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of the one-body problem, and so this method also
satisfies condition (3°).

So far we have discussed only the #* proton scat-
tering. However, the problem of #* neutron can be
treated in an exactly analogous fashion. The appro-
priate assumption there is

¥=0a.*|0)+0.5|2)+7'|1)
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for large g, or

¥v=a,*|0)+n"[1)

for small g. In this case, the 5|1) term should be
included for all values of g, since [1) (real proton) and
|0) (real neutron) are always stable. Again, conditions
(1°) and (3°) are satisfied but not (2°).
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It is shown that the procedures for mass and charge renormalization developed by Dyson, Ward, and
others for a covariant local field theory can be applied in the static or fixed source approximation where the
interaction is nonlocal. Reasons are given to show that, although charge renormalization is not necessary in
this case because the theory is not divergent, it is nevertheless a very sensible procedure.

INTRODUCTION

WELL-DEFINED and often discussed form of

meson theory treats the nucleon as an infinitely
heavy source of pions and completely ignores recoil
effects.! This form of the theory, sometimes called the
static approximation, cannot be reached from conven-
tional local pseudoscalar theory by a straightforward
limiting process of setting M = «. Even after renormal-
ization, integrals occurring in the local theory will
diverge for an infinite nucleon mass. In the static
approximation, convergence is achieved by inserting a
cut-off factor, but it has often been pointed out that
this factor cannot represent simply a damping due to
nucleon recoil.? Nevertheless, there are at least two
reasons to justify an examination of the static approxi-
mation: (1) Mathematically it is much simpler than
the relativistic case and can yield a qualitative under-
standing of many important general features of field
theory. (2) A number of experiments suggest that the
actual damping of high-energy virtual effects is stronger
than that produced by nucleon recoil alone in the local
theory.? Thus it is possible that in some sense the correct
and complete theory will be nonlocal. For example, if
three fundamental fields rather than two are required,
an approximate theory for the pion-nucleon interaction
which does not specifically introduce the third field

* This research was supported by the U. S. Office of Naval
Research and the U. S. Atomic Energy Commission.

1See, for example; W. Pauli, Meson Theory of Nuclear Forces
(Interscience Publishers, Inc., New York, 1946).

2 The point here is that nucleon recoil can damp out momenta
much larger than M, if M is the nucleon rest mass, but momenta
of the order of M will remain very important. Thus a non-
relativistic approximation to a local pseudoscalar theory is im-

possible.
37.S. Blair and G. F. Chew, Ann. Rev. Nuc. Sci. 2, 163 (1953).

would have to be nonlocal. If this is the case the cut-off
factor in the static approximation, which is equivalent
to “spreading out” the region of the pion-nucleon
interaction in space, may have a real physical sig-
nificance.

The main interest in the static approximation thus
far has been for the case of strong or intermediate
strength coupling, where the relativistic theory has
defied attempts at solution. No discussion has hereto-
fore been given of the possibility of renormalizing the
static approximation because the theory is finite with-
out charge renormalization and the mass of the nucleon
does not appear explicitly. Actually, the identification
of self-energies must always be done in any field theory
and has been done in past treatments of the static
approximation. The point is merely that words other
than ‘““mass renormalization” have been used to de-
scribe the process. However, the technique of mesonic
charge renormalization has up to now been stated only
for a covariant local theory*® and it is the purpose of
this paper to show that the same methods can be applied
to the static approximation.

The result of renormalizing the static approximation
is not to render an infinite theory finite. The theory is
finite before and after renormalization. However, re-
normalization eliminates many unobservable high-fre-
quency effects and shows that observable quantities
are much less “cut-off dependent” than is often thought.
Also the renormalized coupling constant turns out to
be substantially smaller than the original one, so that
now perturbation methods become possible. Another
way of describing the situation is to say that one has
divided the infinite series given by perturbation theory

4F. J. Dyson, Phys. Rev. 75, 1736 (1949).
§J. C. Ward, Proc. Phys. Soc. (London) A64, 54 (1951).
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into two subseries, one of which converges much more
rapidly than the other. The slowly converging series
has been summed completely and the net result shown
to be equivalent to reducing the value of the coupling
constant appearing in the more rapidly converging
series.

FORMULATION OF THE STATIC APPROXIMATION

With a pseudoscalar pion field, linearly and sym-
metrically coupled to the nucleon source, the inter-
action energy is

so= @l 3 f drp(e-V en (1),

=L

¢))

where ¢ and « are the Pauli spin and isotopic spin
matrices, ¢ is the pion field, and p(r) is the source dis-
tribution function. We shall make our discussion in
terms of the specific interaction form (1), but it will
become apparent that the only essential feature of (1)
is the linearity in ¢, which means that 3C annihilates
or creates pions one at a time.

Suppose that we begin by thinking in terms of a con-
ventional perturbation approach. That is to say, we
imagine that all transition matrix elements are ex-
panded in powers of the interaction energy 3C. There
will then be a one-to-one correspondence between the
terms in this series and diagrams to be drawn according
to the following rules: (1) A single solid line running
upward (time runs upward) denotes the nucleon. Unlike
the nucleon lines in a Feynman diagram,’ the nucleon
line here never turns around, since pair formation is
excluded. (2) The pions are denoted by dotted lines
which can begin (creation) or end (annihilation) at
points along the nucleon line. Dotted lines entering the
diagram from below correspond to free pions in the
initial state, while dotted lines leaving at the top
correspond to free pions in the final state. A moment’s
thought shows that the pion lines also only move
upward (forward in time), and for a virtual pion,
creation always precedes annihilation. This, again, is a
feature not present in Feynman diagrams, where all
time orderings of the vertices are understood.

For purposes of orientation, let us consider a par-
ticular fourth-order diagram, Fig. 1a, which occurs in
the problem of pion-nucleon scattering. According to
the well-known formula of conventional perturbation
theory, this diagram corresponds to the following term
in the expansion of the transition matrix:

I pnICrnmICmi3Cri
(Ei—E,) (Ei— Ey) (Ei—E1)

@)

where the state 1 contains ore pion of momentum ki,
the state / contains two pions, one of momentum k;
and one of momentum k, the state m contains one
pion of momentum k, and so on. It is clear that we are

6 R. Feynman, Phys. Rev. 76, 749 (1949).

OF MESON THEORY 1749
\
N\ k¢ N \\
f N \
N\ N\ N\
\ N N
\.}\ N N
\\ R
m |k \:
I L/
/ B
//"/ // /1’/’
/ / //
7/ i 4 /
/ 4 s
ki 7/ 7/

(a) {b) (c)

F1G. 1. Some typical diagrams occurring in the
pion-nucleon scattering problem.

using the diagram purely as a counting device, to keep
track of all possible intermediate states. For each
vertex one has a matrix element of 3¢ corresponding to
the emission or absorption of a pion. For each segment
of the nucleon line between vertices we have an energy
denominator.

It is legitimate to think of the energy denominators
as propagation functions in a sense very similar to that
of Feynman. Let us introduce the function

S(E)=1/(E+ie), 3)

where E is defined as the net energy which the nucleon
has ‘“absorbed” from the various pions which it has
created or annihilated. E is zero for a “real” nucleon
at the beginning or end of a diagram but for inter-
mediate virtual nucleon states may be either positive
or negative, to be calculated as if energy were con-
served at each vertex. It follows that E is exactly the
conventional energy denominator associated with the
nucleon line in question.

It has been pointed out” that the simple expansion
of which (2) is a sample term, is correct, strictly speak-
ing, only in the absence of self-energies. It can easily
be shown, however, that the correct expansion is ob-
tained merely by adding the self-energy into each
energy denominator.® In our problem, therefore, we
should define the argument E of the nucleon propaga-
tion function as the fofal nucleon energy, including the
self-energy. For “real” nucleons, we now have E=Eg,
where Eg is the self-energy. Later Eg will be removed
by a renormalization procedure.

The quantity e, appearing in (3), is an infinitesimal
real positive number which is to approach zero after
sums over intermediate virtual states are performed.
As usual, € guarantees that the proper boundary condi-
tions are satisfied by the transition matrix. If we omit e

"M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(lg?ﬁis rule ignores “end effects,” that is, terms corresponding to
the self-energy acting as a perturbation either at the beginning or

the end of a process. It is well known, however, that conventional
charge renormalization causes these effects to cancel out.
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and take the principal value of integrals when poles
arise from the energy denominators, we will be calcu-
lating the reactance matrix rather than the transition
matrix.’ Bearing these facts in mind, we shall hence-
forth dispense with writing down e explicitly.

The matrix element of 3C for absorption of a pion of
charge type N (A=3 corresponds to a neutral pion,
while A=1, 2 are linear combinations of positive and
negative'®) and momentum k is

f o-ik
(47r)%—ﬂ( )v(k)=fVA(k), 4)

1
i Wr)*

where v(k) is the Fourier transform of the source
function p(r)."* Conventionally, S "p(7)dr is normalized
to unity, so that v(0)=1. The corresponding creation
operator is the complex conjugate of (4). Thus we may
write out (2) as follows, if the initial pion is in the state 4,
the intermediate pion in the state 7, and the final pion
in the state f:

2 ViS(Ecdwi—wi—w) VA4S (Evtwi—w;)
XVS(E~w)Vi¥* (2)

Comparing (2) to Feynman’s formalism,® note that
we have no propagation function for the pions. Actually
one could perfectly well introduce a pion propagation
function, but, since all lines move forward in time, it is
possible immediately to do the integrals over pion
energy and get only a residue at the positive value,
wp =+ (k*4-u?)?. The factor, 1/2wy, which occurs in | V3|2

L ?\\
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F1c. 2. Some diagrams
contributing to S'(E), the
modified nucleon propaga-
tion function.
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°B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 398 (1953).

10 See, for example, G. Wentzel, Quantum Theory of Fields
(Edwards Bros., Inc., Ann Arbor, 1946), p. 61.

I For reasons of economy, the two variables k and A will usually
be summarized by the single index j. For example, instead of
Va(k) we shall write V; and instead of 2y /"dk/ (2 )3, we write 2 ;.
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is precisely this residue. The concept of a nucleon
propagation function is useful here because many of
the renormalization effects will be identified as radiative
modifications of the function S(E). There are no
modifications of the pion propagation function in the
static approximation, however, since there are no
nucleon pairs.

People familiar with Dyson’s approach? will now see
how the corresponding idea works here. We have two
primary quantities, the propagation function .S(E) and
the vertex operator V ;. By using diagrams we determine
how to combine these quantities to form all the possible
terms in the expansion of the transition matrix. One is
next led to the notion of reducible and irreducible parts
of diagrams. That is to say, certain combinations of
lines and vertices can be thought of as merely producing
a modification in the functions .S and V. For example,
among the fourth-order diagrams for pion-nucleon
scattering, Fig. 1b corresponds to a modification of the
intermediate nucleon propagation in a second-order
diagram. Correspondingly Fig. 1c may be interpreted
as a modification of one of the verfices in second-order
scattering. Note on the other hand that Fig. 1a is
irreducible. No parts may be interpreted merely as
modifications of S or V.

Thus our problem, just as did Dyson’s, breaks into
two parts: (1) The determination of the modified
nucleon propagation function, which we shall call
S’(E), and the modified vertex operator, which we shall
call V. (2) The evaluation of the irreducible diagrams
in terms of S” and V. The problem of renormalization
is entirely concentrated in the first part. The remainder
of this paper, then, will give an explicit recipe for calcu-
lating S” and V/, taking proper account of mass re-
normalization and incorporating a mesonic charge
renormalization which, as stated before, is not necessary
but is extremely useful.

THE MODIFIED NUCLEON PROPAGATION FUNCTION

Following Ward,® we base our treatment of the
modified nucleon propagation function S’(E) on an
auxiliary function, to be called T'((E) and to be de-
fined by

T'o(E)=0/0E[1/S"(E)]. ®)

In order to understand the significance of I'¢(E), note
that we may write

S'(E)= (6)

E—-Y(E)

where 3 (E) is the sum of all modifications of a bare
nucleon line due to overlapping meson lines. For ex-
ample, the term in ) (E) of lowest order in f (second
order) corresponds to Fig. 2a and is given by

i ViS(E—w))Vi* 7

Similarly the fourth-order terms in 3 (E) correspond
to Figs. 2b and 2c which each contain four vertex
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operators and three propagation functions. Note, how-
ever, that there is #o term in )_(E) corresponding to
Fig. 2d, which contains nonoverlapping pions. Such
diagrams are produced by expanding (6) in powers of
> (E). That is,

1 1 11 1 1
SN(E)=—+—2 (B)—+—2 (E)—2X (B)—+---. (8)
E E E E E E

From Egs. (5) and (6), it follows that

To(E)=1+A0(E),
where

a
Ao(BE)=——2_(£), )
0E

which leads to an interpretation of T'((E) if one re-
members that in each term which makes up Y (E) the
dependence on E arises solely from the nucleon propaga-
tion functions. If » propagation functions occur in a
particular term, then taking the derivative with respect
to E splits that term into » pieces. A particular piece

T
7

Fi6. 3. Sample second-order
contributions to Aq(E).
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can be represented by a diagram with an « on the
nucleon line which has been differentiated. Thus, for
example, the term in >~ (E) corresponding to Fig. 2c is
split by differentiation into the three pieces, shown in
Fig. 3, which contribute to A¢(E). Finally note that
the operation —d/dE on a particular propagation
function 1/(E—Q) gives simply 1/(E—Q)% so that
To(E) is just the so-called vertex modification of the
effective coupling of the nucleon to a hypothetical
neutral scalar field of low frequency.

In other words, suppose we wanted to calculate the
matrix element of interaction of a nucleon with a
neutral scalar field containing only very low frequencies
so that it cannot change the proton energy appreciably.
We would then evaluate a series of terms corresponding
to the diagrams in Fig. 4, in which each pion overlaps
with at least one other and the point of interaction with
the “external” field, indicated by the x, is interlocked
with the virtual pions. (One must also calculate dia-
grams involving nonoverlapping pions, but these would
be treated most naturally by modifying the propagation
function for the incoming and outgoing nucleon.) The
sum of the above diagrams is called the vertex modifi-
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Fic. 4. Vertex modifying diagrams up to fourth order.

cation of the nucleonic coupling to the external field
and is evidently identical with I'¢(E). For example, to
second order in f, the vertex modification of the coupling
to the external field from Fig. 4 is

1422 ViS(E—w)S(E—w) V¥, (7

which also follows immediately from (9) and (7).

NUCLEON ENERGY (MASS) RENORMALIZATION

It is convenient both physically and mathematically
to shift the scale of the nucleon energy so that it is
always referred to the self-energy. That is, if Eg is the
self-energy of a single nucleon due to the associated pion
field, then we define E'=E— Eg. Now from exactly the
same considerations as apply to the relativistic theory,
Es may be identified as the position of the pole of
S’(E). In other words E g is the solution of the equation

Es=2.(Es), (10)
and if S’ is now considered as a function of E’, then |
S’(E') has its pole at E'=0.12

With the boundary condition that 1/S’(E’) shall

vanish at E'=0, we may integrate Eq. (5) to obtain an
explicit formula for S in terms of I'y,

B
1/S’(E')=f AN'To(\). (11)

THE RENORMALIZED PROPAGATION FUNCTION

Following Dyson, we now wish to introduce a re-
normalized nucleon propagation function,

S/ (EN=Zs"1S"(E"), (12)
12 We here violate accepted mathematical notation in favor of

maintaining physical simplicity. We mean by S’(E’) a quantity
equal to S'(E) for E'=E—Eg.
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such that
S,/ (E’)ml/E’. (13)

There is no overriding motivation in meson theory for
the particular condition (13), as there is in electro-
dynamics for the corresponding condition, because there
exist no low-frequency measurements of the pion-
nucleon coupling such as the oil-drop experiment which
measures the electron-electromagnetic field coupling.
Nevertheless, in order to maximize the simplicity of
the theory the condition (13) is indicated.®®
If we simultaneously define

I‘OT(E,)=22P0(E,), (14}

then relations of the type (5) and (11) are maintained
for the renormalized quantities. That is,

P ()= [ ] (15)
dE'LS, (F)
1 &
N fo INTor (V). (16)

From Eq. (15), we see that the requirement (13) im-

plies that
Por(E)——1, an

and the latter relation allows us to determine Z; in
terms of Y, or, as will turn out to be convenient later,
in terms of >.,=Z>. or A¢=2ZsA,. Substituting (14)
into (9), we obtain

9
Z5 T, (B = 1—552 (E=14+Z5No(E).
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F1c. 5. Sample diagrams illustrating propagation function
modification within a “fundamental” vertex diagram.

18 For example, without condition (13) one could not neglect
the “end effects” mentioned in footnote 8.
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Taking the limit E'—0 then gives

Z>=1—A(0). (18)

It can be shown! that Z, represents the probability
of finding the bare nucleon (zero pion configuration)
in a single physical nucleon. Thus we know that Z,<1.

An important problem still remains: to find a pro-
cedure for evaluating T'o,, and thus S/, in which only
renormalized quantities occur, Z, itself having been
completely eliminated. Such a procedure is of course
necessary in a divergent theory such as quantum elec-
trodynamics. Here it is useful in eliminating unin-
teresting high-frequency effects which tend to obscure
the essential aspects of the problem. To formulate the
desired procedure, however, we must first construct the
modified vertex operator.

THE MODIFIED VERTEX OPERATOR AND ITS
RENORMALIZATION

The series of diagrams whose sum yields the modified
vertex operator is in exact topological correspondence
to the series which produces I'y and which is indicated
in Fig. 4. Now, however, a relation of the type (5) does
not hold unless the pion field happens actually to be
neutral and scalar. The insertion of an ‘external”
vertex (indicated by the cross in Fig. 4) into one of
the 3 diagrams does more than simply square the
nucleon propagation function at that point. For ex-
ample, if the pion field is symmetrical and pseudo-
scalar, the absorption of one of its quanta may change
either the charge or the spin of the nucleon. Mathe-
matically, one would say that the “external” vertex
operator does not commute with the “internal” vertex
operators. In spite of this fact, it is not hard to con-
vince oneself that the dependence of the modified
vertex operator V; on k, ¢, and A will be exactly the
same as that of V. The difference is that V', will also
depend on E;’ and E,, the nucleon energies before and
after the vertex. We may summarize these statements
by defining L(E.',E") such that

Vi (E),E\)=V;L(E)E). (19)

This factorization of V; will be justified later by its
self-consistency. Note that we consider E,’ and E, as
independent of k although in any actual calculation
Eg"‘-E1,=wk.

The failure of the vertex operators to commute will
manifest itself in numerical factors not present in the
case of I'g. For example, to second order in the coupling
constant for the symmetrical pseudoscalar theory,

L(E{ E) =1+ (1/9)f; VS (B —w)
XS(E/—w) Vi (20

14 This fact was pointed out to the author by F. Low and its
proof can easily be achieved with the techniques developed by
M. Gell-Mann and F. Low in a forthcoming paper.
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Comparing to (7’), one might say that to this order,
only 1/9 as many pions contribute to the vertex modifi-
cation as contribute to Y, which gives the propagation

function modification. In general, we shall express the
function L(E¢,E,’) as

L(E2,,E1,) = 1+A <E2/7E1,); (21)

where A(Ey,E,’) is the sum of contributions from all
diagrams of the type shown in Fig. 4.

Still following Dyson’s scheme, we next define a re-
normalized vertex operator L, by

Lr (Ez’,E}_,) = ZlL (Ez',El’)

and require that

(22)

L,(0,0)=1, (23)

again following the convention established in electro-
dynamics. If we simultaneously define A,=Z:A, then
we find

Z1=1—14,(0,0). (24)

We are now in a position to formulate a general pro-
cedure for calculating S,” and L., which does not in-
volve Z; and Z,.

RENORMALIZED INTEGRAL EQUATIONS

We shall find it worth while to make the remaining
discussion in terms of certain integral equations rather
than straightforward expansions in powers of the
coupling constant. It seems likely that these equations
have a more general validity than the power series
expansions but no such claim is being made at this
time. Our chief motive here in employing integral equa-
tions is to simplify the discussion.

Consider first the quantity T'o(E’) or A¢(E’) from
which S/(E) may be derived. The infinite series of
diagrams which make up I'o(E’) may be split up into
subseries in a systematic manner. For example, a well-
defined subseries corresponds to taking the second
diagram of Fig. 4, which has the value

i ViS(E —w)S(E'—w)V* (25)

and modifying the two nucleon propagation functions.
This would generate diagrams of the type shown in
Fig. 5. One may alternatively modify the two vertex
operators, generating diagrams of the type shown in
Fig. 6. Or one may do both and note that simultaneous
modifications of S and V does not repeat any diagrams.
Each diagram occurs only once. Making both modifi-
cations replaces (25) by

i VIS (B —w)S" (B —w)V™*
= (Zs2f/21)*; VL (E', E'—w;)S, (E' — ;)

XS/ (BE'—w)V#*L,(E'—wj, E'). (26)

This series of diagrams may be enlarged even further
by inserting at the position of the cross the function
To(E'—w;) itself, which gives us an integral equation
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F16. 6. Sample diagrams illustrating vertex modification
within a “‘fundamental” vertex diagram.

for T's. Again no repetitions of diagrams are generated.
One might hope that, by modifying S, V, and the
external vertex, one has included everything but this is
unfortunately not so. One cannot, for example, generate
in this way the sixth diagram of Fig. 4. This diagram,
in fact, can itself be used to generate an entirely new
series of terms by modifying within it the four propaga-
tion functions, the four internal vertices, and the one
external vertex. In fact one can enumerate an infinite
series of “fundamental’” diagrams which each must be
completely modified in order to generate the entire
series of terms. The “fundamental” diagrams involving
up to three pions are shown in Fig. 7.

Each “fundamental” diagram contains I'y once and a
number of V’s equal to the number of S’s. After modifi-
cation and renormalization, therefore, each term will
contain a factor, Z:(Z.Z171f)", so that it is natural to
define a renormalized coupling constant,

fr=2ZZ7f, (27)

as well as Aoy=2Z3Ao, which we have already done. The
equation for 'y, then reads

To (E")=Zs+Aor(E),

where Ao (E’) is to be evaluated entirely with the re-
normalized functions S,” and L, and the renormalized
coupling constant f,. Using (18) we may  eliminate Z,
from (28), obtaining the final equation

P(),- (E,) = 1+AQT (E’) _A()'r (0) .

(28)

(29

This is formally a linear integral equation for I'y,, but
it contains of course the functions S, and L, which
must be codetermined. Equation (16) gives the recipe
for obtaining S, and already entirely in terms of re-
normalized quantities. The problem of obtaining a re-
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Fi1G. 7. The fundamental vertex diagrams involving up
to three virtual pions.

normalized equation for L, is completely analogous to
that for I'y,, so we write down the result immediately

L,(EY,E\")=1+4A,(E:,E\")— A, (0,0). (30)

The quantity A, is to be evaluated by the same recipe
as that for Ae except that, for the external vertex,
L.V ;is to be used in place of I'y. The operator V; is to
be factored out only after the appropriate commutations
have been performed to bring it outside the summation
over virtual pions.

CONCLUSION

It has been demonstrated explicitly that charge and
mass renormalization can be performed even in the
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static approximation of field theory. The particular
recipe given for the renormalization is in terms of
coupled integral equations of infinite order for the exact
vertex and propagation functions but, as usual, per-
turbation methods can be applied. In the following
paper, one such method will be formulated.

In the final renormalized equations, the nucleon self-
energy and the original coupling constant are com-
pletely eliminated. It will be shown in the following
paper that in a perturbation calculation integrals over
virtual pion momenta are now linearly dependent on
the cutoff in momentum space, whereas without charge
renormalization, quadratically dependent terms would
appear. Thus the performance of explicit charge re-
normalization in advance shows that the theory is less
cutoff dependent than might appear at first sight. It
will also be demonstrated in the following paper that
the renormalized coupling constant in the pseudoscalar
theory is sufficiently smaller than the original constant
that perturbation approaches have a good chance of
success. Our conclusion, then, is that, although charge
renormalization is not required in a finite theory, it can
be performed and is in many respects a very sensible
procedure.

From a practical point of view it is possible that if
the static approximation to meson theory is to have a
chance of actually corresponding to physical reality it
will be necessary to include a quadratic term in the
coupling so as to produce S-wave pion-nucleon scatter-
ing. The author has every confidence that renormaliza-
tion procedures can be developed for such a quadratic
term, but to date no attempt has been made in this
direction.

ACKNOWLEDGMENTS

This paper would not have been possible without con-
stant help from Professor Francis Low, who has shown
great patience in explaining to the author the intricacies
of relativistic renormalization theory. Part of the
writing up was carried out at the 1953 session of the
Summer School for Theoretical Physics in Les Houches,
France, where the author was a Fulbright lecturer.



