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It is proposed that a consistent and satisfactory method for evaluating the fixed extended source meson
problem is: (a) first to renormalize the calculation by the method of the preceding paper; (b) to evaluate
the fundamental quantities I.„and Z„by the usual weak coupling method; (c) also to use standard perturba-
tion theory for the irreducible diagrams except when poles occur in integrations over intermediate states.
Sums of diagrams in which repeated poles occur should be evaluated exactly.

The proposed method is similar to but not identical with the Tamm-Dancoff approximation. The new
method is applied to the pion-nucleon scattering problem.

I. INTRODUCTION
'

N the preceding paper, hereafter to be referred to
' - as I, it has been shown that explicit mass and charge
renormalization may be performed in advance even for
the static limit of a meson theory, that is, for a theory
with a fixed source. The purpose of the present paper is
to outline a practical method of approximate calculation
especially suitable to the solution of the renormalized
fixed source problem.

It must be realized, first of all, that the static approxi-
mation can make sense only for energies substantially
smaller than the nucleon rest energy, which is 1 Bev.
Not only must the initial and final energies be small,
however, but also the energies of all intermediate pions.
That means that the Fourier transform of the source
function, which is the cut-off factor in momentum space,
must restrict pion energies to values well below 1 Bev.
Under these conditions the Tamm-Dancoff' type of
approach becomes promising. For example, Blair and
Chew' have shown explicitly that after renormalization
the dominant fourth-order contributions to pion-nucleon
scattering are those whose intermediate states all in-

volve less than three pions. This is only true for low

values of the momentum cutoff, but fortunately a low

cutoff seems required not only by the nonrelativistic
nature of the theory but also apparently by experiment. '

A study of the results of Blair and Chew' suggests
that, with the required large source and with charge
renormalization, the eGective coupling between pions
and nucleons is by no means strong. In fact the dimen-

sionless number which characterizes the rate of con-

vergence of the perturbation expansion is 0.2. Why,
then, are higher-order terms so important in the pion-
nucleon scattering problem? The answer lies in those
special intermediate states which can have an energy
very close to the initial energy and whose magnitude
consequently is anomalously large. Except for these
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states a perturbation expansion would converge fairly
well. The validity of the above argument is sub-
stantiated by the calculations of Brueckner and Watson4
and of Henley and Ruderman' on the nuclear force
problem and by Friedman' on the nucleon magnetic
moment problem.

Therefore we shall now propose a new criterion of
approximation, similar to but not identical with the
Tamm-Dancoff approximation.

(a) Af ter renormalization, ordinary perturbation
theory (i.e., an expansion in powers of the coupling
constant) is to be applied, except when intermediate
states occur which may have an energy coincident with
the initial energy and which therefore give rise to poles
in the integrations over intermediate states.

(b) For each pole the order of the corresponding
diagram must be considered as lowered by one power
of f' Thus, for .example, the diagrams of Fig. 1 which
contribute to pion-nucleon scattering, are all to be
considered as of the same order in this sense, namely,
of order fs (By chan. ce, in this theory, the actual
numerical order of magnitude of the "resonance" de-
nominators, relative to "ordinary" denominators, turns
out to be approximately equivalent to a factor f'.
Even if the resonance denominators were much smaller,

however, our criterion would still make sense because
we never treat any resonant state as weak. ) For low-

r, &

r )

Fio. 1. Sample diagrams contributing to pion-nucleon scattering,
all of which are oi order f' in the sense of this paper.

4 K. Brueckner and K. Watson, Phys. Rev. 92, 1023 (1953).
e E. Henley and M. Ruderman, Phys. Rev. 92, 1036 (1953).
' M. H. Friedman (private communication).
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From (I-29) we then get

) J
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FIG. 2. A typical pion-nucleon
scattering diagram which illus-
trates the difference between the
Tamm-DancoG approximation and
that proposed here.

Fo, (E)=1+f'P U, V,+

(E M')

which by (I-16) leads to
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energy pion-nucleon scattering the criterion can be
better stated as follows: In first approximation, only
those virtual pions are considered which at some time
are alone in the 6eld. Pions which are never alone may
be treated by a perturbation expansion. This criterion
differs from that of Tamm and Dancoff who in lowest
order would keep all diagrams in which no intermediate
state involves more than two pions. For example, the
diagram in Fig. 2 would be kept by the lowest-order
Tamm-Dancoff approximation but omitted by that
proposed here. After renormalization, we consider this
diagram of order f' and therefore small compared to
those of Fig. 1.

In the nuclear force problem, we would regard the
diagrams Fig. 3a, b, c, as all being of the order f~ but
consider Fig. 3d, e, f, as being of order f'.

Charge renormalization is enormously important in
justifying our approximation. For example, Fig. 2
without charge renormalization would be much too
large to neglect. The point is that having made charge
renormalization, we have actually taken most of Fig. 2
into account and neglected only a part which is rather
small.

Many diagrams do not involve poles and in such
cases it is sufBcient to expand the modi6ed vertex and
propagation functions in powers of the coupling con-
stant. I et us begin, therefore, by examining the lowest-
order modifications of these functions.

where

(4)

The function A(E) is plotted in Fig. 4 for the square
cut-off function v(k) with co .=3.2p, , as determined by
Chew"' in Gtting the I'-wave pion-nucleon scattering.
In evaluating D(E) in the "resonance" region, the
principal value of the integral has been taken. This is
correct if we are interested eventually in the reactance
matrix. It is seen that only for p, (E(or,„does the
magnitude of h(E) become substantially greater than
unity. (We may disregard the region for E)&v,„be-
cause the theory should not be applied to external
energies close to or greater than co,„and the internal
nucleon energy can never be greater than the total
external energy. ) This corresponds to the fact that only
in this region can the virtual pion "resonate" with the
energy E. It seems, therefore, with f' 0.2 as deter-
mined by Chew, ' that for E not in this region a weak
coupling expansion is adequate.

II. THE f' MODIFICATION OF THE NUCLEON
PROPAGATION FUNCTION

The starting point for calculating the modified
nucleon propagation function by the method of I is the
quantity I'o(E), the recipe for which is given by formula
(I-29). (Since we shall always in this paper be dealing
with the nucleon energy meatus its rest energy the
"prime" used in I will be dropped from E. Similarly we
drop the subscript r from the coupling constant f since
the unrenormalized coupling constant never appears. )
To order f', we have only one fundamental diagram
contributing to Ao, (E), that shown in Fig. 2a of refer-
ence I. The value of Ao, (E) to this order is therefore

(a) (b) {c)

1 1

since we replace I,„and 5„' by their zeroth-order values.

(e) (f)

FIG. 3. Sample diagrams contributing in second and fourth order
to the nuclear force problem.
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IIL THE f' MODIFICATION OF THE VERTEX
FUNCTION

The lowest-order correction to the vertex function is
obtained from Eq. (I-30) in the same manner as we
obtained I' s„ from (I-29). The difference is that the
failure of the external vertex operator to commute with
the internal vertex operators leads to a numerical
factor of 1/9,

where

= 1+(f'/9) A (Es,Ei),

L.(Es»i) =1+(f'/9) 2 I'~I'~*
E2—

Go&' Ei—M~ Go&

(5)

F&G. 5. Sample diagrams
contributing to 5,'.

3 (
" k' (Es+Ei)co EsEi-

A(Es,Er) =— ' dc' tP'(k). (6)
p'o~' (te —Es) (co—Ei)

It is easy to verify that D(Es,O) =A(Es) and 6(O,Ei)
=A(E&), so that for the correction to the first or last
vertex in a diagram, the discussion given above for the
propagation function modification is certainly valid
here. The discussion for internal vertices is more com-
plicated but leads to the same conclusions. The quantity
A(Es,E&) can be large only when one or the other of the
energies lies in the range between p, and co, . In addi-
tion, however, the numerical factor 1/9 in formula (5)
should not be overlooked. Whenever pion lines cross,
as they do in the vertex modification, the effective

7

5'

I

coupling strength is reduced because the nucleon may
not be able to reabsorb every pion which it emits.
For example, suppose a proton emits a positive pion,
becoming a neutron. It can obviously reabsorb the
original pion if nothing else happens; but, if in the mean--
time it emits a negative pion or absorbs a positive, it
can no longer reabsorb the original positive pion.
A similar situation prevails with respect to angular
momentum, so that actually only 1/9 as many pions
can cross a vertex as can contribute to propagation
modification in lowest order. This extra factor of small-

ness means that we can always treat vertex modifi-

cations by perturbation theory, regardless of the energy
situation. '

4

h(E)

2
E ~

IV. PROPAGATION FUNCTION MODIFICATION
FOR p&E&u

We now turn to the problem of the nucleon propaga-
tion modification in the "resonance" region, when

p(E&co, . According to our original criterion we

must, in lowest order, take account of the series of
diagrams indicated in Fig. 5. This means keeping in P„
a series of terms corresponding to the diagrams of
Fig. 6.

However, since each new pion line crosses one vertex,
we are assured that the coupling constant is effectively

(1/9)f', not f', so that we actually need keep only the
lowest-order diagram, where there are no crossings.
Thus formula (3) is still correct, if no attempt is made
to treat f'A(E) as small. Notice that with fr=0.2, no
new singularities are introduced in the range of E for

-3

Fin. 4. The function A(E), detined in Eq. (4), for a "square"
cutoff with co ~=3.2p.

r This numerical factor of 1/9 also means that Zs/Zi is sub-
stantially smaller than I, in contrast to electrodynamics where
gauge invariance insures that Z2 ——ZI. The consequence that the
renormalized coupling constant here is smaller than the original
coupling constant is one of the main practical reasons for re-
normalizing the static approximation.
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FIG. 6. Sample diagrams
contributing to Z, .

V. APPLICATION TO THE PION-NUCLEON
SCATTERING PROBLEM

With a fixed source and linear coupling, pion-nucleon
scattering can occur only in P-states; and using the
conservation of total angular momentum as well as
isotopic spin it is well known that the problem can be
expressed in terms of four eigenstates, which have been
labeled edith the notation, 33, 31, 13, 11. The first
number is twice the total isotopic spin and the second
is twice the total angular momentum. Now the bare
elcleom is a 11 state, so that from the conservation laws
it follows that diagrams containing at any point a bare
nucleon line can contribute only to the 11 scattering.
A little thought then suffices to show that by the criteria
we have set up one needs to keep owly the sequence of
diagrams shown in Fig. 7 for the 33, 31, and 13 states;
no propagation or vertex modifications are needed. If we
denote the sum of all such diagrams by (f I EI 0), then
an integral equation for (fl EIO) may be written down

which the theory may be sensible, i.e. , E&cv, . This is
a reassuring feature of the theory and of our method of
approximation.

and the matrix Ep is as follows:

tanb = —(kprpp/2pr) (kp I Ep I kp). (10)

To calculate 8~~ we have to add more diagrams which
involve internal bare nucleon lines, but before pro-
ceeding to this problem, let us write down an approxi-
rnate solution of the integral equation (8).

This solution is based on an application of one of
Schwinger's variational principles which has recently
been discussed in detail by Altshuler' and by Chew. "
Sufhcient conditions for the validity of the approxi-
mation appear to be: (1) that no more than one bound
state shall be possible; (2) that the potential function
U shall be of a single sign and have important com-
ponents only over a logarithmically small range of
mornenta. All of these conditions are well satisfied by

(flEIO) =(flU, IO)+Z (flU, I~) (~IEIO), (7)

where

(II Upll)=fs(U U *)/(rop —ro„—co ).
Fzo. '7. The series of diagra, ms summed up in Eq. (7).

The first step in solving (7) is to use the conservation
laws to break the single equation in many variables into our potentials Up, although the last would not be if
four separate equations each depending only on the the momentum cutoQ were, say, 10@, rather than 3 2
magnitude of the momentum. The result is as follows: The result of using this approximation ls

(kflEo-Iko) = (kf I Up-Iko)+
27r2

(kfl Up lk)(klEp lkp)

0 Gap
—

COA;

(kolEo lko)

Cap
—

CV

(kpl Up lkp)
(11)

1 t" (klUp Ikp)'
1—(kol Uo. lko) '

i

dkk'
2x p

where

f' k„k„o(k„)rt(k )
(k„l Up. lk ) =C.2m.—

(op~rom) * roo ron rom

which then yields immediately by the relation (10) the

(9)
results already published' for 5», 8», and 5».

In order to obtain 8~~ we must add other diagrams to
the set given by the above. These diagrams all involve

with Css ——4/3, Coi ———2/3, Cro= —2/3, and Cii ——1/3.
If the principal value of the integral in (8) is taken,
then the relation between all phase shifts, except B~~,

P B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).' S. Altshuler, Phys. Rev. 89, 1278 (1953)."G. F. Chew, Phys. Rev. 93, 341 (1954).
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a bare nucleon line at some internal point and thus
they are all reducible to the diagram shown in Fig. 8,
whose value is given by

fsVy*L„(0,cup)S„'(ppp) VpL, (cop,O). (12)

Now it has been shown that our zeroth-order approxi-
mation amounts to replacing L, by 1 and 5,'(E) by
formula (5). Thus (12) becomes

FIG. 8. The main diagram for
scattering in the 11 state.

(13)

the projection of which onto the 11 state is

t'3f') kgkp v(kg)u(kp)

( p' ) (cps(op)l cppL1+ f'A(&pp) j
The result already published' for 8» is a rough approxi-
mation to the sum of (14) and (11), motivated by the
fact that (14) carries a numerical factor 9 times as
great as that for (11).Note that the relation between
the function 6—of reference 3 and the function 6 of
the present paper is as follows: f'6 (E)=+ (9/2) 6—(E) .

SUMMARY AND CONCLUSION

An approximation procedure has been formulated
which allows a relatively simple evaluation of the fixed
source meson problem with an accuracy of 20 percent.
The procedure is as follows: (1) Disregard all reducible
diagrams. (2) Keep only the lowest-order irreducible
diagrams, counting each intermediate state which can
"resonate" with the initial state as equivalent to 1/f'
in order of magnitude. 3 When the energy of an in-
ternal nucleon lies between p and cv, , modify the
propagation function by formula (5); otherwise do not
modify either propagation or vertex functions.

This procedure has here been applied to the pion-
nucleon scattering problem and in separate papers will
be applied to the problems of photo pion production,
anomalous nucleon magnetic moments, neutron-elec-
tron interaction, and Compton scattering by nucleons.
Higher-order corrections will eventually be calculated
by standard perturbation methods.

It should be remembered that in all of these problems
the Axed-source model cannot possibly make sense for
energies greater than the cut-oG energy co, and
probably should be restricted to energies well below
co,„.At higher energies it will certainly be necessary to
take account of nucleon recoil as well as the existence
of heavier mesons. It is also possible that even at low
energies an 5-wave pion-nucleon interaction cannot
consistently be ignored. An 5-state interaction can be
included in the fixed source theory via a term quadratic
in the pion field, but the charge dependence is not
determined by general principles, nor is the amplitude
relative to the linear term. For reasons of simplicity,
therefore, we have not here considered a quadratic
interaction term.

Pote added ie proof.—Recent developments incline the author
now to use a larger cutoff (ar,„=5.6 y) and a smaller coupling
constant (@=0.058). The only aspect of this paper to be seriously
afFected by this change is the accuracy of the variational result
(&&).


