can be repeated step by step using renormalized quanti-
ties throughout, to derive the renormalized equation,
which contains no infinities.

Alternatively, one can start from the unrenormalized
form, which can be written symbolically as"

r(s, ll (y),y (y))
( i)"— f

dsl. ds„T(II(sl)

Kl (»)Ss)Xs)$4)

=(~.T(e (.),e.(*.),e *("),e.*(*))~.) (7 2)

E=Z22E~. (7 3)

Then, immediately from the definitions of gl, etc.,
&&&( -),lt (y) A'(r')) (6 3)

By the argument given by Low and Gell-Mann" and
using their definition of the true vacuum +s), it follows

that
—ls '(y —r') =(+or'(4(r), 4*(r'))+o) (64)

By an exactly similar argument, only replacing all

operators by the corresponding renormalized operators,
the finite propagator is

—-'s '(r —y') = (+o2'(4 (r)A *(r'))+o) (6 5)

Using the definitions of lttl and ital*, it follows that

Ss'(e) =ZsSpl'(el). (6 6)

The interaction function G can be derived from the sum
of all irreducible graphs with just four external nucleon
lines, by replacing the lines and vertices by 5&', Ap' and
I'5. A graph with 2e vertices has e meson lines and
2N —2 nucleon lines. Therefore, by (6.7), (6.8), and
(6.9),

G(e) =Zs—'Gl(e, ). (7 4)

Substituting into (7.1), all the Z factors cancel a,nd

Kl=Ss, 'Spl' )t Sp'Si'G—1K1,

Similarly,
Dl '(e) =Z1DF1'(el). (6.7)

which is the finite equation for the renormalized propa-
gator. Similarly, the renormalized "wave function" is

Let A.l(el) be the sum over all vertex parts obtained
from H&z in the R.I.R. Consider any vertex part which

does not contain any self-energy part. The effect of all

self-energy insertions, including their counter terms,
is given by writing Ssl'(el) and Dsl'(el) for the lines.

The vertex counter term is included by multiplying by
1—L(el)(=Z1) at each vertex. If the part has 2n+1
vertices, there are 2m electron lines and e photon lines.

Using relations (1.7), (6.6), and (6.7), and summing

over all such vertex parts, gives

Z,-'A, (e,) =A(e), (6.8)

where A. (e) is the sum over all vertex parts given by
B~ in the I.R. Now

I'(e) =y+A(e)
Zl LZl Y+A1 (el) 3

=Zl 'I'1(el).

"G. C. Wick, Phys. Rev. 80, 268 (1930).
I) M. Gell-Mann and F. E. Love, Phys. Rev. 84, 350 (1951).

Xnl(»)+2) (P0T($1(»))ital (ss))%~)

=Zs 'x.(»,*s),

and again, on substitution into the B-S equation, " all
Z factors cancel, leaving the renormalized equation:

f
Sg'Sg'Giga.

It is important for this argument that no divergences
are produced by the iteration of the equation for E.

VIII. CLOSED FORM OF THE THEORY

s' H. A. Bethe and K. E. Salpeter, Phys. Rev. 84, 1232 (1951).
~2 Reference 20, Eq. (23).
~ Reference 20, Eq. (37).

In this final section the infinite constants introduced
in (1.6)—(1.8) are expressed in terms of renormalized

(6.9) fieid variables.
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Returning to Sp', we have the general relation:

5'~'(y —y') =~~(y —y')

+J~ d" 5 (y )Z( )~ ( y). (8.1)

Again, from a consideration of the graphs, it can be
seen that the finite part of all vertex parts is

A ( y, ) = (T(~,f '(*)f *'(y),
Xj,'(.))),/(S, ).—yL (8.14)

where
Compare this with (6.1) and (6.2). The first term on
the right-hand side of (8.1) is given by putting n=0
The second term is got by combining f(y) with any
fe(z) and/*(y') with any/(s') (s'Ws) in the T bracket,
which can be done in n(n —1) ways in the nth term.
There are additional nonvanishing terms in which

f(y) and f*(y') are combined with the P*(s) and f(z)
of a single bf(: term, which may be done in e ways in the
nth term. One thus obtains an expression for Z(s —s'),
namely

fr'= &gtZtbt'YpA,

j t'=Ztgt*vs4t

Thus, adding the term from the single vertex,

I'&(x,y,s) =Gt(a, y,s)+ps(1 —L),
where

Gt(*,y, s) = (+pT(ft'(*),fr*'(y),It'(z))+p).

In momentum space,

(8.15)

(8.16)

(8.17)

F,(»—z') = (opT(f, (z),fr*(s'))ep), (8.6)

ft ——igZt&tysgt+8 (et) (y„V„+»)Qt —Zs&»gt. (8.7)

Expressing (8.5) in momentum space,

Zt(P) = s[Ft(P)+iZs8»+B(et)(P —i»)j (8.8)
where

p p»Y» (8.9)

But the infinite constants 8 and 8~ have been defined
so that

(8.10)Z, (i») =0,
and

Therefore

and

[~Zt/~pj'= o

Zs5» = —iFt (i»),

(8.11)

(8.12)

J3(et) = [dFt/~P)"— (8.13)

Similar expressions can be obtained for Zpbp' and C(et)
by considering 3p&'.

Z(z s')—= (T(~,f(s),f*(z')))p/9)p 'si—~»&(s s')— (8 2)

=~[(e,T(f(s),f*(s'))e,)—Q.S(s—s')g, (8.3)
where

f= igpysQ —5»Q,

f*=igPQ*ys —5»Q*,

which, for pseudoscalar interaction, is the analog of the
current in the equations of motion for Q and ptt*, re-
spectively. To obtain (7.3) we have again used the
argument of Low and Gell-Mann. "

Alternatively, working with renormalized variables

Zt(s —s') =-,'[Ft(s—s')+iZ28»
—&( )(y.~.+ ))~(-")j, (8.5)

where

Also, since

Pt(p p') =G(p p')+vs(1 —L).

Ft(ix iK) = ys

y pL= Gt (i»,i»)

(8.18)

(8.19)

(8.20)

~ G. Kallen, Helv. Phys. Acta 2S, 417 (1952). If Z& is defined
by the relation,

(+pT (Q,Q*)%'p) = —s (Ss+SpXi'),
and the infinite constants 8 and e» are defined by (8.10) and
(8.11), then Eqs. (8.12) and (8.13) can be derived without the use
of power series by methods employed by P. T. Matthews and
Abdus Salam, Proc. Roy. Soc. (London) A221, 128, Sec. III.

"Reference 1, Sec. V.
"See, for example, G. Feldman, Proc. Roy. Soc. (London)

(to be published).

Relations similar to (8.12) and (8.13) were first
obtained by Kallen. "With the use of these expressions
it is possible to state the renormalized theory, without
mention of power series expansions. Thus the Lagran-
gian is (1.9)—(1.11). The infinite constants appearing
in the Lagrangian are defined by the implicit relations
(8.12), (8.13), (8.20), etc.

We do not wish to suggest that this is necessarily
a finite theory independent of charge expansion. Dyson's
analysis" of the divergences into primitive divergents
depends essentially on the charge expansion. If this
expansion is not absolutely convergent, there is no
reason to suppose that the S-matrix elements, obtained
by some method other than a charge expansion, would
have divergences restricted in the same way and re-
movable by the same renormalizations. "
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