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It is shown that for the meson-nucleon scattering processes an intermediate-coupling method can be
applied which joins smoothly the results obtained from the weak- and strong-coupling limits. The method
is illustrated by a detailed study of the charged scalar meson field with fixed nucleon.

I. INTRODUCTION

A N intermediate-coupling approximation that is
applicable to the bound states of a nucleon-meson

system, i.e., a "physical" nucleon and its possible
isobars, has been given by Tomonaga. ' This method is
limited to a nonrelativistic treatment of the nucleon
but does afford some insight into the problem when the
coupling constant is not suf6ciently small or large that
either the usual weak- or strong-coupling treatment is
trustworthy. Furthermore, in the limit of very small or
very large values of the coupling constant the result of
the intermediate-coupling treatment agrees with that
of the correct weak- and strong-coupling calculation.

This intermediate-coupling method is a simple
Hartree-Fock approximation in which the total number
of mesons is not limited, but all mesons of the same
type are assumed to be only in a finite number of orbital
states. These orbital state functions, together with the
probability amplitude for 6nding any number of virtual
mesons in the nucleon state, are determined by mini-
mizing the total energy. Calculations so far have been
limited to determining the self-energies of the stable
state of a nucleon with charged scalar mesons neglecting
recoil' and obtaining the interaction between a nucleon
with neutral scalar mesons including recoil. '

The purpose of the present note is to extend Tomo-
naga's method to the scattering of a meson by a nu-
cleon. ' The charged scalar meson field with fixed nucleon
is chosen to illustrate the essential features. The exten-
sion of this method to the pseudoscalar meson with
pseudovector coupling will be discussed in a subsequent
paper.

For the scattering system of a free meson plus a
"physical" nucleon we first assume that we have a wave
function in the Pock space representing the "physical"
nucleon. This wave function is multiplied by a scatter-
ing function of the meson which -represents an incident
and scattered wave. This product function is then sym-

*Publication assisted by the Ernest Kempton Adams Fund.' S. Tomonaga, Prog. Theoret. Phys. 2, 6 (1947). F. Harlow
and B.Jacobson, Phys. Rev. 93, 333 (1954).' T. D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).' During the completion of this paper, a similar extension of the
intermediate-coupling method to include scattering problem has
been worked out by S. Tomonaga, Abstract Book, International
Conference of Theoretical Physics, Kyoto and Tokyo, 1953
(unpublished).

1

metrized with respect to all the mesons, and the best
functional form of the scattering function is determined
by the usual variational technique. As such, the ap-
proximation allows for a distortion of the meson wave
but does not allow for a "polarization" of the "physical"
nucleon.

In the weak-coupling limit the results for the cross
section agree with those of the perturbation method.
In the strong-coupling limit the results differ from the
rigorous strong-coupling results by numerical factors
close to unity (depending slightly upon the source size
and incident meson energy).

For intermediate values of the coupling constant the
procedure is to calculate (numerically) the Tomonaga
wave function for the bound states from which one
determines the scattering function and consequently the
cross section by solving the variational problem. As
the coupling constant varies from small to large values
it is found that resonance features may occur. It is
interesting to note that in the scattering ca,lculation the
e8ect of self-energy and renormalization of coupling
constant appear in a very natural way so that they can
be identified and eliminated in an unambiguous manner.

II. BOUND STATE

We consider a charged scalar meson field with the
Hamiltonian

JI=
J

osa(natna+patpa)tf k

gJ"st(k)[r+(na+—pat)+r (nat+pa)$dsk, (1)

where na", na, and pat, pa are the creation and annihila-
tion operators of the positive and negative mesons of
momentum k, and

tt(k) = (4n'coa) ' U(r)e'" "d'r

where U(r) is the normalized source function. coa is the
total energy of the meson, coa ——(k'+ts')'*.

In order to introduce our notation and have at hand
some results already found by Tomonaga, we shall
summarize his method for the bound state.
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TABLE I. Various quantities for the ground state of the nucleon, as functions of g.

Q—g2 —d'k g2 —d'k O(g') g —,tPk O(g')

—1.75

—5.45

g2 N2—d'k'
2 co

0.385

0.77

1—,d'k—

0.05

0.33

,'f—"
,'d—k

0.465

0.555

0.12

0,32

0.2

0.2

1.22
g2

10.8b

g2

a See Eq. (3.38), reference 1, for the complete expression.
b See Eq. (3.37), reference 1, for the complete expression.

The values of the various integrals occurring in the table are

f d3k =1.34; f d3k =0.410;
gok ~ Mk2

A brief derivation of the form X+ and 5R+ is given in Appendix I.

We denote the probability amplitude for finding m

positive and m negative mesons with wave numbers
kl+. k„+; kl . .k in the ground state of a single
nucleon by

(kr+, —k +; kr, k ~4').

intermediate value of coupling constant these equations
can only be solved numerically.

As shall be shown later, the determination of the
quantities,

n=l ~n—1

For definiteness we suppose 4' to be a proton state
(the superscript 0 indicates a ground state); thus, the
difkrence e—m can only be 0 or 1, depending upon the
charge of the "bare" nucleon.

Following Tomonaga we apply the Ritz variational
principle,

with trial functions of the form

x '—= p p fc„„'/'m,
n=l m=n —1

m, '—= g C,, „'C„,„'(~y 1)-:,
n=o

BR '—= P C„~, „+rsC„+r „s(m+1)',
+=0

(6)

i=1 j'=1

n—1

f~'(k) =1V~'N(k)/(cos+X~'),

where A,+' and X ' are numerical constants depending
on the coupling constant and S~' are normalization
constants. The result of carrying out the variation with
respect to the constants C„, ', P+', and X ' leads to a set
of difference equations' in C„, ', which can be evaluated
analytically in the weak- and strong-coupling limits
and give ideetica/ results for the binding energy with
the rigorous treatments in these two limits. 5 For the

' See reference 1, Eq. (3.15).' The weak-coupling result is well known. The strong-coupling
result is discussed by: G. Wentzel, Helv. Phys. Acta 13, 269
(1940); 14, 633 (1941);R. Serber and S. Dancoff, Phys. Rev. 63,
143 (1943); S. Tomonaga, Prog. Theoret. Phys. 1, 109 (1946).

where f+'(k) and f '(k) are normalized but otherwise
arbitrary functions to be determined, together with the
numerical constants C„', by the application of the
Ritz principle. It is easy to carry out the variation with
respect to f~s and show that the best forms of f+' and

f 'are
()

and X+' will be necessary for the evaluation of the
meson-nucleon scattering cross section. Kith these defi-
nitions the normalization S'~, may be written as

Xg'= gBRg'/X~'.

The analytical forms of these quantities in the strong-
and weak-coupling limits, together with some of their
numerical values for the intermediate region, are
listed in Table I and shown graphically in Figs.
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Flo. 1. The self-energy as calculated with the intermediate
coupling approximation for the lowest state, E0, 1st excited state
with m=a-,', E~, and 2nd excited state with ra= &3/2, Es
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wave function of the free meson T d ton. o etermine the
functional form of y~ ~, we use the variational principle
for scattering, which may be fornzally writtenr as

J=—(~l&-& — l~),
u/~]t= o, (9)

where ~o is the energy of the incident meson and Eo is
the self-energy of the proton.

For computational purposes it is convenient to write

Eq. (8) in the equivalent form,

e'= d'kx(k)n top.

00 2 6
COUPLING CONSTANT (g~)

Fxo. 2. Various quantities arisin in m
~ ~ . '

g
'

meson-nucleon scattering
y e intermediate coupling approximation (solid

J may then be easily calculated by commuting n t '

is an eigenfunction of H with eigenvalues Eo. Thus

and 2. For hor the numerical calculations the source func- 2J @p
iieu ii r =(dr' p(esdd/r)]//rhrr, we—s used where 3 )

III. ELASTIC SCATTERING

To illustrate th
meson-

e extension of Tomonaga's m th d t
son-nucleon scattering, we shall consider first onl

elastic scattering and restrict l
t an 2p and toh 2p 0

ic ourse ves to energies less
o values of the coupling constant g such

that no staMe isobars exist. Th h d
easi y extended to inelastic scattering and will be dis-
cussed in the next section.

The functional form of the t ts a e, representing the
scattering process pr++p —& ++p '

d~, is assumed to be'.

Q.+t, —= (ki+, . k. , k.+,+; k;, k„-[e)
= (I+1) '*~+[4-,-'x(k.+i+)],

where 8 is ththe symmetrization operator with respect
~ ~

to positive meson, given by

~+8-,-'x(k~t+)]
'(ki+, k„+; ki, . k„)x(k~t+)

+P„,„P(ki+, . k„ i+, k + k k ) (k+)

d31.+~ a& u eo

+c.c. (11)

Upon varying J with respect to ]t(k), we find the inte-

gra equation

((dt —o)p)]t(k) = K(k, k')]t(k/)d'k', (12)

2K(k, k') = g(op[[ „,~(k)+, (ki)]„[@p)
—(+'[~/t(~/ —~p)~), [+')

—(+'I~h '(» —~p)~~[+') (12a,)

By using the Tomonaga approximate form f
q. ( ), and the expressions for (o(to()A„and (o(r+)A, given

by Eqs. (A.3) and (6), Eq. (12a) becomes

2K (k,k') =gmt+P[ f+'(k) td (k')+ u(k) fdP (k')]
—K+ [o)k+o)/ —2o)p]f+ (k)f+ (k )

+P„„P(ks+, k~i+; ki—, k„—)x(ki+).

' is the probability amplitude for the d .
o e nuc eon given by (3), and x(k) represents the

Finally upon using Eqs. (5) and (7) we find,

K (k,k') = K+'(ed p+Xd. ')f+'(k) f+'(k') (13')

The solution for the scattering problem of Eq. (12) is

]t(k) =S'(k—k,)+
K+'(o)p+ X„')fd. '(k) f+'(kp)

(o)) —o)o—sp) 1—X p(o)o+X+') ' d'k'I f+'(k') I'/(I&'—

(14)

w ~

For 7i- +p, an additional term corres ondin top g o t"e formation of a neutron t b
'

l

7 A rigorous formulation of the vari
' ' '

ppen ix

in o h
'

mus e inc u ed. See A endix II fd. pp
'

or a detailed

n o e vanational principle is given in Appendix III.
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corresponding to a differential cross section given by (see A,ppendix III):
[4ir'cppu'(kp) Rg']'do

dQ
[4''cppkpu'(kp)Eg']'+ (cpp+X+P)' 1—Rg'(cpp+X~P)P ~d'ku'/(cp+lc+P)'(cp —cdp)

)-2 (15)

(cp„—cpp)x+(k) = ) E++(k,k')x~(k')d'k'

+)fE+ (k,k')x (k')d'k',

where P indicates that the principal value of the inte- g (k) we have
gral is to be taken and R= (OR+P)'/X+P.

It may be emphasized that the self-energy Eo has
been explicitly eliminated in the kernel E(k,k), Kq.
(12), and that in (15), E is always multiplied by g' and
plays the role of a charge renormalization factor. The
result (15) is then completely convergent even for a
delta function source.

Weak-Coupling Limit

For a sufficiently small coupling constant, R= j. and
)+0=0 so that with a delta function source the cross
section becomes

dcr/dQ= g /cpp,

(cpj,—cpi)x (k) =
) K +(k,k')x~(k')d'k'

+) E (k,k')x (k')d'k',

where coo and co1 are the total energy of the free positive
meson and the outgoing negative meson, respectively.
The kernels are

IV. INELASTIC SCATTERING
2Ep k, k' =2E + k', kFor sufIlciently large value of the coupling constant

a stable isobaric state of the nucleon with charge 3 is =g~f+'(k)u(k')+get'u(k)f '(k)—
possible and the scattering will be inelastic; that is, —&(cpI,+cpk —cpp —cpi) f~'(k) f '(k'),
the reaction and

which agrees exactly with the usual weak-coupling
calculation. 2E~+ (k,k') =5K~Pg[f~P (k)u (k')+ u (k)f+'(k') j

&+'(~~+—~a' 2~p) fp'(k—)f+'(k'),

(A) ~++p~~—+p+++

competes with the scattering process

2E'=(k, k') =O1t+'g[f '(k)u(k')+u(k) f '(k')j-
-~+i(~,+~'-2-i)f (k)f (k'),

(Il) -'+~--+~ where JK~P, K+P are defined by Eq. (6) and 5K+', X+'
are the corresponding quantities for the state p' ' '.

Therefore, instead of Eq. (9) we use the trial function' The constants 8, p, g, are

q-+i, -= (u+ 1) '*~+[0-.-'x+(k~i') j ao

(k )$ (16)
=2,.-' - ..-'(+ )' f+'()f+'() '

where P„~&, i' is the probability amplitude of the
triply charged stable isobaric state p ' ' ' for finding tc+1
positive mesons and m —i negative mesons. The pro-
cedure for the determination of the isobaric state wave
function is identical with that used for the ground
state. We shall in this paper use superscript 0 for quan-
tities connected with thy ground state and the super-
script 1 for the corresponding quantities associated with
the isobaric state p' ' '. g (k) represents the outgoing
wave of a negative meson and y+(k) is defined as before.

Applying the variational principle (9) to the trial
function (16) with independent variations of x+(k) and

I'or simplicity we have restricted ourselves to energy less than
2p. At greater energy, multiple production of mesons is possible
which must be taken into account by adding additional outgoing
waves in the trial function.

"n—1

X I f '(k)f '(k)d'k

and

X ) f '(k)f '(k)d'k
-n—I

n=l m-n —1
C,„'C„+i,„ i'[(tc+ 1)m j*'

n
1

X f+'(k) f+'(k)d'k f—'(k) f—'(k)d'k

- n+I
O'= Q C„~i „ i'C„+i pm& f~p(k) f+'(k)d'k

n=1
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where C„, ' and C„, ' are the total probability ampli-
tude for finding e positive mesons and m negative
mesons in the ground state and the triply charged iso-
baric state of the nucleon, respectively.

Upon noticing that the kernels of the integral equa-
tion (17) can be written as a sum of product functions
each having only one variable, the solution for p+ and

must, therefore, be of the form

solved by casting x+(k)+z (k) into the same form as

z(k) in Eq. (14). On using the limiting values for X~
and 5K~' as tabulated in Table I we find the differential
cross section do++/dQ and do~/dQ for the reaction (A)
and (B) to be

f'(kp) pop'

=4~4 +0(p/M), (21)
m '+ $ 4or'f'( ko) k~o]'

and

x+(k) =~'(k kp)+—w'f+'(k)+~+'f+'(k)
+3&+'f+'(k)+P+'f+'(k)+v+n(k) j

where M ' is the size of the source function and

x (k)=n 'f o(k)+n 'f '(k)
+9 'f '(k)+a 'f '(k)+v- (k)ll — -' 3-',

m-'= P Lf'(k)/(oo —a)p) fd'k, (22)

where n~', P~' (i= 0, 1),and y~ are numerical constants
which can be determined by substituting Eq. (19) back
into the integral equation (17).

where P indicates that the principal value of the inte-
gral is to be taken. For a 8-function source (i.e., 3f~~ )
we get for the total cross section when cop= p

o.++=o.+ ——
harp, '(2 '+~ ') ', (23)

and

X,o=m, ~= g,

5K+' ——5R+' ——5= 5',

f '=f '=f '=f '= (1(k)-/~)
~

-d'»'/~'
~

Thus the kernels become

E~=Ep =E p=E =E(k,k'),

where E is identical with that in Eq. (12). By forming
the linear combinations p+&x we readily 6nd

Strong-Coupling Limit

It is of interest to examine the solution when the
coupling constant is very large. In this case the energy
separation (arp —co~) of the isobaric state with the ground
state is of the order g

' and is neglected. Furthermore,
the distribution functions of mesons around the nucleon
becomes identical for the isobaric and the ground state
as g~~. We can thenirI, this limit' set

while the rigorous treatment in the strong-coupling
limit' yields

0++=0+ =%@ (24)

400 P

Hence, unlike Tomonaga's treatments on the bound
states where the variational method leads to exact
agreement with both the rigorous calculations for
weak- and strong-coupling limits, our calculations for
meson scattering give exact agreement only in the
weak. -coupling limit while in the strong-coupling limit
the rigorous treatment differs from our result by the
factor"

(o+1/~)'

at zero energy. At other energy this factor is

( '—t')'* ( o+t)'*—( —t)' '
I

-+- I+ +
2~o ~~o (~o+p) '+ (~o p) *-

and

( —
o) Lx+(k)+x-(k) j

((o—(op)LX+(k) —x (k))=0, (20)
Q)0

2

which only varies from about 0.7 to 0.8 as coo increases
from p to 2p.

=2)I E(k,k') [x~(k')+y (k')$d'k'.

The 6rst equation shows that the difference between

x+(k) and x (k) can only be a P(k —kp) so that in the

strong coupling limit the cha-rge exchange and nonexchange
cross sections are eqlal. The second equation can now be

The constants )+' in the strong-coupling limit are of the order
g . Thus, their inhuence on each of the overlapping integrals in
(18) is of order g 4 which can be neglected in the present calcula-
tion. On the other hand, in the calculation of isobaric separation
it is necessary to include )+' since the isobaric separation energy
is itself of the order g '.

V. INTERMEDIATE-COUPLING RANGE

In this section we shall present the results of the
numerical calculations in the intermediate-coupling
range. Figure 3 shows k'(do/dQ) as a function of energy
for m++ p and n. +p scattering. It is of interest to notice
that even as g'=10 the deviation in cross section from
the strong-coupling limit is still substantial. Thus, at
least throughout the range 1(g2(10, both the weak-

' This discrepancy presumably is due to the absence of polariza-
tion effect in our approximation. The inclusion of such e6ect,
though desirable, tends to make the calculations at intermediate
coupling range much more complicated.
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and strong-coupling results are in very poor agreement
with the intermediate-coupling results. In Fig. 4,

cot6 is plotted against energy and shows that the
scattering amplitudes for Gr++P and Gr +P are very
similar to that of a short ran-ge attractive potential and a
short rang-e repulsive potential, respectively, while for
pr++p, a 90' phase shift is always possible at a suitable
value of the energy, provided g') 4.0. Vet the phase
shift for v +p would always be smaller than 90' except
may be at the region of extremely large g values.
Figure 5 shows the manner in which the scattering
amplitude for zero incident kinetic energy (cpp ——JA)

changes smoothly from weak-coupling value to the
strong-coupling value. It may be noted that for zero-
energy pr++p scattering, a phase shift of 90' will occur
at a value of g' =4.0. From Fig. 1 one sees that, by using
the Tomonaga's technique for bound state, also at
g'=4.0, the first excited state p~ has a zero binding
energy. Thus, at least in this case, the method for the
bound state agrees with that for the scattering state.

4.0

3.0

2.0

I.O

0
k ctg 8

I.O

2.0

3.0
+p)

4.0
I.O

k

I

2.0

Fro. 4. k cotb vs k'" for various g values.

3.0

I.O

b
Ol

integral is a decreasing function of co0, the phase shift
will be less than Gr/2 if g is smaller than the value of g
required to give a resonance at zero energy, coo =p.

Examination of the simplified form of the cross
section indicates that essentially two distinct conditions
must be satisfied to validate a perturbation calculation.
These are (1) that the number of mesons about a nu-
cleon be sufficiently small that the perturbation result
agrees with the intermediate coupling result, namely

Xp'=g' Lu'(k)/cps']d'k(1 (26)

0
0 0,5 I.O I.5 2.0 2.5 0 .5 I,O I.5 2.0 2.5

k2 k

Fio. 3. k'dIr/dQ versLAs kp. Solid lines refer to intermediate
coupling calculations.

and (2) that the damping terms in the denominator be
small compared with unity, i.e.,

(27)

While the detailed results are essentially of a nu-
merical nature, some approximate expressions are found
useful in understanding the over-all behavior of the
cross sections. For Gr++P scattering it is found that
with )I,+p in (15) taken equal to zero the phase shift 8

may be written as

4m'(Rg') cpu'(kp)
tan5 =

I

'x
I-
Co

LLJ
0—

\

WEAK COUPLING

OUPLING
7T +p

6=Rg'OUOP) Lu'/cps (a)—cpp) jd'k.

(25) Co

tL
LLII- -2—
LJJ

COUPLING~
+p OR a++ p

LING 7r yp

Since the integral is in general positive (if cpp(2JA), it is
possible to find one resonance at any energy less than
2p for some value of g. On the other hand, since the

"A similar form for the phase shifts is obtained ';by G. Chew
for pseudoscalar meson theory, using the Danco ft-type wave
functions [Phys. Rev. 89, 591 (1952)g.

l

I.O
f

2.0
g

I

3.0

FIG. 5. (Scattering length) i vs g for Mo ——p.
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VI. CONCLUSIONS

It has been shown that for the scattering processes
as well as the bound states the intermediate-coupling
method may be applied, and that this treatment joins
all results calculated for the weak- and strong-coupling
limits smoothly. For the ground state it is found that
g'(1 for a 10 percent accuracy in the self-energy if the
weak-coupling method is used and g')3 if the strong-
coupling method is used. More stringent limits are
placed upon g' when the same accuracy is desired for
more critical quantities such as average number of
mesons, isobar separation, scattering, etc. For example,
the calculated value of g' for a stable isobar of charge
two is g &4.0 with the intermediate-coupling method
and g'&5.8 with the strong-coupling method. By re-
ferring to Figs. 3 and 5, it is seen that for scattering
processes g'&1.0 and g'))10 for the applicability of the
weak- and strong-coupling methods, respectively.

It has also been shown that m.++p scattering is similar
to scattering by a short-range attractive potential and
that pr +p is similar to scattering by a repulsive
potential.

The authors wish to thank Dr. C. N. Yang for some
helpful discussions and express their gratitude to Pro-
fessor Oppenheimer for the hospitality extended to
them by the Institute for Advanced Study.

averages can be obtained explicitly by converting n, p
into real canonical conjugate variables, and the problem
of determining the eigenstates of H LEq. (A.2)] reduces
to the problem of two coupled harmonic oscillators. In
the strong-coupling limit, one may neglect higher orders
in g

' and set f+(k)=f (k) T.he results are listed in
Table I.

e'=) x (k)Pg%'~d'k+c%'~, (A.4)

where 4'~ and +~ are the state vectors representing a
"physical" proton and a "physical" neutron, respec-
tively. c is a numerical constant. Upon varying

(~l&—&.—- I~)
with respect to x (k) and c, one 6nds

APPENDIX II

The trial function %' representing the process,

~ +p-+~ +p,
differs slightly from that for n+ scattering, Eq. (10),
due to the possibility of finding a neutron with no
mesons. The assumed form is now a combination of

APPENDIX I
To derive the explicit forms of K~' and BR+' we

consider an alternative formulation of the Tomonaga
method. In this formulation one approximates the
annihilation and creation operators of the mesons by

where

c= —R ff~P(k)x (k)d'k,

(s&
—(op)x (k)=)~E(k,k')x (k')d'k',

(A.5)

(A.6)

~s=f+(k)~; ~pt=f+(k)~t

P.=f (k)P; P.t=f (k)Pt, - (A.1)
5t= P P C., „'C +,, „'(m+1)l

n=O ~n—i

g~=g) u(k) f~(k)d'k.

It can then be shown that

and
x,=P lc„,„l'e=(ntn)A„

mt+=+C~g, C „(n+1)&=(nr„)p., (A.3)

where ( )p„means the diagonal matrix element. These

p, and nt, pt are annihilation and creation
operators independent of k. (In this section we omit
the superscript indicating the state of the total charge
as all equations are identical in form for any isobaric
state. ) The Hamiltonian (1) is then reduced to

H=(o+ntn+(g ptp r+[g~n+g —ptj
r Lg+~t+ g

—Pj,-(A.2)-
where

(opf~P (k) dPk,

n+fn

Xl "f+'f odk l, (A.7)
E~

E(k,k') =K P ((op+A ')f '(k)f '(k')
—Gtp(op f~p(k) f+'(k'). (A.g)

Equation (A.6) can then be solved by assuming a
form for z (k) similar to that of Eq. (14). In the weak-
coupling limit it yields the rigorous scattering amplitude.

APPENDIX III

In the case of elastic scattering (i.e., cv(2p and no
stable isobar of the nucleon exists), the rigorous
Schrodinger wave function for the scattering of a posi-
tive meson with incident wave number ko by a proton
can be written as

1

n. m=g '

~+&%~—~. -'(4+) ., k'-i+, k'+i+, , 4+;4, , km )
XLB'(k;—kp)+8„,„'(cps + cop i p) 'j), —(A.—S)—
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where 8 ' is a regular function of kl+ k„+ and solution
k&

—
k . The value of 8„, ' when k,+= ko represents

the scattering amplitude of the ith meson; consequently
J=(e iH —E,—~i+)

8., ')s, '-a, =B(ko)

d /dQ= (4 ')'tB(ko) i' o'

8 (ko) = (e"&—1)/Sin'koooo
(A.9)

Following Kohn's" variational treatment for scattering
problem in momentum space, we find for the correct

'o W. Kohn, Phys. Rev. 84, 495 (1951).

depends on ko only. These conditions are physically
necessary for any elastic scattering problem and can be
readily verified by a direct substitution into the
Schrodinger equation. The differential cross section
do./dQ and the phase shift g are related to 8(ko) by
the relations:

=8 (ko) 4—i7r'ko~o
j 8(ko) (

'

= slI12'4/8% koMo~ (A.10)

and the variation of J in the neighborhood of the correct
%' is

D =88 (ko)+58*(ko)

+4ior'ko~oL —8*(ko)&8 (ko)+8 (ko)&8*(ko)]
= (4m'koodoo) '(1+cos2g)8g. (A.11)

Equations (A.10) and (A.11) then give the variational
calculation for q. It can be easily seen that if one as-
sumes %' to be of the form (8) a formal variation with
respect to x LEq. (9)] gives the same result as (A.10)
and (A.11).
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Solutions of Heitler's Integral Equation by Iteration Method
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An iterative procedure analogous to Wagner's method for the numerical evaluation of the Fredholm
integral equation has been proposed for the solution of Heitler s integral equation on radiation damping. It
has been applied to the scattering of mesons by nucleons. The solution for the scattering of x+ mesons by
neutrons agrees with that of Hsueh and Ma, and Goldberger. For the scattering of m.+ mesons by protons,
the solution has been taken up to the first approximation; the energy dependence and the angular distribu-
tion of the scattering cross section are shown in the accompanying 6gures.

).. INTRODUCTION

'HE consideration of radiation reaction in quan-
tum-mechanical collisional problems is absolutely

necessary to remove the divergence difficulties inherent
in collisions. The e6ect of radiation reaction is taken
into account by an integral equation. which cannot be
solved exactly except in a very few cases; the difficulty
of solving such an integral equation is due to the com-
plicated nature of the kernel.

In view of this difficulty we are led to consider an
approximate method for the solution of the integral
equation. One approximate method that is often used
for the treatment of scattering processes is the varia-
tional principle. But a serious objection to the varia-
tional techniques is that no definite mathematical
statement can be made as to the error involved in the
solution. On the other hand, the ordinary iterative
procedure (Neumann sequence) is very slowly con-
vergent and it suGers from the difficulty that the higher-
order terms in the integral equation for the scattering
process are very involved for computational purposes
and in most cases the resulting series cannot even be

summed. Hence there arises the necessity of considering
a modified sequence for the iterational procedure so
that it may converge rapidly and that only a few
it.erations should sufFice.

The semivariational technique of Hsueh and Ma' has
been applied to the scattering of neutrons by protons'
and mesons by nucleons. '' Their solution shows the
inhuence of radiation reaction only in the energy de-
pendence of the total cross section but it fails to-give
any effect on the angular distribution of the scattered
particle.

Another improved type of variational technique has
been formulated by Goldberger. 4 The superiority of
this method over that of Hsueh and Ma has been shown
by the fact that the solution obtained by Goldberger's
variational procedure for the scattering of negative
mesons by protons agrees with the exact solution of the

' C. F. Hsueh and S. T. Ma, Phys. Rev. 67, 303 (1945).'D. Basu, Proc. Roy. Irish Acad. 53„31 (1950); D. Basu,
Indian J. Phys. 25, 246 (1951).

3 S. N. Biswas, Indian J. Phys. 26, 617 (1952).
4 M. I.. Goldberger, Phys. Rev. 84, 99 (1951).


