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The Problem of Multiple Scattering
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Multiple scattering can be regarded as a succession of elementary events. The distribution function for
the particles which have gone through n+1 elementary events is the convolution of two functions. The erst
of these expresses the scattering law; the second one is the distribution function for particles which have
gone through n events. It is well known that such convolutions can be calculated very easily by means of
Fourier transforms if the elementary event is the traversal of a free path in an arbitrary direction. In this
case, the Fourier transform of the convolution is the product of the Fourier transforms of the convolvents.
In the case of more general scattering laws, integrals over products of the distribution function, and of repre-
sensations of the group which leaves the scattering law invariant, play the same role which the Fourier
transforms play in the aforementioned case. From the present point of view, the exponential in the Fourier
transform is a representation of the displacement group. It is shown that one can solve several problems
of multiple scattering on the basis of the above observation. These problems include the scattering of a
point particle without change of energy but an arbitrary angular distribution, and several more involved
problems.

INTRODUCTION

~ROSJEAN' has given, by direct calculation, a~ solution of the problem of multiple scattering in
an inhnite medium. The reason for taking up the same
problem again is that the method of calculation to be
presented is somewhat more transparent and also appli-
cable to a wider range of problems. It is based on the
symmetry of the problem considered and uses the
theory of group representations.

By multiple scattering we mean a succession of
"elementary events" which change the state of the
system and which are statistically independent of each
other. In the theory of multiple scattering, the ele-

mentary event is, in general, a collision and the sub-

sequent traversal of a free path. It changes the state
of the system from the one in which it is before a col-
lision to the state in which it is before the next one. The
statistical independence of elementary events will be
guaranteed if the description of the state of the system
is complete, i.e., if it extends to all the parameters. In
many cases, this is not necessary. Thus, if one is

interested only in the velocity distribution after a
certain number of collisions, and if the medium in

which the particle moves is homogeneous and extends
over all space, one can suppress the position coor-
dinates in the description of the state and consider, as
elementary events, the changes in the velocity vector
caused by the subsequent collisions. It is clear that the

C. C. Grosjean, dissertation, Columbia University, 1951 (un-
published). This thesis also has rather extensive references to
earlier literature. Among earlier papers, those of W. Sothe
)Z. Physik 54, 161 (1929)g and oi S. Goudsmit and J. L. Saunder-
son [Phys. Rev. 54, 773 (1939) and 58, 36 (1940)g anticipate
most nearly Grosjean's results. The last article solves, in par-
ticular, the same problem which is treated by Eqs. (16) of the
present note. Grosjean's article goes further than these by being
able to give a rigorous expression for the probability of a given
displacement, not only for the probability of a given deQection.
This corresponds to Eqs. (17) of the present note. For later
developments of Grosjean's method, see also C. C. Grosjean,
Koninkl. Vlaam. Acad. Wetenschap. Letter en Shone Kunsten
Belgie Jaarboek 13, No. 36 (1951) and Physics 19, 29 (1953).

statistical independence of subsequent elementary
events is preserved under the conditions specified even
though the description of the state is incomplete in this
case. The same holds in the case of spherically sym-
metric scattering with respect to the direction of the
velocity if one is interested only in the density dis-
tribution of the particles, irrespective of the direction
of their velocities. In the most important case of
multiple scattering, in which a complete specidcation
of the state of the system is necessary, the elementary
act can contain, just as well, a free path with a sub-
sequeet collision. In this case, the elementary event
changes the state from the one after a collision to the
state after the next collision.

The condition under which we can give an explicit
solution of the problem is as follows. (1) The probability
that an elementary event changes the state in a certain
way is invariant under a group G. (2) Every state of
the system is obtainable from a single fixed state by the
operations of the group G. In the case of multiple scat-
tering in an infinite homogeneous and isotropic medium,
the group G contains all rotations and displacements in

space, i.e., is the Euclidean group. The conditions of
homogeneity and isotropy of the scattering medium
express the fact that the scattering law, i.e., the law of
the elementary event, is invariant under G. If the
moving particle has no structure and does not change
its energy as a result of the collisions, its state is com-

pletely characterized by its position and the direction
of its velocity. Hence, every state of the particle can
be obtained from-a standard one by a displacement and
a rotation, i.e., by an element of G. As standard state
one can choose, for instance, the one in which the par-
ticle is at the origin of the coordinate system and its
velocity is parallel to the Z axis. In the second case
mentioned in the preceding paragraph, in which one is
interested only in the velocity distribution, the scat-
tering law will have the symmetry of the rotation
group and G will be this group. If the collision does not
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change the energy of the moving particle, its state is
given by the direction of the velocity vector and any
such direction can be obtained from a standard one by
rotation, i.e., by an element of G. Hence, our method
will be applicable to both these cases and a similar dis-
cussion shows that it is applicable also in the last case
mentioned above, —that of spherically symmetric scat-
tering if the particle again does not change its energy in
the course of the collisions. Further and more general
examples will be given later.

EQUATIONS OF MULTIPLE SCATTERING

Even though the method of solution to be adopted
will be essentially the same in all cases to be considered,
it seems worth while to distinguish two cases at this
point. In the first case, there is only one group element
which carries the standard state e of the particle into a
given state s. In this case, the group element in question
can be denoted by s itself, the unit element e corre-
sponding to the standard state. This is the situation if
the particle is restricted to move in a plane, no matter
whether its "state" has to be characterized only by the
direction of its velocity, or by this direction and the
position of the particle. Let us denote in this case the
probability distribution (per unit volume element of
the invariant group space) after n elementary events by
f„(s). The volume element is simply dq, with y the
angle between direction of the velocity and the standard
direction, if one excludes the consideration of the posi-
tion of the particle. It is dpdxdy, with x and y the
rectangular coordinates of the particle, if one is inter-
ested also in the probability of the position of the
particle. If the energy also changes in the course of
collisions, it becomes a fourth parameter of s and the
volume element will depend on the energy dependence
of the law of scattering.

The probability that an elementary event change
the state s into a unit volume element at t will be de-
noted by P (s,t). The invariance of this probability under
the operations of the group means that for every group
element N

P(s, t) = P(ms, gt).

This equation already uses our assumption that there
is a correspondance between states and the elements of
the group which leaves the law of the elementary event
invariant. Writing, in particular, N=s ' in (1), one
obtains

P(s,t)=P(e,s 't)=P(s 9). (1a)

f~~«)= f.(s)P(s t)d»=
J

f.(s)P(s 't)ds, (2)

This equation expresses the fact that the scattering law
remains the same no matter whether one uses e or s
as the basic state. The probability distribution f~&(t)
is given therefore by

where ds signifies the invariant group integration.
(Right and left invariant group integrals are identical
in all the groups 'to be considered. ) It is very natural
that the probability distribution after m+1 collisions
be given by the convolution of the probability dis-
tribution after n collisions and the scattering law.

Because of the somewhat abstract nature of the
derivation of (2), it may be worth while to illustrate
it on the aforementioned examples. If, in two-dimen-
sional scattering, the position of the particle is sup-
pressed, the'group 6 is simply the group of rotations in
two dimensions and can be characterized by an angle q.
The state (yo) of the particle is obtained from the
standard state, with the velocity directed parallel to
the X axis, by a rotation with q p, i.e., it is the state in
which the velocity includes an angle q p with the X axis.
If t and s in (2) are characterized by the angles q and
q p this equation becomes

(3)

where o =J'o (y')dy' is the total cross section. Hence,
(3) gives the usual way to calculate the angular distri-
butions successively.

If one wishes to obtain the spatial distribution of the
particle as well as its velocity, the group G becomes the
group of motions in two dimensions. It can be charac-
terized by a displacement by x, y and a rotation by q
(the latter preceding the former). The group element,

cosy p
—sinyp xp 1 0 xp

slnpp cosyp yp = 0 1 yp

0 0 j. 0 0-1
cosyp —sin yp 0

~ sinyp cosy p 0,
0 0

characterizes the state in which the particle is at xp, yp
and the direction of the velocity includes an angle q p

with the X axis. A direct method to obtain P in terms
of the cross section will be given in the section Calcu-
lation of P(s, t). In the present case we wish to verify
only u posteriori that (2) gives the well-known equation

(3e) if
P(*' X' ') = (e") ' '"&(4'— ') (3b)

where r and f are abbreviations for the polar coordinates
of x'=r cosP and y'=r sintt. The 8 function in (3b)
expresses the fact that the displacement is always in

the direction of the velocity. For the verification of (2),
let us denote the parameters of the group element s by
xp, yp, qp, those of t by x, y, q, the parameters of s 't

since the angle which characterizes the group element
s 't becomes q —pp. According to its definition,

(3a)
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then become

x'= (x—xp) cos««p+(y —yp) sino&o,

y = —(x—xp) sin«&p+ (y—yp) cosp&p& (3c) I=sa=s'S; S=s 's'8.

Two group elements, s and s', will carry 8 into the
same state 8 if

The polar coordinates of x', y' are r and P =n —
p&p, where

r and n are polar coordinates for x—@0=r cosn,

y —yo=r sinn. Hence

and with the invariant volume element for ds given
above, (2) becomes

f~+l (x&y& &t&)
=

dxpdyod pof ~(xo&yo& wo)

Xe(p« —
p «)» 'e "&(~—p). (3d)

This becomes the we11-known equation,

f~+l (x&y& &t&)
=

~

dred&t&ofn(xo&yo&&t&o)

Xp(p pp)e "~ (~—
v )

drr&t&pf (x r cosp&, y —r sin«&—p&p)

Xo (p« —p«p)e-", (3e)

if one replaces the integration variables xo, yo by r and
n and carries out the integration over n. It may be
arguable that the well-known (3e) is simpler than (2)
but we shall see that (2) suggests more directly a
method of solution than does (3e).

B.

The preceding calculation applies in the case in which
G has only one element which transforms the standard
state e into a given state s. This is not true if, for
instance, a particle without structure moves in three-
rather than two-dimensional space. The reason therefore
is that there are rotations —those about the direction
of the velocity in the standard stat- -which leave the
standard state unchanged. The rest of the present
section contains a discussion of the group theoretic
description of the state and of the scattering law. While
the former discussion is essential, the discussion fol-
lowing (Sa) is not necessary if one is interested only in
using the present method. The result of this discussion
is (9) which becomes evident at any rate if one cal-
culates I' explicitly.

Let us denote the number of parameters which char-
acterize the states by e&, the number of parameters of
the group G by n. There will be then an n —e& para-
metric subgroup E, the elements of which carry the
standard state 8 into itself:

s 's' is an element of the subgroup E, i.e., if s and s'
are in the same left coset of E. One can say that in the
more general case now considered the left cosets of E
correspond to the diGerent states of the particle rather
than the group elements themselves.

We shall see that expressions of the form (2) are very
easily evaluated and we wish to de6ne, therefore, also
in the present case a probability function f(s), depend-
ing on the group elements rather than on left cosets.
This f(s), if integrated over the elements of the cosets
which correspond to a set of states, will give the prob-
ability of the states of the set. In order to express this
analytically, it is useful to introduce two types of
parameters, f and o, for the group G. There are nl
parameters i' and they have the same value for all
elements of a left coset and serve to distinguish these
cosets, i.e., to characterize the states of the particle.
There are e—n& parameters ~ and they distinguish the
various elements of the left cosets. One can choose, for
instance, the parameters i and o in such a way that
the element with parameters f and o become

sQ, «) =sf',0)e(o), (4b)

where e(o) are the elements of the subgroup E and
s(f,O) is a continuous function of S(f'). If we denote the
probability of the states S(l) per unit range of f by
F(f'), we shall demand of f(s)

(5)

f(s) =f(se,) if el contained in E. (Sa)

All our probability functions shall have the property
(Sa).

In a similar way, we shall try to replace the transition
probability P(Sl,S«) =Pal, i«) by a function P(s, t) of
the group elements s,t. This has to be done in such a
way that if

where the integration over e is to be extended over the
subgroup E, g(f, o) is the weight factor which makes
g(f', o)dl'do the invariant integral, and s is the group
element with the parameters f, o. This equation ex-
presses the postulate that the integral of f over a coset
give the probability of the state to which the coset
corresponds.

Clearly, (5) does not determine f(s) completely and
we can further postulate that it have the same value
for each element of a coset, i.e., be a constant along the
path of integration of (5)

e~8= 8 if e~ contained in E.
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and if F„and f„correspond to each other in the sense if the f do. Expressing the above condition analytically,
of (5), (5a), then one Ands that

fn+1($2) t f ($1)P($1$2)dsi (6a) f.~i(u$2) =h.+i($2) = "4(si)P(»)$2)d»

also correspond to Ii„+~ in the same sense, no matter
what the functional form of P„ is. Since f„+i, as a
probability function, will have to satisfy (Sa), we can
conclude at once that

P(si, s2) =P(si, s2ee) if e2 contained in E. (7a)

f (usi)P(si, s2)dsi (8)

(8a)
r

f-+i(t) = f.($)P(s,t)ds

I'
f))+1($2)g(I 2)e2)de2 f)) ( 1$)g(pl)el)P(l 1)f2)deldl 1

J J
f +i(t)=~tf (s)P(u 's,u 't)—ds,

—
(8b)

Expressing now both F in 6 by the corresponding
we 6nd Since dsi indicates the invariant group integration, one

can replace in (8) usi by s. Writing, furthermore, t for
us2, (8) goes over into

f„(s,)P (f'„f,)ds„
el

where s2 and s~ are the group elements with the param-
eters f'~, e2 and I i,ei, respectively, and the second line
follows from the definition of g (f,e)dl de as the invariant
group integral. The condition that the f„+i obtained
from (6) satisfy (6a) is, therefore,

and this will be a consequence of (8a,) if

t)0

f„(s)P(s,t)ds= )ff„(s)P(u 's,u 't)ds

Writing out the integration in terms of f', e,

(8c)

dsi ~ f„(si)P(si)$2)g(f2)eg)deg — dsif„($ )iP( I)il 2)
f.(I.)P(s,t)g(g, e)dgde

Since f„ is not an arbitrary function of si but satisfies
(5a), the last equation does not fully determine P(si, s2)
and we are free to let it depend on e~ in an arbitrary
fashion. The simplest choice is

=
) f„(t)P(u 's,u 't)g(l, e)dl

—
de,

—

where s is the group element with the parameters t, e

Since the last equation must hold for all f„,

P(si)sg)g(l 2)e2)de2 =P(l 1)f 2) ) (7) P(s, t) ~g(I)e)de=P(u 's, u 't))l g(t)—e)de (8d).
according to which we have, in addition to (7a),

P(sei $2) =P(si $2) if ei contained in E. (7b)

According to (7a) and (7b), P(si,s2)=P(si', s2') if si
and s~' are in the same left coset of E and the same
holds of s2, s2'. This is indeed the most natural con-
vention; it renders all quantities f(s), P(s, t) functions
only of the I parameters of their (group element)
variables. It follows that P(si,s2) can be taken out of
the integral sign of (7) and this equation, together with
(7a), (7b), completely determines P(si, s&) once P(f'&,f2)
is given.

The invariance of the law governing the elementary
event can be expressed in the following way. Let us
assume that the distribution will be given by f„~&(s&) if
it was f„(si) one event before. Then if the distribution
is h„(si) =f„(usi), it will go over into h„+i(s2) = f~+i(us2)
after another event. This will hold for every group
element u. One easily verifies that the h satisfy (5a)

Both P(s, t) and P(u 's,u )t) could be placed before the
integral sign because they are independent of e. Setting
then u= s, one again obtains (Ia) for P and also obtains,
from (6a), the same Eq. (2) which holds in the case in
which there is only one group element which trans-
forms the standard state into a given state. The only
diGerence between the two cases is, therefore, the
additional condition (5a) on the distribution functions,
and the conditions (7a), (7b) on P(s, t), which must be
satisfied in order to make (2) valid also if there are
group elements which leave the standard state un-
changed and hence all the elements of a left coset
transform the standard state into the same state. It is
worth noting that (7a), (7b) give

P(e)$$2) =P(s) for ei, ee contained in E.

Hence, I' depends in general on even fewer independent
variables than f. The example of the following section
will illustrate this point.
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s(q,d,O) =Z(y)X(8), (10a)

the angles q, 6, e become the Eulerian parameters of
the group elements. The distribution function f will

depend, by (5a), only on rp and 8 and we have, by (5)
for the probability of a unit range in p and 8:

f2%

F (q,8)= f(q,8) sin@de= 2~f(p, 8) sin8, (10b)

sin8dyd8de being the invariant volume element ex-
pressed in terms of Kulerian parameters.

According to (9), the function P(s) depends only on
the parameter 8—the simplicity of this condition is a
consequence of (10a), i.e., of the use of Eulerian param-
eters to describe the group elements. A similar simpli-

CALCVLATlON OF P(s, t)

In the case of the motion of a particle in two-dimen-
sional space without energy change, we obtained the
expressions (3a), (3b) for P by inspection; insertion of
these expressions into (2) gave the relatively simple and
well-known equations for multiple scattering for this
case and thus veri6ed (3a) and (3b) a posteriori We.
shall not follow this procedure in the case of the scat-
tering of a particle in three-dimensional space without
energy change, principally because the explicit form of
the equation of multiple scattering in three dimensions

t i.e., the analog of (3e)7 is very complicated. In fact,
one of the simplifications which the method here pre-
sented introduces is the avoiding of these explicit
equations and the possibility of evaluating (2) without
writing down this equation in any other form. In order
to use and interpret the solution, it is necessary, how-
ever, to express P(s, t) in terms of the quantities com-
monly used (i.e., the differential cross section) and to
establish the connection between the f„(s) and the
commonly used angular distribution F(Q). These con-
nections are given, in principle, by (7), (7a), (ib), and
by (5), (5a) but the corresponding relation will be
explicitly evaluated now for the aforementioned case,
i.e., scattering of a particle without change of energy
under disregard of its position. It will be given a,iso for
the case in which the position of the particle is con-
sidered also.

The group G in the first case is the three-dimensional
rotation group. As standard state, we choose the one
in which the velocity is parallel to the Z axis. The sub-
group E which lea,ves the standard state invariant
consists of the rotations about Z. It is reasonable to
choose the polar angles q, 8 of the velocity direction as
the variables f describing the state. Equation (4b)
then becomes

s(q,6, ) =s(yP, O)Z( ),

where Z(e) is a rotation by e about the Z axis and we
can choose for s(qP, O) any rotation which turns the
Z axis into the q, 8 direction. If we choose

f2%

P(8) sin8de=o (8) sin8/a.
4p

(10c)

Since we have set s~=e the right side represents the
probability that an elementary event change the
velocity, originally parallel to Z, into a velocity at 6,
y within unit range of dd and dy. Since the differential
cross section o (8) is usually defined per unit solid angle,
the probability of the transition to unit d6dp range
becomes o (8) sining. It is an obvious consequence of the
spherical symmetry of the problem that this prob-
ability is independent of q. This does not give an addi-
tional condition, however, because the symmetry of
P(s) is fully described already in (9).

Summarizing, we have

f(s)=f(~A )=(2»») 'F(vP),
P(s)=P(q, d', e) = (2z)—' (a8)/ .a

(12)

(12a)

It may be useful to repeat that F(y,i't) is not the prob-
ability per unit solid angle but per unit dydee interval.
No sin '8 appears in the expression for f(s) if F is given
in terms of the distribution function per unit solid angle.

The expressions for the case in which one wishes to
consider not only the direction of the velocity but also
the position of the particle can be derived with equal
ease. The group G for this case is the group of motions
in three dimensions (Euclidean group) defined in the
same fashion as the group of motions in two dimensions
was. The distribution function F(x ,y, z, y, i't) depends on.
the position of the particle as well as the direction of its
velocity. The group elements depend on six parameters:
the Eulerian angles q,d', e of the rotation, and the three
components x,y,s of the subsequent displacement. The
subgroup E contains only the rotations about Z; it is
the same group as in the preceding example. The con-
nection between the group theoretic f and the usual F
is, in complete analogy to (12)

f(s) =f(x,y,z, yg, e) = (2z sin8) '
(Fx,y, @zan). (13)

The form of P(s) is simpler if we consider as funda-
mental process the traversal of a free path and a sub-
sequent collision (i.e., if we adopt the second point of
view of the Introduction). The probability of the tran-

fication can be accomplished, however, also in most
other cases by choosing three sets of parameters t &, f'&, e
defined by the equation

su'bf'2 e) =e(t i)s(h)e(e)

where eg'i) and e(e) cover the subgroup F and the 8($2)
are so chosen that all elements of the group are obtained
by letting f2 vary over a suitable domain.

Since P(s, t) depends only on s 't, it is sufhcient to
determine P(e, t) =P(t) where e is the unit element. We
then have, from (7),
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sition from the standard state into unit interval at the
state s= (x,y, s, yP) then becomes 8(x)8(y)e

—'o (8) sin8.
Hence, application of (7) to the case sr= e, sr= s gives

P(s) sin8de=8(x)8(y)e "o(8) sin8

or

It follows from the above that

i f„(s)D(s)ds~C &"'=4 &'&II";

II= P(s)D(s)ds. (14b)

P(s) =P(x,y,s, to+, s) = (2s)—'o(8)e-"h(x)h(y). (13a)

One convinces oneself easily that this expression satisfies
(9).
+The above expressions could have been foreseen
without the detailed derivation given above. In fact,
the numerical factors in (12) to (13a) need not be
known for actual calculations since the successively
calculated distribution functions can easily be nor-
malized a posteriori.

EVALUATION OF THE EXPRESSION (2)

The reason that (2) can be evaluated particularly
simply if s and t are elements of a group is that the
group integral of the product of the convolute and the
matrix of a representation is the product of two matrices
which are obtained from the convolvents in a similar
fashion. In fact, we obtain from D(s)D(u) =D(su):

f„+r(t)D(t)dt= f f„(s)P(s 't)D(t)dsdt
J ~

ff„(s)P(u)D(su)dsdu

Again, the 4 and 0 are matrices with as many dimen-
sions as D. The evaluation of (14b) is often made very
much easier by the fact that fs and P satisfy (Sa) and
(9), i.e., actually do not depend on all the group vari-
ables. In particular, if one assumes the representations
in the form in which the matrices corresponding to
elements of E are in the reduced form, only those
Jfs(s)D(s)q„ds will be different from zero in which v

corresponds to a unit representation of E and both p,

and ~ must correspond to such representations if
J'P(s)D(s)„.ds is to be finite.

In the 6rst case discussed in the last section, it
follows either from (9) or more directly from (12a),
that assuming the customary form of the irreducible
representations' only the 0,0 element of II(I) is dif-

ferent from zero. One has

II(l).„=) P(s)D'"(s)„„ds

IIsw ~w ~2m ~(y)
e'"&d&'&.„(8)e—'"'d p sin8d8de

~p ~p ~p 2mO.

f„(s)D(s)ds fP (u) D(u) du. (14)

= (2'/o)b„ob„o 0 (e)doo"& (8) sineda.
p

(15)

The second line is obtained by substituting t=sN and
noting the invariance of the group integral with respect
to such a substitution. Since D(s) is, in general, a
matrix, all expressions in (14) are matrices, with the
number of dimensions of D. Written out in more detail,
(13) reads

4'"&(t)=~ f„(s)D&"(s)ds (15a)

Hence, in all powers of the "matrix" II(I) only the 0-0
element is diB'erent from zero and this is the corre-
sponding power of (15). Similarly, it follows from (Sa),
or more directly from (12), that only the 0 column of

This equation holds no matter whether the representa-
tion D is reducible or irreducible. If D is the regular
representation, one is led back to (2); the simplest
results are obtained if D is irreducible. If (14) holds for
a function f„+r and all irreducible representations, this

f~r satisfies (2).
s Equation (t4) must have been known already to G. Frobenius.

contains elements which are diferent from 0. This is, of
course, consistent with (14b) and (15).

Let us consider, for instance, the angular distribution
obtained by means of Born's erst approximation, for
Rutherford scattering on a shielded nucleus. For a
potential proportional to r 'e " the angular distribution
becomes, with P=o.'/2k', where k is the wave number
of the particle,

(~) t3(2+ted)
(16)

o 4'�(1+P—cos8)s

38ee, e.g., E. P. signer, Grgppentheorie used ihre Anmettdeng
(Friedr. Vievreg, Braunschvreig, 1931),Chap. XV.
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In order to evaluate the integral (15), it is most con- One sees that II(k) is again of rank 1. One easily proves
venient to write cos8=x and to use dpp in the form by induction that

1 d'(x' —1) '

2l) t dpi
(16a)

[2~~(0)].
[II(k)]"+'= Il (k)

[o.2+ ks]pe
(17d)

(17e)P(2+P) 1 d'(xs-1)~
11(l)= 2~ — -dx

& 't 4e (1+P—x)' 2'l! dx'

2s.o(0)=go .

It would have been possible, of course, to transform
(17) in such a way that, similar to (15), only one ele-
ment of the II(k) matrix would have been different from
zero. However, the rather arbitrarily chosen form of
(17) has caused no difhculty.

In order to obtain the expansion matrices C &"&(k) of
f„ from those of [II(k)]", we have to multiply the
matrix expanding fs with [II(k)]". If the particle is,
originally, in the standard state, its expansion matrices
are all unit matrices and C'i"~(k)=[II(k)]". Hence,
these matrices play a role similar to that of the source
solution of di6'usion equations. In order to return, from
the C, to the distribution function f, one has to invert
equations of the form (15a). This is a trivial matter if
the group is closed and can be done easily also for the
representations (17) by means of well-known expansion
formulas for Bessel and trigonometric functions. The
problem of inverting Eqs. (15a) for not closed groups
has been attacked recently in a rather general form by
Harish-Chandra and by Segal. ' In many cases, such as
dealt with in Eqs. (16), the expansion matrices have
more immediate physical signi6cance than the dis-
tribution function f itself.

P(2+P) ~ (l+».(1-*)
2l+tl t ~ (1+P x) t+s

(16b)

The second line is obt'ained by /-fold partial integration.
For l=0, this gives (as always) II(0) =1 for l=1,

11(1)=1+P—lP(2+P) l (2+P)IP (16 )

This is the forward bias after one collision; after n col-
lisions the forward bias in the eth power of this. (16c)
has been obtained already in the earlier articles of
reference I.

Let us consider, as a second example, the motion of
a particle without energy change in two-dimensional
space. The unitary irreducible representations of the
corresponding group —the Euclidean group of the plane—are infinite-dimensional and can be characterized by
a continuous variable k:

Dis&(rpP, y) =e'~'&J . (kr)e'~i~&& (17)

The notation is the same as in (3b): the group element

(rpP, y) is given by the matrix of the equation preceding
(3b) if one sets therein x= r cosp, y = r sinful, ys ——y. The
very simple derivation of (16) is given in the Appendix. '
J is the Bessel function of order n. We de6ne again

CALCULATION OF TOTAL DENSITY FUNCTIONS

In many cases one is interested in the total distribu-
tion of all particles, irrespective of the number of ele-

mentary events they have passed through. Usually, this
will be finite only if the elementary process can lead to
absorption.

If the probability of absorption 1—y is independent
of the state of the particle before the elementary event,
the total distribution function will be

II (k) ~ =,P (s)D'"' (s)„ds

o (y)r 'e ~'5 Q rp)-e'~'&J —(kr)

&(e' &~&&rdrdPdq,

This gives for 11(1)ss (we shall omit the indices () for whereo(0) isthediGerentialcrosssectionintheforward

convenience) direction:

the P(s) was taken from (3b). The integration over P
can be carried out at once, and one obtains

f=Z v"f- (18)

11(k)„.=
pe%

o

(ie)eflux

Ipd p
p Jp

e "J . (kr)dr

The corresponding momentum matrix becomes

C'(I) = f(s)D"'(s)ds= Z v~'"'(I)

where

ps'-m
(k'+o') &

(17b)
=C&'&(l)P y"II(l)"=Co(l)[1—pII(l)] '. (18a)

o' ( os) &

o(p)e'"&dy g=-—
~

1+—
~
. (17c)

ks)

' For representations of similar groups, see also E. Inonu and
E. P. Wigner, Nuovo cimento 9, 705 (1952).

The right side of (18a) can be written down at once in

all cases considered in the preceding sections.

s I. E. Segal, Ann. Math. 52, 272 (1950) and Harish-Chandra,
Proc. Natl. Acad. Sci. U.S. 37, 813 (1951).



0
(19)

In (19), r is a real orthogonal matrix, a is a real vector,
c)0. For c= 1, the s form the Euclidean group; dropping
this restriction increases the number of group param-
eters by 1. Clearly, c will be connected in some way
with the velocity of the particle.

The condition of invariance means that the transition
probability from s& to s2 be equal, for all I, to the
transition probability from us~ to es2. It is enough to
demand this for a set of I, from which all group elements
can be obtained by multiplication. %e choose the fol-

lowing I:

0 1

0
Q2= N3=

0 1

c1 0

0 1
(19a)

The above condition, applied to N=N~ shows that the
transition probability from the state (ci,ri, ai) to
(c2,r2, a2) is equal to the transition probability from

(ci, ri, ai+a) to (c2, r2, a&+a). This shows that a plays
the role of the position vector of the particle, or is
proportional to the position vector. The invariance
condition is also satis6ed with respect to N2 if r con-
tinues to describe the direction of the velocity of the
particIe. Application to N3 gives, finally, that the
transition probabilities

(c,,ri, ai)~(cs,rs, a~) and (cci,ri, ca))~(cc2,r, ,ca2) (19b)

are equal for all c. In other words, the probability of a
path of length

~
c(ai—a2) ( at the value cc, of the first

parameter is as great as the probability of the path
Iai—a2~ at the value ci of the erst parameter. Ex-
pressed still diGerently, the mean free path is propor-
tional to the erst parameter. For the first parameter
itself, the change from c~ to c2 is as probable as from
cc& to cc2. The simplest interpretation of this is that

APPLICABILITY OF THE METHOD

It has been realized already by Grosjean that one can
successively evaluate the distribution functions for
multiple scattering, if one wishes to take the energy
changes into account, most easily if the probability
of a certain fractional change in energy is only a function
of the scattering angle. This is the case for elastic
scattering on atoms at rest. It seems natural to ask,
therefore, whether the calculations presented above, if
applied to a larger than the Euclidean group, could be
given a physical interpretation. We shall not try to
solve this problem in general but point only to the
simplest generalization of the Euclidean group, that
formed by the matrices

that is, e, and hence also the mean free path, is pro-
portional to the e'th power of the velocity where mQO
but can be arbitrary otherwise. Together with the pre-
ceding conditions, condition (19b) then stipulates that
the angular distribution of the scattering be independent
of the velocity and that the probability of a certain
fractional change in energy depend only on the change
in the direction of the velocity.

It seems likely that many other multiple scattering
distributions can be calculated accurately, many others
approximately, following the procedure outlined above.
So far, no case has been encountered in which the cal-
culation of the eth power of II, or of the reciprocal in

(18a), would have been at all diilicult. On the other
hand, it does not appear to be possible to use the
rotation (or Euclidean) group to calculate the multiple
scattering of a particle with spin, by using the variable
s of (12) to describe the spin's motion. It seems that a
more powerful method is needed to overcome the dif-
hculties of this problem.

P f(+) P f(+) C
—(S(r oosP coscr(-r sinl( sina) f(+ +)

S-(kr sos(f a)f(& +)— (Ai)

The group element s is a rotation by q about the origin,
followed by a displacement with a vector the polar
coordinates of which are r and f. Borrowing concepts
from quantum mechanics, one can say that f describes
states in which the absolute value of the momentum
is k but the direction of the momentum is variable and
given by n. Rotation of this state by p replaces n by
n y; displacement by—the vector r cosP, r sing multi-
plies it with the exponential in (A1). The magnitude of
k characterizes the representation; it can assume any
positive value.

One can write (A1) also in the form

(A2)

with a singular representation matrix:

dk(") (r lP ((o) = 8 '"" -'(& "'i)(n —y, o.') (A2a)

and the calculation of the text can be carried out also
using this form of 6'~&. The form of D&~& given in the
text is obtained by using, instead of f(n), its Fourier
expansion:

APPENDIX

The irreducible representations of the group of mo-
tions in two dimensions can most easily be given in the
Hilbert space of functions f(0() the variable n of which
is restricted to the interval 0&n&2m. The operators
I',=P„,~, „of the representation in this space are
dined by

c=Cv". (19c) f(+) P f C
(rsa— (A3)
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Substitution of this into (A1) gives

P ~ g —imn ~ —ikr eos(f—a)~im(y —a) gJ 20

Because of
2g

J (s) (2s)—
&s

—n t s iz ao—sp-inpdp

~0

where

D(")(rA, v)- -= (2~) '
Jo

= (2s)-'

(A4)

g-i&r oos( ) pi~(V' ) gi™~d(y

&
—isr cosp-i(m' —m) f)dp

(As)

this diA'ers from the expression given in the text only
by the factor i '

which can be eliminated by a
similarity transformation. It is worth noting that the
transition from (17b) to (17c), i.e., the evaluation of
the second integral of (17b), can be best carried out
using the form (ASa) for J.

A similar calculation is possible also in the three-
dimensional case but it is more laborious and will not
be given here. It is, essentially, contained in the Ap-
pendix to Grosjean's last article.
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Calculated Values of the Parameters of Noble Gas Discharges
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Molar properties of gaseous discharges are determined by the transport cross section which is expressible
in terms of the phase shifts dered in electron-atom scattering theory.

o &(v) was calculated for helium, neon, and argon using values of phase shifts r)s to r)s derived by Westin
from existing scattering data. Druyvesteyn distribution functions were calculated for 8/P from 0.1 to 1.0.
Average values were then calculated for collision frequency, drift velocity, diffusion coe%cient, and average
energy.

Also, collision frequency and elastic energy loss were calculated using Maxwell distributions for kT, up
to 10 ev. These calculations are particularly useful at very low energy, where extrapolation of phase shifts
is more reliable than of the experimental data. Values of O.

g are compared with those of Barbiere (taken from
direct scattering data); values of drift velocity are somewhat lower than Nielsen's data.

I. INTRODUCTION

'HE theory of gas discharges reduces essentially
to a study of the various types of collisions

which take place among the electrons, atoms, and ions.
In many practical cases where the average electron
energy is low, the properties of the discharge are deter-
mined primarily by the differential cross section ir(k, 8)
for elastic scattering of an electron by an atom. Here k

is the electron wave number, and 8 the angle through
which the electron is deviated.

The ordinary total cross section' o(k) is defined by

o (k) = a (kP) 2s. sin8d8.

(This quantity is also referred to as the diffusion or
momentum transfer cross section. ) From collision
theory, these two cross sections can be expressed' in
terms of the phase shifts p„ introduced by the atom in
the partial waves associated with successive units of
angular momentum of the incident electron about the
center of the atom:

4x
o(l's) =—P (2m+1) sin'g„,

P2 n~

4m

os(k) =—Q (vs+1) sin'(r)„—))~t).
P2 n=o

o i(k) = a (k,8) (1—cos8)2s. sint'fdic.
0

(2)

' N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, London, 1949), Chap. 2.

In gas discharges, however, since the energy lost by an
electron in an elastic collision depends on 8, a more
important quantity is the transport cross section o.z(k)
defined by

Most of the molar properties of the electrons in a
discharge, such as drift velocity, diffusion coefficient,
etc., are given by some function of o-& and k, averaged
over a distribution function which in turn involves r&.

Hence, a knowledge of the phase shifts q„permits calcu-
lation of 0.

~ and this, in turn, enables one to derive the

s H. S.W. Massey and C. B.O. Mohr, Proc. Roy. Soc. (London)
A144, 434 (1933).


