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The statistical model, introduced by Fermi, is used to calculate the probabilities for various nuclear
events at high energies. A general method for evaluating the phase integrals is proposed and used to And

to some extent the consequences of neglect of pion momentum conservation. The e8ect of pion indistinguish-
ability is studied and tables giving the probabilities for various processes are presented together with the
energy spectra of the corresponding Anal nucleons.

I. INTRODUCTION

STATISTICAL model has been introduced by
Fermi' to study multiple processes occurring in

high-energy nucleon encounters. The method is based
on the assumption that in such an encounter there is a
localization of energy in a small spatial volume which
decays into the various possible final states, compatible
with the constants of motion, with relative et prtori
probabilities proportional to their statistical weights.
In view of the mathematical and physical uncertainties
involved in field-theoretic approaches to such problems,
the method may provide a simple means of providing
a much needed background for discussion of nuclear
events at the moderately high energies now accessible
to laboratory study by means of the various high-energy
particle accelerators. Fermi has explored the conse-
quences of the model most fully for cases of extremely
high energy where the statistical model may be treated
by using thermodynamics. When using the more de-
tailed approach, he has treated nucleons as being
nonrelativistic, pions as being extremely relativistic;
furthermore, the momentum of the pions is neglected.

In this paper a general approach to the calculation of
phase volumes is proposed. This method is used to
study the consequences of including momentum conser-
vation in the simple case of extremely relativistic
particles. Tables are presented giving the probabilities
for pion and heavy meson production using the Fermi
approximations. The effect of indistinguishability of
the pions is also treated.

II. METHOD

Following Fermi, the statistical weight of a state
leading to e particles of masses M~, , M is computed
according to the following rule:

Ã —E'= constant. (3)

The requirements of momentum and energy conser-
vation may be imposed on the statistical weight by
inserting discontinuous factors in the integrand of
Eq. (1) and then allowing the integrations to go over
the entire momentum space:

Xexp(t'P P; p,+tr(&—P;(p,'+W')'*) j}, (4)

the center-of-mass system:

0= (2M/E) Qo, Qo ——(4sr/3)R'. (2)

The factor 2M/E represents the Lorentz contraction
of the pion cloud surrounding a nucleon whose radius,
in its proper coordinate system, is R. Although R is
expected to be about It/nt c, it may be regarded as an
adjustable parameter. The symbol S represents the
weight factors due to conservation of spin and isotopic
spin. The factor' b converts the specific phase space
volume into a generic one appropriate to indistinguish-
able particles.

The constraints on the momentum integration are
those due to conservation of momentum, energy, and
angular momentum. To simplify the calculations in
what follows, angular momentum conservation is disre-
garded. There are other statistical factors which enter
into the computation of reaction probabilities: conser-
vation of spin, isotopic spin, and the eGect of indis-
tinguishability of emitted particles. Also some rule
must be accepted regarding conservation of nucleons.
If one believes in the possibility of nucleon pair produc-
tion, this means that the difference between the num-

bers of nucleons and antinucleons is conserved:

(We are using units such that It =c= 1.) The integration
extends over that region of momentum space compatible
with the constraints on the system. The configurational
space volume 0 is taken to depend on the energy 8 in

' Enrico Fermi, Progr. Theoret. Phys. (Japan) 5, 5'10 (1950).

where e is a small positive number which insures that
S„ is well defined. It is taken to be zero after the
integrations are performed.

Each momentum integral occurring in Eq. (4) has
the form

I=
~

d'p explip. p —n(p'+3P)'*j}.

' For example, /= 1/n! if the state is one of n identical pions.
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The angular integration may be carried out and yields In the region —n&) &0, the integral may be evalu-
ated in the same manner:

2'I= ———
I dp exp{i@p —u(p'+M')1]}. (6)

Xdh~ „
H2&'i(M (u' —)&') ~)I= —2~gf 2n

n' —X2
(12)

In this expression X is the magnitude of the vector X.
In order to evaluate this integral, it is convenient to

introduce a change of variable:

p=M sinh8.

One finds from Eq. (6):

—2m% dI= — — d0 cosh0
dA~ „

Xexp LiM ()& sinh8 —u cosh8) ]. (8)

In the region X) ~u
~

)0, we may infer the value of the
integral by observing that I is an analytic function of
n and X and by appealing to the principle of continu-
ation. That choice of phases of the square root (u' —X') &

must be made which joins the 6rst and last regions
through the other. A careful examination shows that I
may be compactly represented in any region as

Hs&" (M(u' —) ') l)
I= 2~23Pn

n' —iP

(u' —Z')-'*, u&) &0
e &, /2()r—2 u2)i )&) ~u~ )0
e ' (u' —)2)'*, —u)) )0.

(14)(i) u&), &0:

X sinh8 —u cosh8= —(u' —)8)' cosh(8 —Pi),
cosh&i= u/(u' —)&')'*; If Eq. (13) is combined with Eq. (4), one finds for the

density of states:

if it is understood that the phase of the square root is
DePending on the relative values of X and n, the argu- chosen according to the following scheme
ment of the exponential in (8) may be written in three
diferent ways:

(ii) ~u)().)0:
()t sinh8 —u cosh8) = (u' —)i') l sinh(8 —ps),

sinhps ——u/ (X'—u') 1 .
I Qn—1+,M2 /Iao —44

du, un&, 4NZ

92n—1 n —Oo—i6

dX. X2

X g H "'(M;( '—X')'*). (15)
(us )&s) n

(iii) —u))&) 0:

(X sinh8 —u cosh8) = (u' —)&') l cosh(8+g, ),
cosh/4 = —u/(u' —) ') l. S„may be evaluated readily only when the masses of

eintegralsmaybereducedtostandardform f th
all particles are small compared to E. In this case

parameters lie in the first or the last region. For n&) &0,

—2srM dI=— — d0 cosh0
dX"

One finds

H2&'i (s)—4i/sr'' (16)

XexpL —iM (u' —)&') l cosh (8—Pi)]. (10)

If a change of variable 8'=8—Pi is made, one obtains

g 2Qn lan oa—ie &o dg, g2

S„=— ~I du u"e' ~ ' . (17)
wsn J, Q (u2 ) s)2n

This may be evaluated by applying the method of
residues. The integral over X may be evaluated by
closing the contour above the real axis. There are
poles of order 2m at X= &n but since e&0 only the pole
at) = —n will be encircled. One Ands

—2m& d n
I d0'cosh0'

d)& (u' —X')iJ „
Xexp L

—i (u' —)&')i cosh8'].

Thus, I is expressible in terms of the Hankel functions, ' —sri(4I —3)!dX. 'A2

I = . (1g)
J (y2 —u2)2a 24~ s(2 —1)!(2z—2) fu4ta s

H2&s&(M (u' —)&')i)I=2+2M2n
n' —X2

11
The remaining integral over u in the expression for S„
may be similarly evaluated by closing the contour

' G. ¹ Watson, Bessel F44ncteor/s (MacMillan Company, New
York, 1948), p. 180, Eq. (11);p. 74, Eq. (10). ' See reference 3, p. 84.
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above the real axis, section. One 6nds the result given by Fermi

e' e 22ri(iE)8"—'
dn

nsn —8 (328 4) l

TT, M,8/2 g, M 8a/2+8m —5/2

The expression for the density of states in the extremely
relativistic limit is therefore (Q . M .)8/228~/2 —&/22r»/2+2~ —8/2p (3g/2+ 32/8 3/2)

SQ" '(428 —3)!E8" 4

(20)
g~'"-'24"-'(2~ —1) .(2e—2) . (3~—4)!

Qn —1 +3n—1

S„=
2r2" (328—1)!

(21)

This is to be compared with the corresponding formula
of Fermi's paper' which neglects momentum conser-
vation:

where I' is the ordinary F function, s is the number of
heavy particles, and m the number of light ones.

It is of some interest to derive an expression for the
energy spectrum of inelastically scattered nucleons (see
Fig. 1). Since nucleon pair formation and heavy meson
production presumably contribute inappreciably to the
totality of the observed processes at moderate energies,
one may write down the expression for the case when
two nucleons and m pions are formed. Using the Fermi

0.8

SQ"-' /'22r8) l E8"4-
s-=

g2r2" E 28 /' (328—4)!
(22)

III. APPROXIMATE EVALUATION OF THE
STATISTICAL WEIGHT

For large values of e, Stirling's approximation may be
applied to evaluate Eq. (20).

0.7-
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P{T);
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It is not clear how to evaluate the expression for 5„
when the masses of the particles cannot be neglected.
In order to obtain some numerical results, Fermi has
suggested that one divide particles into two classes:
(1) pions and (2) nucleons and heavy mesons. He
treats the pions as being extremely relativistic and
neglects the momentum carried away by them; the
other particles are taken as nonrelativistic and it is
assumed that they carry most of the momentum.

If these approximations are made in the expression
for I, Eq. (3), one finds

0 J
0 1 2 T 3 4
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approximations, one Ands

g3Ppgm+i
8 +2——

g22/22r2~+5 (3N —1) l

FIG. 1. Graph showing energy spectrum of inelastic nucleons
resulting from a high-energy collision. The curves are normalized
so that their areas represent the total probability at the indicated
energy of all inelastic processes.

Ie/8 ——42r, dpp' exp( —in ( p j
&&)' der(Tsr)'*(E 2M 2T//r)8" '. (—26)—

One finds

(extremely relativistic)

~ 00

e '~~ dp —exp/i(Xp np2/2M—)7
dX~ „

(nonrelativistic).

(23) Here T„ is the kinetic energy of one of the two heavy
particles of mass JI in the center-of-momentum system.
The coeKcient of dT~ therefore represents the spectrum

SM8/20"+'(Txr) &

~ +2(T~) = (E 2M —2T8r)8" '. (27)—
g22/22rsm+5 (328 1) I

I@J4 = 82rs/n,
(24)

I8//8= 2r'e'~/ (2M/n)f—e '~ exp(i'd&/2n),

By using these approximations, the expression for 5„
may be evaluated by the method of the preceding

IV. APPLICATIONS

The foregoing results may be used to compute the
probabilities of various processes. The probability for
formation of particles of masses M~, ~ ~, M„ is

' See reference 3, p. 576, Eq. (13).Fermi omits explicit reference
to the factor S/g.

$„(Mr M )
P„(Mr. .M )=

Q„' S„(Mr ~ M„)
(2g)
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TABLE I. Probabilities for emission of m&, m2, m3 particles of
mass M~ ——176, M& ——967, Ms ——1848 (in units of the electron mass)
at the indicated energy E (laboratory system). Case of dis-
tinguishable particles.

TABLE II. Probabilities for emission of m~, m2, m3 particles of
mass M~=176, M~=967, M& 1——848 (in units of the electron
mass) at the indicated energy E (laboratory system). Case of
indistinguishable particles.

2.5 Bev

0.5846
0.4127
0.0027
0

3.9 Bev

0.007388
0.2302
0.3679
0.09187
0.00503
0.00007

0.05910
0.1391
0.03006
0.0010
0.000005

0.0562
0.00942
0.00013
0

0.00248
0.000005

4.71 Bev

0.0008
0.0647
0.2957
0.2547
0.0601
0.0046

0.0111
0.0936
0.0954
0.0207
0.0012

0.0288
0.0365
0.0071
0.0003

0.0148
0.0024

0.0008

0.0063
0

0.0001
0

m3 2.5 Bev

0.5854
0.4132
0.0014
0

3.9 Bev

0.0108
0.3367
0.2690
0.0224
0.0003
0

0.08642
0.2035
0.02198
0.00024
0

0.0411
0.0069
0.0001
0

0.0006
0

4.71 Bev

0.0018
0.1412
0.3228
0.0927
0.0055
0

0.0242
0.2042
0.1042
0.0075
0.0001

0.0315
0.0398
0.0039
0

0.0054
0.0009

0.0001

0.0138
0.0001

0.0003
0

o.„(Mt M„)=P (Aft M„)o.t,s.i. (29)

Tables I and lI give the probabilities for emission of
various numbers of neutral pions and a possible heavy
meson of mass 967mc. For purposes of comparison they
have been computed assuming particles of a given mass
are: (a) distinguishable, (b) indistinguishable. Spin and
isotopic spin conservation have been neglected. ' For
the case of distinguishable particles they differ some-

6 This corresponds to setting & = 1 in the expression for S .

P„' is to be derived from the statistical weights S„by
omitting those terms, from the sum over all states,
which are incompatible with heavy-particle conser-
vation.

Since the total cross section is assumed to be axed,
that part of it leading to a given 6nal state is

what from those given in Fermi's article, since the pion
rest mass has been included in the sum occurring in
Eq. (25). This amounts to writing E= ~p~+p for
extremely relativistic particles and has the eGect of
insuring that not more pions are emitted than are
compatible with the available energy. The curves
giving the energy spectra of inelastically scattered
neutrons have been similarly handled. They have been
transformed to the laboratory system by using the fact
that this model, which neglects angular momentum
conservation, yields an isotropic angular distribution in
the center-of-mass system.
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