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The differential and total cross sections for the photodisintegration of the deuteron are calculated for
incident gamma-ray energies in the range from 6 to 28 Mev. The following cases are treated: (1) Approxima-
tion I, in which shape-independent wave functions are used corresponding to a 50 percent charge-exchange
central force, (2) Approximation II-C, in which a central Hulthen potential with a variable percentage of
charge exchange forces is used, (3) Approximation II-NC, in which approximate noncentral Hulthen wave
functions and an approximate noncentral Hulthen potential with 50 percent charge-exchange force, is used.
In all these calculations, use is made (where possible) of a form for the interaction between the deuteron and
radiation that gives the results of the interaction to all multipole orders automatically. We also estimate
the possible effect of exchange currents on the cross sections by a calculation making use of the phenomeno-
logically derived exchange moments of Berger and Foldy.

The numerical results of these calculations are used to estimate the uncertainty in the theoretically calcu-
lated cross section at the present time. It is concluded that the uncertainty may be as large as 15 percent
of the total cross section for these energies. About 5 percent of this arises from experimental uncertainties
in empirically determined parameters, while the remainder arises from ignorance of the exact form of the
neutron-proton interaction.

L INTRODUCTION in investigating such processes, is limited to energies of
the order of 30 Mev. A further impetus to a careful
analysis in this energy range is the growing accurcy of
measurements of the total and diGerential cross sec-
tions for the photodisintegration of the deuteron at
these energies. ' '

An accurate theoretical prediction of the photo-
disintegration cross section depends, of course, on
knowledge of the correct form of the interaction of the
deuteron with the electromagnetic Geld and further on
knowledge of the initial and Anal wave functions for
the deuteron system. Our knowledge of both these
aspects of the problem is insuffi. cient to allow an exact
calculation to be made and it is therefore necessary to
employe approximations, using with discretion what
information is available. We are favored in this ap-
proach by several circumstances: We are cognizant of
what are probably the most important terms in the
interaction of the deuteron with radiation and we can
at least estimate the eGects of those terms of which our
knowledge is more scanty. Furthermore, while detailed
knowledge of the interaction potential between proton
and neutron is necessary for an exact calculation of
initial and 6nal wave functions for the deuteron photo-
disintegration, yet many of the most important features
of these wave functions, insofar as they determine the
transition matrix element, can be derived on a semi-

empirical basis. Hence those features of the wave func-
tions which depend on details of the potential inter-
action introduce considerably smaller uncertainties into
the results than might otherwise be the case.

Before describing in detail the nature of our approach
and approximations to this problem, we shall summarize

HE problem of the experimental determination of
absolute cross sections for photoprocesses in

nuclei is complicated by the lack of a reliable method
of Axing the spectrum of the incident gamma rays em-

ployed in the experiment. One promising method of
obtaining a good absolute cross-section measurement
is to use as a standard for calibration the simultaneously
observed deuteron photodisintegration which may then
be compared to the theoretical prediction for this
process. ' Unfortunately, although the deuteron is the
simplest nuclear system'of interest, it is far from being
completely understood, and, as a result, there remain
various sources of uncertainty in the theoretically pre-
dicted cross section. We wish, in this paper, to under-
take a comprehensive and systematic calculation of the
deuteron photodisintegration cross section. The results
of such a calculation are, of course, of interest in them-
selves, but we hope that they will also serve to better
evaluate the accuracy of our present knowledge of this
problem and thereby to indicate the reliability of the
above scheme as a calibration method.

We will restrict ourselves to the consideration of
incident photon energies in the range from about 6 Mev
to 30 Mev although, as will be indicated later, the
methods used are applicable to lower and to higher
energies and are perhaps even more valuable in the
latter region. Our reasons for this choice of energy range
are twofold: 6rstly, much of the investigation of photo-
processes is taking place in this energy region, and
secondly, the Case betatron, which has been engaged

*From a thesis submitted to Case Institute of Technology in brieAy some of the more recent ca].culations of the
partial fulfillment of the requirements for the degree of Doctor
of Philosophy. deuteron photodisintegration cross section by Bethe

t U. S. Atomic Energy Commission Pre-doctoral fellow, now at
Forrestal Research Center, Princeton University, Princeton, New Barnes, Carver, Stafford, and Wilkinson, Phys. Rev. 86, 359
Jersey. (1952).' V. E.Krohn, Jr., and E.F. Shrader, Phys. Rev. 87, 685 (1952). ' V. E. Krohn, Jr., and E.F. Shrader, Phys. Rev. 86, 391 (1952).
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and Longmire, ' Schiff, ' Marshall and Guth, ' and Fesh-
bach and Schwinger in order to illuminate the dis-
tinguishing features of these and our own calculations.

Bethe and Longmire are concerned in their paper with
energies less than 10 Mev and therefore they are able
to express their results in a form largely independent
of the specific internucleonic potential. They exhibit the
electric and magnetic dipole matrix elements in terms
of the triplet and singlet eR'ective ranges, assuming a
central force character for the internuclconic potential
and the absence of interaction in odd parity states of
the system (that is, they assume a Serber potential of
half ordinary and half charge-exchange character). The
results for the magnetic dipole term are checked by
explicit calculations using different well shapes: square,
Hulthen, and exponential. They also indicate that the
electric dipole cross section is slightly smaller at these
energies if 100 percent charge exchange forces are
assumed in place of Serber forces.

SchiG calculates for the energy region of 20 to 140
Mev only the photoelectric effect, omitting the photo-
magnetic eGect because of the uncertainty due to ex-
change currents. On the assumption of central forces of
half charge-exchange, half ordinary, character, he ex-
amines the long-tailed potentials, exponential and
Yukawa, and calculates in the electric dipole and
quadrupole approximations. It is shown that the
quadrupole term interferes with the dipole term so that
the quadrupole term has an appreciable effect on the
angular distribution. It is also shown that there is little
difference between the cross sections obtained with the
differently shaped wells, especially below 50 Mev.

Marshall and Guth have performed a similar calcu-
lation to that of Schiff, including the magnetic quadru-
pole term, obtaining essentially the same results. They
also calculate the photodisintegration cross section for
a square well with diferent percentages of charge ex-
change. The results they find for the square well with
50 percent charge exchange are quite different from
those with the long-tailed potentials at high energies
but are closely the same for energies below 30 Mev.
The e6ect of large variations of the percentage of
charge exchange they find to have a large effect at all
energies 8

Feshbach and Schwinger have calculated the photo-
disintegration cross section for energies up to 20 Mev
with noncentral forces having 50 percent charge-ex-
change character in the electric and magnetic dipole
approximations. They find the electric dipole term to
be essentially the shape-independent term of Bethe and
Longmire. In the magnetic dipole calculation they

4 H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (1950).'L. L SchiK, Phys. Rev. ?8, 733 (1950).' J. F. Marshall and E. Guth, Phys. Rev. 78, 738 (1950).
r H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951).
'This result is in disagreement with our own results. It is

believed to arise from several minor but numerically significant
errors in the formulas of Marshall and Guth. See reference 14 of
the present paper.

include a term corresponding to the exchange current
contribution, and by comparison with experiment, con-
clude that this contribution is small.

In our treatment of the photodisintegration problem
we shall consider all of the eBects mentioned above
although in varying degree. Our calculation is based on
an assumed form for the interaction between the deu-
teron and the electromagnetic field which is derived in
an earlier paper. ' (In the initial calcu1ations only the
so-called "one-particle" terms are considered. ) This
formulation of the interaction has the advantage that
it allows us to include automatically and in one step
all of the multipole orders in which the photodisintegra-
tion process takes place with relatively little extra labor.
Estimates of the contributions of what are called in
reference 9 "interaction terms" are made in the later
calculations of the magnetic dipole matrix element by
making use of results obtained from the phenomeno-
logical treatment of exchange moments by Berger and
Foldy, "in the absence of exact expressions that would
be predicted by a correct meson theory.

Once the form of the deuteron-radiation interaction
has been assumed, the calculation of the matrix ele-
ments requires knowledge of the appropriate initial-
and final-state wave functions for the deuteron. These
are handled in our calculations in the following way:
%e assume, in what we shall call Approximation I,
wave functions for the initial and final state which can
be specified without any direct reference to the exact
form of the interaction potential between neutron and
proton. Ke do this as follows: For the initial wave
function, representing the ground state of the deuteron,
we follow Bethe and Longmire in employing a wave
function appropriate to a zero-range interaction be-
tween neutron and proton but with a normalization
adjusted by the employment of the empirical effective
range of the neutron-proton interaction to corespond
to that of a potential interaction of the proper effective
range. This wave function can then be completely
expressed once we are given the empirical triplet effec-
tive range and the deuteron binding energy. The final-
state wave function, in this approximation, is assumed
to be a plane wave as if the neutron and proton were
free, but with one modification. The 5-wave part of
the plane wave is modified by the introduction of an
empirical phase shift for both the singlet and triplet
spin states so as to take partial account of the neutron-
proton interaction. The final-state wave functions may
therefore also be thought of as arising from a potential
of zero range. The phase shifts employed are those de-
riving from the empirically known values of the zero
energy scattering lengths and effective ranges of the
singlet and triplet deuteron interactions, neglecting the
contribution of "shape-dependent" terms. Thus the

' L. L. Foldy, Phys. Rev. 92, 178 (1953).' J. M. Berger and L. L. Foldy, Tech. Report No. 18 at the
Nuclear Physics Laboratory of Case Institute of Technology.
These results will be published in a modified form.
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final-state wave functions in this approximation can
also be completely written down once these empirical
parameters are given. We may also note that insofar
as final states of odd parity are concerned, these as-
sumed forms for the final-state wave functions corre-
spond exactly to a Serber potential with 50 percent
exchange force. The calculations in this Approximation
I correspond then very closely to those of Bethe and
Longmire but may be utilized over a higher energy
range as a result of including automatically all multi-
poles in the calculation. This calculation, Approxima-
tion I, serves as a basis with which we may compare the
changes that result from the more detailed calculations.

The second approximation in our calculation dis-
tinguishes between two cases corresponding to central
and to noncentral forces between neutron and proton.
In the first of these which we call Approximation II-C,
we calculate the modification in the matrix elements
and in the calculated cross sections resulting from the
changes in the initial- and final-state wave functions
when a specific radial dependence is assumed for a
central interaction between the neutron and proton
and when the percentage of charge-exchange character
of this interaction is varied. The calculation is made
with the choice of the Hulthen potential for the radial
dependence of the interaction potential. The effects of
modifications in the initial- and final-state wave func-
tions are separately calculated. Where convenient and
appropriate some additional approximations are made
in these calculations. The contributions of exchange
moment terms in the deuteron-radiation interaction are
considered separately.

The second form of the second approximation, which
is called Approximation II-XC, is similar to Approxima-
tion II-C, but the effects of a noncentral (tensor)
character of the potential interaction between neutron
and proton are examined instead.

In Sec. II the form of the interaction used is de-
scribed together with the appropriate symbols. In Sec.
III the details of the calculations are given excepting
those for the exchange moments, and in Sec. IV the
results are described. The details of the exchange mo-

ment contribution calculation are discussed in Sec. V.
In Sec. VI we discuss the over-all results of this paper.

II. INTERACTION

To represent the interaction of radiation with the
deuteron we will use the form of the general equations
appropriate to the deuteron for the nuclear photoe8ect
derived by Foldy. This form of the interaction will

then give us the e8ects of all multipoles while involving

very little more work for most of the calculations than
is usually entailed in obtaining the matrix elements in
the dipole approximation of the usual multipole expan-
sion. Its only disadvantage is the somewhat more
cumbersome form of the resultant matrix elements,

although it is usually quite simple to reduce them to the
corresponding dipole terms for comparison.

Our form of the interaction operator
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where +~ and 0', are the final- and ground-state wave
functions, respectively.

is conveniently expressed as the sum of four terms.

K'= 6+BR,+OR.+OR, . (&)

We label these terms in the following fashion. h is
termed the electric interaction, OR, is termed the mag-
netic convection interaction, OR, is the magnetic spin
interaction, and OR, is the magnetic exchange inter-
action. In the next two sections we will confine our
attention to the first three interactions: however, in
Sec. V we will treat some aspects of the magnetic
exchange interaction, although in only the dipole
approximation.

Then the forms of the matrix elements corresponding
to the interaction of a photon of wave vector x with
the deuteron in the center-of-mass (zero-momentum)
system may be written as'

(2~hcp l ie
&=(+rlhl+, )=l l (~—")

E scV ) 2hc



DEUTERON PHOTODISINTEGRATION

In the above equations it will be noted that the multi-

plying factors outside the brackets have been written the
same in all three cases, i.e., (2n kc./rV)'*(ie/2hc) (e~—ep),
so that the quantities inside the brackets serve to indi-
cate the relative magnitudes of these matrix elements.
For the energies of interest in this paper the distinction
between Sic, the photon energy, and (ey —ep), the change
in the internal energy of the deuteron, is negligible.
Hence, for example, the magnitude of M, relative to E
is of order p/Mc, where p is the relative particle
momentum.

The symbols used in the above expressions for the
matrix elements represent the following: V is the
normalization volume of the incident photon, (er—eo)

is the diRerence between the internal energy states of
the deuteron before and after the absorption of the
photon, R is the center-of-mass coordinate, r is the
relative coordinate of the neutron and proton, p is the
momentum conjugate to r, a is the electric polarization
vector of the incident photon, e'= LppX ej/s is the mag-
netic polarization vector of the incident photon, M is
the proton mass and is taken equal to the neutron mass,
pI is the magnetic moment of the proton expressed in
number of nuclear magnetons, p,„ is the magnetic
moment of the neutron expressed in number of nuclear
magnetons, e; is the spin operator associated with the
ith nucleon, r,~ is the proton projection operator for
the ith nucleon with r,P= (1+r,*)/2, r," is the neu-
tron projection operator for the ith nucleon with
r;"= (1—r,')/2, r,* is the s component of the isotopic
spin operator, and s is a parameter of integration.

In the calculations that follow it will be convenient
to separate the magnetic spin matrix element M, into
two terms, M, ~ corresponding to transitions due to the
magnetic spin interaction OR, to final triplet spin states,
and M«corresponding to transitions to final singlet
spin states.

III. CALCULATIONS

The wave functions that will be used in the calcula-
tion of the matrix elements described in the previous
section, Eqs. (2), will be given here. The general form
of the wave functions will be written in the following
manner:

where P,o is the shape-independent ground-state wave
function and f,' represents the correction to the shape-
independent ground-state wave function due to the
choice of a shape-dependent potential, in our case, a
Hulthen potential. Similarly 1t~ is the shape-indepen-
dent 6nal-state wave function corresponding to a plane
wave except for a modi6ed S state in which a phase
shift is introduced to account for interaction, and P~' is

the correction introduced because of our specihc choice
of potential. It is more convenient to indicate the spin
multiplicity of the 6nal states explicitly. Thus, +~& is

the triplet 6nal-state wave function that is used in the

calculation of the E, M, , and M, & matrix elements, and
O'J, is the singlet 6nal-state wave function that is used
in the calculation of the M«matrix elements.

Thus the matrix elements described in II may be
written as the sum of terms, in such a fashion that the
introduction of each correction gives rise to an indi-
vidual term so that the eRects of each correction may
be easily observed. Thus, for example, we may write E as

(4)
where

We will speak of the calculation as being done in
two approximations, Approximation I and Approxima-
tion II. In Approximation I only shape-independent
eRects are considered and thus it consists of the calcu-
lations of the OE', OM. ', OM, ~', OM«' matrix elements.
These terms will serve as a reference to which we may
compare the eRects calculated in the Approximation II.
In the second Approximation the modi6cations that
are introduced by the consideration of such eRects as
the explicitly Hulthen well shape, central and noncen-
tral forces, and interactions in the 6nal states, are
calculated. These eRects are introduced by the choice
of the wave function corrections P,', fr'. In this ap-
proximation the matrix elements we will actually calcu-
late are OE', ~E', OM«', ~M«', ~M„'. The details of
these two approximations follow.

A. Approximation I
In this approximation we will calculate four matrix

elements corresponding to the four interactions 8, OR„
OK, &, OK„described in Sec. II, making use of only shape-
independent wave functions. The OR, ~ and OK,„inter-
actions are, of course, exactly the same, both being the
9R, described in II.This notation is however convenient
in denoting explicitly the spin multiplicity of the 6nal-
state wave function that is used with the OR, interaction
to obtain the matrix element M, ~ or M«. The wave
functions we will use in this calculation are P, for the
ground-state function and fr/ or p~, p for the final-state
function, where py, p is used only with OR„. For ip, p we
will take the zero range form for the deuteron ground
state, in which the correction for the finite range of
forces is taken into account in the usual manner through
the use of the eRective range. "Thus

f '= V—
& exp ( ipp R)—

4or(1 —nrp, ) r

For the final-state wave functions P&,, P we will use a
plane wave except for replacing the S part by ag. .$

"H. A. Bethe, Phys. Rev. 76, 38 (1949).
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wave function in which the interaction in the final S states and polarizations have been performed are
state has been considered by the use of the phase
shift 8p. Therefore, we have for the triplet Gnal-state
wave function:

prg'= V '2 ' $1gipe $2gile [glgi2 $2gilj

2c+b b 4c
X2 ——+—tan '

. q(a+b+c) qa q&
(xr,xp ),
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and for the singlet final-state function:

V'2 ——& $&ripe' '+pprl&e '"' [pggi—g+$p'Qlf

sinkr
X

kr

sin (kr+ ho,)
g-s&os xr' (g)

In the above, the symbols used mean the following:
k is the propagation vector of the proton and k its
magnitude, $; and gi, are isotopic spin wave functions
with $; corresponding to the ith particle being in a
proton state while g; corresponds to the ith particle in a
neutron state. The x's are spin wave functions, with x, '

the ground-state triplet spin, while xf' and xf' are,
respectively, the Anal-state triplet and singlet spin wave

functions. Finally, rp& is the triplet effective range, and

8pt, and bp, are, respectively, the phase shifts of the 6nal-
state triplet and singlet S wave functions obtained from
the usual formula" "

k cotbp= —a '+-', k'rp,

0.=2.31X10"cm ' u =0.528X10 "cm,

a, = —2.375X10 "cm,

rps ——1.70X10 "cm, rp, ——2.4X10 "cm,

corresponding to a binding energy for the deuteron of
2.235 Mev.

The wave functions just described will now be used
to evaluate the matrix elements pE', pM, ', pM, &', p3f„
vrhere

.~ =(~~ I ~l~;), .~:=(~.'l~l~, ')
oM.g'= (frg'IBRIQ, '), pM„'= (fr,pISKIpp').

(9)

The resulting matrix elements after integration but
before the summation and averaging over the spig

u J. Schwinger, Harvard Lecture Notes (unpublished).

where a is the appropriate scattering length and rp the
appropriate eGective range.

The values of the constants we use are, with the
exception of rp&, the same as used by Bethe and Long-
mire, and are

k~ 4a—tan '
23fc q&

q
(xf',x.'),

2a4 b q (a+b+ c)
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I
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e goo* sinlp, n (E1'—Es')
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K1——k ——,'gg,

Ki'= k—-'g
2

c=s'/4, q=4ac b, —

Ks——k+-,'og,

Ep' ——k+-,'«.

The calculations involved in obtaining these matrix
elements are, for the most part, straightforward. Some
care is required in the calculation of pM, &' inasmuch as
long wavelength magnetic dipole transitions between
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the initial triplet S state and final triplet S state are
forbidden due to the orthogonality of these two states.
Since the wave functions used are not themselves
orthogonal the forbiddenness of the transition was
accounted for in the following way. We actually used
in this calculation a modi6ed 5';,& interaction 5tt;, ~ that
was obtained by subtracting from the 5R, ~ interaction
given in Sec. II a term obtained by expanding the
exponential exp (ix r/2) occurring in the BR,i interaction
and retaining only the first term. That is,

t'2~he) lie h~c h
mt„'= m, ~

~ ~

—(og—oo)
&~V) hc ~0—~) Mc

Xexp(ix R)[(ti~ri +p,„ri")ei e'

+ (prrP+p„r, ")eo e'j. (12)

In this way we have eliminated this dipole transition.
It will be noted that the calculated matrix elements

of this 6rst approximation are not dependent upon any
assumed details of potential shape, and therefore, that
the accuracy with which these results may be deter-
mined is limited only by the accuracy of the experi-
mental results for the binding energy, triplet and singlet
scattering lengths, and effective ranges. The integrations
performed have been exact; thus the results of this
approximation has been to give the matrix elements in
an essentially zero-range approximation assuming half
exchange, half ordinary force, to all multipole orders.

'3 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 48 (f949).

B. Approximation II-C

We will now investigate in detail the deviations from
the results of Approximation I that may be expected
when a particular form for a central force potential is
chosen. We will consider in detail only the Hulthen
potential si.nce it is most amenable to calculation, and
since previous calculations' ' seem to indicate that its
results would dier very little from the results that
would be obtained with other long-tailed potentials.
We have repeated some of the calculations using a
square well potential, with parameters obtained from
the curves of Blatt and Jackson, " to correspond to the
same effective range as our Hulthen potentials. These
square well calculations were performed as a check and
are, therefore, not described in detail. The results will

be discussed in the consideration of the parallel Hulthen
calculations.

Explicitly, the calculations in this section involve the
modification P,' of the ground-state wave function
that is obtained because of our use here of the Hulthen
potential ttr(r). That is, with

we have

P '= V & exp( —ix R)
4m(1 —@rod) .

2 '(Hap —bni)xo', (14)

where p is taken as p=14.3X10" cm ', so that ip, '
consists of only the diR'erence between the Hulthen
ground-state function and the shape-independent func-
tion used in Approximation I. In our modi6cations of
the final-state S functions we keep in mind the fact that
the transitions to the final singlet S state and to the
6nal triplet I' state are the dominant transitions since
they correspond in the main to the magnetic and electric
dipole transitions. In view of this the modi6cation of
the singlet 6nal-state ipse,

' is taken to represent only a
modi6cation of the final S state through the introduc-
tion of an approximate Hulthen Anal-state singlet 5
wave function. That is,

(1—e-")
iver,

' V'2 ,
'*—[—$irto+$orti]e '"* — — sin(kr+8p, )

kr

sin(kr+ bp, )
x. , (»)

k

where g is taken as g= 12.8)& 10"cm '. The modi6cation
of the final triplet-state wave function takes account of
interaction in the general 6nal state through a Born
approximation calculation in which the final plane wave
is perturbed by the Hulthen potential. In particular,
we are interested in the 6nal triplet I' state so that we
will be concerned with the eGect of varying the per-
centage of ordinary and exchange forces present in the
potential, from the previously assumed Serber form.
The modification of the final triplet wave function
fbi' is then (from the Born approximation)

Pry'= —V '(2~) '2 &

I
e
—&'( —'i

—
beati

k' —k"

X~,(")e-""dl 'dr' t »i

in which the nature of the force, exchange or ordinary,
is still implicit in t4(r ). For ease in performing the
integrations indicated in (16) we have replaced the
Hulthen potential by the corresponding Yukawa poten-
tial. That is, we have replaced e N"'/(1 —e

—~") by
e &"'/pr'. It will be noted that the modification of the
6nal singlet state wave function does not include the
possible effects of the variation of the percentage of
charge exchange forces. This is consistent with the
statement above that the dominant singlet 6nal state
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is the S state where exchange force considerations have
no effect.

As we have indicated above, it is well known that the
electric and magnetic dipole interactions are by far the
dominant effects for the energies we consider. Further-
more, it may be easily verified that the electric dipole
interaction is included in 8 while the magnetic dipole
interaction is included in OR. (or alternatively OR„).
On this basis we expect that at these energies 5R, and
OR, employed with final triplet states (or alternatively
OR, &) will be relatively unimportant. The results of the
numerical calculation of 0M,' and OM, ~' bears this out.
Therefore, in describing the effects of the wave function
modification given above, we have restricted ourselves
to the examination of only the E and M„matrix
elements since it is clear that these will include all of
the important effects. The matrix elements that we
will calculate in this section are

p&'= 64i'I &I&p'), i&'= (Pf~ I
b Ikpp)

.M..'= (e~.'l~. l~, '), .M-'= (Wr.'l~. le, '), (»)
M.,'= Q, 'loR, IP,').

We have not calculated ~E' since both ~E' and OE' are
themselves quite small, and this would represent a
higher-order correction. On the other hand both ~3f„'
and 03E„' are rather large so that it was necessary to
calculate &35„'. Since the forms of the integrals en-
countered in the three 3f„ terms were essentially the
same we have actually calculated the three terms
together as one term that we will refer to as 3E„'.

The results of the calculations for these matrix ele-
ments are

(2rrPic 2~n ) i e
pE'= —

I I
—(pr —&p) 2~ ir

E xV' 1 nrp, ~ kc—
2c+ b b 4c q'&

+—tan ' (xr', X,'),
q'(a'+ b+ c) q'a' q"* 2a'jb

where a'=P'+k', q'=4a'c b'—
(2~kc 27m ) '* e (n' P')—

iEP= (—1)"I
I

—(pr —pp)2e lt
E gV' 1—nrpg~ hc 2+K

IJ,
'j2k' y' j4k' 1

X ln-
4k2(~2 jk2)2 ~2 ~2jk2

p,
'j2k' 2k' 2k

tan ' — ——tan '—
2k'(n' jk')'-p' k' n'— —

2nk n' —k'
—tan '

p' jk' n' 2+k(0.'—jk')'
(~2jk2 ~2) (~2jk2j~2)

2~k(~2jk2)[(~2jk2 ~2)2j4~Pkpj

(p'jk' —n') 2pk
(x~',x.') (18)

2k'(n' jk') (bi'- —k' —n')' j4P'k'

Here, e =0 for pure charge exchange forces and v = 1 for
ordinary forces. Also

(2mkc 2m.u ) '*ie

I

—(r—o)
E aV' 1—nrp, ) hc

PtKC A P~ Prb

pp
—pr 2Mc p' jEip p' jEi'
(p~ —p„) (e'"' cosbp, —1) ~

P'+ Ei"~

kg 2 kP' jEp'P j
~iboa [(r)j~)2jEi 2][(~jp) 2jE2 2]

+ cosbp, ln
2 [(gjn) 2jE IPj[(qjP)2jE 12]

P (Ei' Ep')—
+e""sinbp, tan '

P'+E i'E p'

(r)jn) (E,'—E,')
+tan '

(r)jn)'+Ei'E, '

(t)jP) (Ei'—Ep')—tan '
(gjP)'+Ei'Ep'

X (yr', e' (~i—ep)X, ').

The sums and averaging over spin states and polariza-
tions have not yet been performed. It will be noted that
in 3E„' one can easily separate out OM„', &M„', and
,M„' by referring to the constants P, r), and n. (That is,
those terms which have P alone belong to pM„', those
terms involving g and o. belong to ~M„', and those
terms involving g and P belong to iM„'.)

In the calculation of &E' another approximation was
made, in addition to the use of the Yukawa form for
the potential, in order that the contour integral in-
volved be more tractable. We have not used in the
calculation of this term the entire 8 interaction of Sec.
II, but essentially only the dipole part that was obtained
by expanding the exponential occurring in h and retain-
ing only the first term. That is in h, [r&~ exp(isa r/2)—rp~ exp( isr. r/—2)$ was replaced by r, rp The. —
error invoked by this simplification is very small since
the term itself is quite small.

At this point we might indicate which square well
calculations were performed, deferring the comparison
of the two results to Sec. IV where the numerical results
of the above calculations are given. We wished to check
&E' which at first sight appeared too small, and 31„,',
which appeared too large. ~E' was compared to the
result obtained using the formula'4 (45) of Marshall

'4 The formulas in the appendix of reference 6 are in error and
should read

—,'btxp& ———(8U/sx)p» p:p& ———(E&—Ep)'xp&/b'

BU
%01=(,~ f;—CO~1&,

fP;(eV/Br)g;r~dr= g(b~)gg(b()bPV p,

where Uo is the depth of the square well. We believe that by use
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and Guth for the matrix element with 100 percent
ordinary force and using square well wave functions
with the constants obtained from the curves of Blatt
and Jackson so that the effective range was the same.
M„' was compared to a straightforward magnetic
dipole calculation in which the square well wave func-
tions were used for both initial and final slates.

C. Approximation II-NC

The calculations treated in this section proceed in
exactly the same manner as for Approximation II-C
with central forces, with the obvious exception that
where the explicit Hulthen central force potential and
its associated wave functions occurred previously, it is
understood that they are to be replaced by the appro-
priate noncentral terms. As before, we will calculate
only the matrix elements, &E', OE', and M„' for exactly
the same reasons as before. To distinguish between the
results of these two second Approximations II, we will
denote the matrix elements calculated here by OE&&',

1+Nc ) and ~mls, Nc ~

It is not our intention, in this calculation with non-
central forces, to give a completely consistent result
for the photodisintegration, but rather we intend merely
to indicate the main e6ects of the introduction of the
tensor force in the second Approximation. Thus, to fix
the potential and wave functions, we nave not made
any calculation of the electric quadrupole moment or
magnetic moment of the deuteron, but instead we have
chosen a potential and wave function that are probably
reasonably correct and, at the same time, easily
handled. The potential we have chosen is, in fact,
somewhat more singular than is usually the case and,
the wave functions we take for the ground state have
been oversimplified. Explicitly, for the potential tt(r),
we have taken"

n — e"
~(r)=I 1+p(( ~)( '&)—-' o &')7

1—e pr

( =P—n), (19)

ground-state wave function modification P, ' we now take

( 2n
!P '= U '* exp (—224 R) I

E.42r (1 n—rp,) )

where

e
—nr

X 24src(r) — 2
—*

(tii12 —$22)i)x p', (20)
r

24ipc(r)= 1+(l) '

3(ni r)(422 r) (e ~"—e e")
X —1 (21)

r2

p&~c'= L1—(s) '7p&' —(s) 'p&'

(22rkc 22m ) '* e 3
!
—(sr —«)—2 '

( irU2 1 nrp, )—hc 20

Xa'+sX
I Xr ) [o'2 &2 kz+o'i o'2"ky

2 t' k ky
+pi'o2'k, 7—I n tan '-—P tan '— !

k4& n P)

2 ( n' P'
+ (n, lr)(n2 14) —

I
k4 &n'+O' P'+k'J

6( k ki——
I n tail '-—p tall '- !p). l

)'
('22rkc 22m

!i&src'= [1—pp'7i~' —(—1)"!
& ~Us 1—nr„)

(22)

The results for the calculations of the matrix ele-
ments, after integration but before the sums and aver-
aging over spin states and polarizations have been
performed, are

with the strength of the tensor portion p= p, '. Indica-
tions are that this is about the right value for the
strength. "It is a quite convenient choice, and in any
event the numerical results are not very dependent
upon this quantity.

In the modifications of the wave functions we have
fq, ' and Pri' of the same form as in the central force
case. In Pri' we must substitute the appropriate non-
central potential, and P~, ' remains exactly the same
since the singlet potential remains central. For the

of corrected formulas, the large difference found by Marshall and
Guth for electric dipole cross sections with 50 percent ordinary—50 percent Majorana and with 100 percent ordinary forces,
disappears.

'4 L. L. Foldy and R. E. Marsha)4, Phys. Rev. 7S, 1493 (1949);
note added in proof."D. G. Padfield, Proc. Phys. Soc. (London) A65, 309 (1932).

e 4 p(u' —p')
X—(sr —pp)-—

Ac 3 p,
'

[
u (142k2 n'+ k4)—

X
I (ps u2 k2)2(n2+k2)2

( '+k".)'
2/2+2k2) (142 n2+k2)2

ik'

2 (p2+2ks) (n'+k')' )x,'!,
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M ~o'=[1—(-,') &]&V..'—(g) &sM '

(22rkC 22m ) &ie

+I I
—(e~—e )

E «V' 1 n—rp, ) hc

(~1 —~.)
-2—

&

60 6f 2Mc

X
~ X fre ' (4r1 4r2)' 3[&1 n2 ~@+&1 &2 ~g

2 f' k kq
+n, ~2*0,j—~

p ta11—'—n tan-
k4( p

( 1 1
+2(4rr O2) (e'"'cosbp, —1)~

(n2+ $2 P2+ P2)

e'"' sinbs, ( n P

&nsye p'+ p) ' )X,' f.

In the above terms we have calculated in only the dipole
approximation those integrals that involve the D-wave
part of the ground-state wave function. That is, in
those terms, we have used only the first term in the
expansion of the exponential occurring in the 8 and 5R,
interactions. This introduces no appreciable error and
is consistent with the order of Approximation II.

IV. RESULTS

The results of the calculations of the previous section
are more easily interpreted if they are expressed in
different form. The form we choose is to compare our
results to the matrix elements that are obtained in the
shape-independent theory using the lowest orders of
the multipole expansion. Thus, we compare our E and
3E, terms to the electric dipole matrix element, the 3f„
terms are compared to the magnetic dipole matrix
element, and the 3f,~ term is compared to what is
essentially the magnetic quadrupole matrix element.
That is, we have written our results as the product of
an appropriate multipole matrix element and a modi-
fying expression composed of constants, for a given

5 X IO"'—

2XIQ '—

I XIO-'—

5XIO s

2 xIO"'s

2XIO '

IXIO s

I XIO '

5XIO-s—

5X Io s

2XIO-'—

2XIO s

I Xlo s

iXIO s—
SXIO-4

4 10 20
PHOTON ENERGY (MEV in C.M. system)

sxiO-s-
FIG. 2. The coefBcients corresponding to 035&,', OM&&, and

3f„' are plotted in the same manner as for Fig. 1.

2XIO &
energy, and angular dependent terms. Then we may
write for the central force matrix elements:

ixio-s-

5 X IO-4—

(22rkc 22m ) " e
o&g=

I
'

I
—(e1—eo)2e &

0 «V' 1—nrpg) kc

2 xlO"4
4 Io 20 50

PHOTON ENERGY 1MEV in G. M. system}

FIG. 1. CoefBcients describing the departure from the matrix
elements calculated in zero-range approximation in lowest multi-
pole order due to our approximations and inclusion of all multi-
poles are plotted as a function of incident photon energy. The
terms plotted here are those corresponding to OB', 1B', OE', and
obf'P. The form used is (a+b cose+c cos'e) times the corresponding
lowest multipole matrix element.

X [41+bcos8+c cos'8](xf', xg'),
(n'+02)2

t'22rhc 22m y
& e

~

—(er —ee)2e k
E g V2 1—e1'ot i kc

X [no+bgcos8+cc cos 83(xf ~xg )&
(n'+42)2
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(22rhC 22m ) &oe

I
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X[e"" a,+b,—cos8+c, cos'8)

x(
(22rhC 22m ) & e
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0 «V' 1 nrpg) h—c
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(op —or) 2Mc (n'+k') k

X(a, 'e"2'+b, ' cos8j(xr', 2'. (ei—o2)x,').

Thus the results of our calculations are readily evident
from the magnitudes of the coef6cients of the angular
terms. These coefficients are plotted against the incident
gamma-ray energy in Figs. 1, 2, and 3.

In the expressions above it is clear that the expres-
sions of the form (a+b cos8+c cos28) demonstrate the
e8ects of the additional consideration we have made;
i.e., higher multipoles, explicit Hulthen shape, and
interaction in the 6nal states. The remaining factor of
the terms are, in the case of pE pM pE, and yE'
the electric dipole matrix element between the shape-
independent ground-state function p, o and the free-
particle 6nal triplet P-state function. In the case of
pM ' and M„', the remainder is the magnetic dipole
matrix element between the shape-independent ground-
state wave function p, p and the ffnal singlet S-state
wave function in which a correction for interaction has
been introduced by means of the phase shift. Both of

Fro. 3. A term corresponding to «E is plotted in
the same manner as in Fig. I.

these cases may be easily obtained from our interaction
by using only the first term of the expansion for the
exponentials occurring in the 8 and 5K, interactions.
This is just what we have been calling the dipole
approximation for our interaction. The remainder in
the pM, &' expression has been obtained by replacing,
in the original calculation of pM, ~, the exponential
occurring in the 5K, & interaction by the second term of its
expansion. This is the analogous term to the magnetic
quadrupole term. The coe%cients of the angular terms
in the modifying expression were arrived at in the
following way. The original expressions, Eqs. (10) and
(18), for the different matrix elements were numerically
calculated at 6ve energies in the range from 5 Mev to
30 Mev, i.e., 5.66 Mev, 11.23, 16.53, 22.44, and 28.06
Mev, and for seven angles at each energy; i.e., 0', 30',
60', 90', 120', 150', and 180'. For each energy the
results for each matrix element were numerically 6tted
to the corresponding term of the above expressions,
Eqs. (23), in this way obtaining the coefficients. In all
cases these expressions represent the calculated terms
to better than one percent at all angles. The coe%cients
thus obtained were then plotted as a function of the in-
cident gamma-ray energy in Figs. 1, 2, and 3. Actually,
only those coeKcients whose effects are noticeable are
plotted. Higher-order terms in such an expansion in
powers of the cosine than those given are at least an
order of magnitude smaller than the smallest of the
terms given.

Referring to these curves and Eqs. (23), it will be
observed that the 6rst coeNcient in the modifying ex-
pression for each matrix element is the dominant term.
This is expected since the more complicated angular
behaviour corresponds to the higher multipoles. These
first coefficients in the cases of pE' and pM, ~' are very
nearly equal to unity so that in these cases we have
plotted their departures from unity, i.e., for a we plot
n= 1—a, for b~ we plot P~ ——b~ 1 The firs—t co.efficients
of pE' and pM, ', a' and e„respectively, are as expected
much smaller although still not negligible because they
will interfere with pE'. The term of importance in ~E',
that is, a~", is smaller than had been anticipated, but
this result has been corroborated by an alternative
calculation using the method of Marshall and Guth"
for calculating the electric dipole matrix element with
100 percent ordinary forces and using square well wave
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functions. The agreement was excellent at our higher
energies, above 15 Mev, and was in very good qualita-
tive agreement at the lower energies where the Born
approximation is not as good. Similarly, the term in
M„', a, ', was larger than was expected and this was
checked by a magnetic dipole calculation using square
well wave functions described previously. At the lowest
energy for which we calculated, the agreement is ex-
cellent while at our higher energies the agreement is
is within l0 percent of the calculated correction term.

The second and third terms in the modifying expres-
sions reQect the presence of the higher multipoles. It is
evident that though these terms are small they will

not be negligible in their eGects on the angular distribu-

tion, even at our lowest energies. This is more clearly
seen by writing the diGerential cross section for the
photodisintegration in terms of these coe%cients. It is
to be understood that by the Approximation II-C cross
section we mean the calculated cross section in which
the second Approximation terms are included. Obvi-

ously, the first Approximation terms are also included.
Thus, we have for the diGerential cross section in the
second Approximation with central forces, and for an
unpolarized p-ray beam:

d'art

M e2 n k 2k' sin'8
(sz- so)'-

dQ 2' h'c' 1—nr« lz (n'+k')'

&& 5 (a—a' —zz.+ (—1)"az")

+ (b—b') cos8+c coss8i'

hsc b (iz, ~ p.) ' —('
] costs,+—sinbs,

~

(gs —sr) 2~o (n yk) i k

in the form

o =4zr[A y-,'By (2/15)D]. (26)

The calculated total cross sections are given in Figs.
5 and 6 as a function of incident gamma-ray energy. In
Fig. 5 three curves appear, one for o.y, the result from
Approximation I, for ~zz (50 percent), the result from
Approximation II with central forces that are 50 percent
charge™exchange, 50 percent ordinary, and for o N.z., the
result of Approximation II-N.C. with forces that are

(s).

do/dQ= 2+8 sin'8+C sin'8 cos8

+D sin'8 cos'8+8 sin'8 cos8, (25)

and this form applies equally well for the noncentral
as well as central force cases.

The angular distribution is then easily described in
terms of the ratio of each of the other coefFicients to 8,
where 8 is the dominant term corresponding in the main
to the electric dipole contribution. Thus A/8 gives the
measure of the isotropy in the angular distribution, C/8
and E/8 measure the forward asymmetry, and D/8
measures the broadening of the peak of the angular
distribution. These ratios are plotted as a function of
incident p-ray energy in the center-of-mass system for
the three cases in Fig. 4. The subscript I refers to the
quantities in Approximation I, II to the Approximation
II-C cross-section, and N. C. to Approximation II-NC.
8/8 is plotted in only the case of Approximation II-NC
since it is only in this case that it is appreciable.

The resultant total cross section can, of course, be
written as

)&—[(1—a,')o"o —a,+ (b,—b, ') cos8+c, cos'8)s
3

kV 8
cos'8 —b P (24)

(n'+ k') 4 3

where 8 is the angle between the direction of the incident

ray and the emergent proton.
The diGerential cross section in Approximation I,

doz/dQ, is easily obtained from the above expression
Approximation II by simply omitting a', a&", a,,',
where they occur. It is not convenient to express the
diGerential cross section obtained from Approximation
II-NC in the above form because of the more compli-
cated spin dependence of the matrix elements. This
results in a greater degree of interference between the
diGerent terms entering in the calculation of the cross
section. For a similar reason we have not felt it par-
ticularly illuminating to express the noncentral case
matrix elements in the form of Eqs. (23) either. How-

ever, in discussing the numerical results for the angular
distribution of the diGerent differential cross sections it
is more convenient to write the diGerential cross section

0.2

O, I

.05

.02

.OI
20

PHOTON ENERGY (MEV in G, M. system)

30

FrG. 4. The angular dependence of the differential cross sections
in the three approximations I, II, and IINC, and including the
effects of exchange moments in II+X.M. is plotted as a function
of incident photon energy. The form assumed for the cross section
is do/dQ= 3+8 sinme+ C sin 8 cosg+D sin 0 cos 8+X sin48 cosg.
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obtained which, for convenience, we will list again here.
They are, for general nuclei:

Mz ——(e/4k') P V;;(,*;—;;*)[x;Xx;],
iP'-7'

Mz= s Z Fz(re) (r' res —r'"rj') (zr'X&z)
i(7

Mz =-.' Z Fz (r,;)(;*,"—;";)
c(7

x{3['" ( 'x )3 '/ ' —( 'xo~) }
Mzz=-'. 2 Fzz(r, ;) (r;*—r,*) (~*—~'),

i(7'

Mzz =-', E Fzz (r;;)(r;* r;*)—
l(7

0.5

0 I

10 20
PHOTON ENERGY {MEV in G.M, system)

30

Mzzz ——s P Fzzz(ry)(r, +r, .)( z,r.
.+tr)j

's(7

Mzn = s P Fzzz (r@)(r,*+r;*)
i(7'

X{3[r'~ (&'+ zr )jr'z/r' —(~'+ o'.)} (27)

[Mzv= s Z Fzv(r, ;) (1.+r;*r,') (zr,+o,),
i(7'

FIG. 5. The total cross section in millibarns is plotted as a func-
tion of the incident photon energy for the three approximations
calculated, I, II, and IINC.

50 percent charge exchange, and 50 percent ordinary.
In Fig. 6, we have plotted the case of Approximation
II-C with central forces and 0 percent charge ex-
change forces, ozz(0 percent), in the form of the ratio
ozz(0 percent)/on(50 percent) of this cross section to
the cross section from Approximation II-C with central
forces, and 50 percent charge exchange which appears
in Fig. 5. From the curves of the differential and total
cross sections, Figs. 4, 5, and 6 and the appropriate
equations, (25) anzi (26), it is clear that the values of
the coefFicients A, 8, C, D, and E may easily be obtained
for each case and for any of the energies in the range
calculated.

V. EXCHANGE-MOMENT CONTRIBUTION

In the preceding sections we have not treated the
interaction due to exchange currents in the deuteron,
arising from the charge-exchange character of nuclear
forces, even though it is to be expected that such sects
are present, because the explicit form for the inter-
action must depend upon the choice of meson theory to
be used. In the absence of a suitable meson theory, it is,
however, still possible to obtain some information from
a phenomenological approach. In a recent paper' such
a phenomenological method was described, in which,
on the basis of differential charge conservation and
reasonable symmetry restrictions on the nuclear Hamil-
tonian, consideration was given to the possible opera-
tional forms for the two-body exchange current oper-
ators. The resultant magnetic moment operators were

1.0

0.9

0.8
4

l I

IO 20
PHOTON ENERGY {MEV in C. M. system)

30

Fn. 6. The ratio of the total cross section calculated in Approxi-
mation II with 100 percent ordinary forces to the total cross
section calculated in Approximation II with 50 percent charge-
exchange forces (which appears in Fig. 5) is plotted as a function
of incident photon energy.

M» =s Z F» (ra)(&+r'*r')
i(7'

X{3[r;; (a,+rr;)jr;, /r;, —(zr;+zr;)},

M =-'. 2 Fv(r;;)(&—;*;*)(;+,),
i(7

Mv. ———,
' Z Fv (rg) (1—r;*r;*)

x{3[r;,"(e,+ ~;))~,;/r;; —(e;+e;)},
Mvz= —zs Z Fvz(r;;)(r;*r,'+rprp)(e, +rr),

i(7'

Mvz = —s g Fvz (rg)(r r +rory)
i(7'

X{3[r;; ( ,zr+ z)r]r zr/;,
'—(zr;+ o;)},

with the general expression for the magnetic moment
operator of the nuclear system being

M=M(+Ps CsM~,

where the C~ are arbitrary constants.
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We see that aside from Mz, the remaining twelve
exchange-moment operators 3f~—Mvz have within
them an arbitrary function of r;;, the separation of the
ith and jth nucleons. It was there assumed that all
twelve of these functions were the same and of the form
of a Gaussian function. Choosing a reasonable value for
the range of the Gaussian it was then possible, by re-
ferring to the experimental data on the magnetic
moment anomalies of the deuteron, triton, He', and
heavy odd nuclei, to obtain some information on the
values of the multiplicative constants C~ which repre-
sent the strengths of the diferent terms. It is our pur-
pose to utilize these numerical results for estimating
the magnitude of the contribution of exchange moment
effects on the matrix elements for photodisintegration in
the magnetic dipole approximation.

For the deuteron it may readily be verified that the
exchange moment operators Mi, Mz», Mzzz, Mzv, and
Mzv. can give no contribution to the matrix elements
for photodisintegration. M~ cannot contribute for any
two-nucleon system, while the other four terms have a
null contribution because the deuteron has a singlet
isotopic spin ground-state wave function which, when

operated upon by the isotopic spin operator parts of

Miry, Miii, Mzv, and Miv, yields zero identically. If
we assume that the ground state of the deuteron is
completely an 5 state, as we shall in this calculation,
the selection rules for the remainder of the exchange
moment operators may readily be obtained. Thus Mz
and Mzz give rise to transitions to a final singlet S state,
while Mz and Mzz give rise to transitions to final singlet
S or singlet D states. Mv and, Mvz give rise to transi-
tions to final triplet S states, while Mv and Mvi. may
give rise to transitions to either 6nal triplet S or triplet
D states in the deuteron.

Since Mv, Mv, Mvz, and Mvz would give exchange
contributions to the magnetic moment of the deuteron,
the conclusion arrived at was that the strengths of these
terms are probably very small. On the other hand, the
strengths of Mz, Mz Mzz, and Mzz may be quite a bit
larger, by at least an order of magnitude. For our
purpose of merely estimating the magnitudes of these
contributions to the photodisintegration it will be suffi-

cient to consider only the terms Mz, Mz, Mzz, M» .
That is, for the deuteron we consider

CIMI ——-', Czf(r) (rz*rp" —ri"7 p*) (zrzX zzp),

Cz Mz ———,'Cz f(r) (ri'rp" —rz"rp*)

X j3Lr. (~iX+2)jr/r' —(~IXep)),

CzzMII ——«Czz f(r) (ri*—rp') (zri —o p))

Czz M» =«Czz f(r)(ri*—r2*)

X (3Lr (~z—~p)]r/r' —(~z—~p)&

In our calculations we will assume for simplicity that
CI=3CI and CII=3C», and we will choose for f(r) a,

Hulthen form rather than a Gaussian, although this
causes some further uncertainty in the values of the

coefficients. That is, we choose

f(r) =e ""/(&—e "")

For the ground-state wave function 1t, we take

(30)

1 ( 2a
exp( —pz«R)!

QV &4~(&—nr pz) &

(e ~~—e e~) ].—(b~ —b~)x, ', (3l)

and for the anal state we need only consider the 6nal
singlet-state wave function p „fwhere

kn'pe'"'+ baze '"'
+2V'

—Bznp+6nz]
sinkr e '"' sin(kr+bp, )

(32)

e' k 1 )2+k'/P'q 1 3P k
+ (Szr iz) —

I !+——tan —L-
kP & l+kP/PP& kP kP P

(p 'Sir,k,+p„'Szi „k„) p k
+ —tan —'—— y, ', (33)

k k' P k'

where C~ is either |'"i or Czi, and S~ is the corresponding
spin operator, Sz= (ozXzrp) and Szz ——(zzz —zrzz); how-
ever, Sz and S» have exactly the same effects operating
on the deuteron ground-state triplet spin function y, '.

The original calculations' to determine the magni-
tudes of the C~'s performed with a Gaussian for f(r)
indicated magnitudes for Ci and Cii of the order of a
nuclear magneton. We have estimated the eBect on
the Czr's of the use of the Hulthen form for f(r) instead
of the Gaussian by two methods. The 6rst consisted of
equating the expectation values for the magnetic mo-
ment of the deuteron for the two forms, and the second
consisted of normalizing both interaction forms to the
same volume and then equating them. Neither method
is completely satisfactory but both methods do indicate
that the constants, i.e., strengths, to be used with the
Hulthen form should be somewhat larger than those

The results for the matrix elements are the same for
Mz and Mzz as well as for Mz and Mzz. . Thus, before
the summation and averaging over spin states and
polarizations we have

(ff!Cz (~1+M )!fp) = (pf!CII (~II+~II')!pp)

tf2prlzc 27ru q & e hKC k
-- 2C~

( KV 1 zzrpz) 2PLc (pp pf) 3fc

g»pe

8 'Sir ! Cos8p +p/k slnBp, —
p'+kp E 4)
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obtained by using the Gaussian. Ke have chosen as a
conservative estimate the relation

Cr+Cgr ——2.0 nm (34)

to serve as our basis for estimating the exchange mo-
ment effect on the photodisintegration. Though, of
course, inexact, this value should be of the correct order
of magnitude to indicate the possible extent of the
influence of the exchange moments.

The resulting contribution to the photodisintegration
matrix element interferes with the contributions of the
BR„ interaction. Despite the complicated form of the
matrix elements the main part of the contribution is
isotropic, and, in fact, the angular dependent part may
be ignored. The contribution of the exchange moment
terms to the differential cross section is indicated in
Fig. 4 by the plot of (A/B)rr+xM. This quantity was
obtained by adding the exchange-moment contribution,
considered as completely isotropic, to the matrix ele-
ments of Approximation II with central forces, thus
yielding a new differential cross section to which this
quantity refers. The magnitude of the exchange-
moment contribution is indicated by comparison of
(A/B)rr~xM to the quantity (A/B)rr. The contribution
of the exchange moments to the total cross section is
indicated in Fig. 7 where the difference between the
total cross section given by Approximation II with
central forces and 50 percent charge exchange with the
inclusion of the exchange moment and the quantity
orr (50 percent) without the exchange-moment contri-
bution is plotted as a function of the incident gamma-
ray energy.

VI. DISCUSISON OF RESULTS

All of the salient results of this paper are summarized
in the Figs. 1 through 7. In this section we will dis-
cuss these results in the order in which we have pre-
sented them.

A. Approximation I
The results obtained in Approximation I are charac-

terized by the curves for n, b, c, a„P&, a., b., and c,
in Figs. 1 and 2 which describe the behavior of the
matrix elements; the curves for (A/B)r, (C/B)r, and
(D/B)r in Fig. 4 which yields the angular distribution
of the differential cross section; and the curve for o.~

in Fig. 5 which gives the total cross section in this
approximation. The results in Figs. 1 and 2 correspond-
ing to Approximation I show most clearly the effects
of including all of the multipoles. At the low energies
it may be seen that the magnitude of the final result,
the total cross section, is essentially the same as obtains
in the simple dipole approximations. As the energy
increases the disparity between this and the dipole
calculation becomes more pronounced, as indicated for
example, by the curves of n and a„but the difference
is still fairly insignificant at the highest energy we
consider. The curves of Fig. 4 representing the angular

0.07
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FIG. 7. The contribution to the total cross section due to the
inclusion of exchange moments is plotted as a function of incident
photon energy. 0XM is the difference between the cross section
given by Approximation II with 50 percent charge-exchange forces
and including the exchange moments and the same Approximation
without the exchange moments.

dependence of the differential cross section show more
signi6cant results. There it is observed that even at the
lowest energies the forward asymmetry (C/B)r is ap-
preciable. Thus, it is seen that higher multipoles may
have appreciable effects on the angular distribution
before they have significant effects on the total cross
section. These remarks obtain equally well for Approxi-
mation II.

All of the results of Approximation I are independent.
of any explicit knowledge of the nature of the forces in
the deuteron and are dependent upon only the nu-
merical choice of the constants used, i.e., effective
ranges, scattering lengths, and binding energy of the
deuteron, these values (with the exception of the last)
having been obtained from experiments other than
photodisintegration. Of these experimental quantities,
the triplet effective range, rpt, is probably responsible
for the largest contribution to the error. As an overall
estimate it would seem reasonable to conclude that the
numerical results of Figs. 4 and 5 are correct to within
5 percent, this error being due to the uncertainties in
the experimental quantities that are used in the nu-
merical calculation. Essentially the same error arises in
Approximation II.

B. Approximation II-C

The modi6cations introduced through Approximation
II-C are apparent in Fig. 4 for the effect on the differ-
ential cross section, and in Fig. 5 for the effect on the
total cross section. The effects of individual terms that
are calculated in Approximation II-C are seen in Figs.
1, 2, and 3. The eGect of the introduction of the specific
potential shape is seen to be most marked for the
magnetic spin to final singlet states matrix element
M„'. This result, as indicated before, seems inde-
pendent of the specific Hulthen form chosen, as evi-
denced by the good agreement with calculations using
a square well. The greatest effect is to decrease the iso-
tropic term as is evidenced by comparison of (A/B)rr
to (A/B)r in Fig. 4. The curve for a' in Fig. 1 shows
that the total electric interaction 8 matrix element is
also decreased by the destructive interference of pE',

. though almost negligibly at the lower energies. These
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two effects are primarily responsible for the lower total
cross section for Approximation II-C as compared to
that for the Approximation I. At the lower energies
this decrease is due mainly to the smaller total magnetic
spin interaction BR„matrix element, while at the higher
energies the difference is mainly due to the smaller
electric interaction matrix element.

The effect of modifying the percentage of exchange
force from 50 percent is indicated in Fig. 3 where the
dominant term in the matrix element ~E', a~", is plotted
as a function of energy, and in Fig. 6 where the ratio
of the total cross section in Approximation II with 0
percent exchange force, to the total cross section in
Approximation II-C with 50 percent exchange force,
o'zz(0 percent)/ozz(50 percent) is plotted. Both curves
indicate the same behavior. Below about 20 Mev the
effect of varying the percentage is negligible and there-
fore difficult to detect experimentally. In fact, the 0
percent cross section is slightly greater than the 50
percent exchange cross section. Above 20 Mev the
effects become more pronounced with the 0 percent
exchange cross section smaller than the 50 percent ex-
change cross section, the ratio being 0.87 at 28 Mev.
This general result does not seem dependent upon the
choice of potential shape'~ since, as mentioned before,
the same behavior is obtained with a square well
calculation.

Essentially the same arguments apply to the relia-
bility of the numerical results of Approximation II-C
as were used for the first Approximation, although the
use of the Hulthen wave function diminishes to some
degree the error due to the uncertainty in the triplet
effective range. We will, however, estimate the error as
the same as for the First Approximation.

C. Approximation II-NC

Inasmuch as only approximate wave functions and
potentials were used in the noncentral force calculation,
the results obtained can only serve to indicate the
changes that occur upon the introduction of the tensor
force. The most significant modifications to the second
Approximation cross section due to the inclusion of a
noncentral force are to the angular distribution and
may be seen in Fig. 4. Comparing to the terms from
Approximation II-C, we see the following changes. First,
the isotropic component becomes considerably larger
at the higher energies. Thus, the ratio of (A/B)N. o. to
(A/B)zz is about unity up to around 15 Mev but is
nearly two at 28 Mev. Secondly, the forward asym-
metry, represented by the two terms (C/B)No and
(E/B)No, is greater at the very low energies, around
6 Mev, but becomes about the same as the central-force
case, with the peak slightly shifted, at the higher
energies. Finally, the width of the peak in the angular
distribution is decreased due to the fact that (D/B)No
is negative in this energy range while it is positive in

'z J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 11$ (1950).

the central force cases. The total cross section O.N~,

Fig. 5, is smaller than O.zz at the lowest energies as would
be expected due to the lower percentage of S state in
the ground state. The fact that the difference between
the two cross sections, ON~ and O.zz, becomes smaller as
the energy increases seems to be a reQection of the rela-
tive increase of the isotropic term, both effects ap-
parently being due to the increased importance of
transitions from the D state. It is more difIIicult in this
case to see the causes of small changes in the cross
sections because of the more complicated spin and
angular dependence of the matrix elements and the
resultant mixing and interference between terms enter-
ing into the calculation of the cross sections.

D. Exchange Moment Contribution

The estimated exchange moment contributions to the
cross sections are indicated by (A/B)zz+xNz in»g. 4
for the effect on the angular distribution, and by the
contribution to the second Approximation for central
forces total cross section in Fig. 7 where essentially
0-zz+xM —ozz is plotted. Since our choice of the strengths
for the exchange moments was somewhat arbitrary,
these calculations can only serve to indicate the order
of magnitude of the effects to be expected. However,
these results show that the exchange moment effects
may not be inappreciable. Our calculated contribution
to the total cross section gives an increase of almost 10
percent of 0-zz at 28 Mev and the increase of the isotropy
in Approximation II-C is nearly fivefold. Unfortunately,
because of the other uncertainties of the deuteron
problem these effects may not be clearly distinguishable
experimentally, if they are present. However, these
contributions seem to become more important as the
energy increases and it is possible that they may become
quite significant at energies above those calculated here.

E. Extension to Higher Energies

The methods used in obtaining our results are ex-
pected to be particularly appropriate for similar calcu-
lations at higher energies where the higher multipoles
would be relatively more important. In fact, Eqs. (10),
(18), (22), and (32) could be used in their present form
to calculate the corresponding matrix elements, with
reasonable accuracy, up to energies of the order of 100
Mev. The Born approximation used for Eq. (16) will,

in fact, be better at the high energies. If desired, the
calculation could easily be somewhat improved for
higher energies by the inclusion of the phase shifts for
the D final states, etc.

F. Conc1usion

We may conclude, from the results of this paper, that
the theoretical estimates for the deuteron photodisinte-

gration, in the energy range here considered, may be
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considered to be fairly well bracketed, as is most clearly
shown by Fig. 5 for the total cross sections. Certainly,
greater accuracy in the experimental quantities used in
numerically fixing these cross sections will be almost a
prerequisite before refined photodisintegration measure-.
ments can distinguish the presence of such eGects as
are due to tensor forces, exchange forces, exchange
currents, or particular well shape. However, as a
standard to be used for determining other photo-process
cross sections the present calculations indicate that
such a calculated result as O-II, as our best approximation
to the correct total cross section, can only be considered
to be accurate to within 15 percent. About 5 percent

of this arises from uncertainties in the values of em-
pirically determined parameters (effective ranges, etc.),
while the remainder arises from the uncertainties intro-
duced by lack of knowledge concerning the potential
interaction, noncentral interactions, and exchange
moments.
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New Neutron-Deficient isotope of Sj]ver*

B. C. HALDARt AND EDWIN O. WIIG
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Silver-103 of 1.1-hour half-life, produced by bombarding silver with high-energy protons, was identified
by following the decay with P-proportional, scintillation, and x-ray proportional counters and by milking
the daughter, 17-day Pd"', through seven half-lives. Measurements with a P-ray survey spectrometer
showed the presence of conversion electrons of 0.6-Mev energy and positrons of 1.3-Mev maximum energy,
both of which decayed with a half-life of 1.1 hours. Aluminum absorption measurements also gave 1.3 Mev
as the maximum P+ energy. Ag'" decays in part by X capture.

'HE existence of previously unknown Ag"' of
1.1-hour half-life was investigated by bombarding

silver with protons of energy 80, 100, and 170 Mev in
the internal beam of the 130-inch synchrocyclotron
of the University of Rochester. Bendel et u/. ' have
reported bombardment of Pd foil with 12-Mev deu-
terons and examination of the activity associated with
the silver fraction. They observed that conversion
lines of 530- and 740-kev associated with the silver
activity decayed with half-lives of 1.1 hours, which

they could not assign to any known silver isotope.
In view of the present results it seems quite likely that
they synthesized 1.1-hour Ag"' from Pd'" by a (d,rt)
reaction.

EXPERIMENTAL

Silver powder, determined by spectrochemical analy-
sis to contain only traces of copper and possible traces
of lead, was wrapped in a 5-mil aluminum foil envelope
and bombarded, usually for one hour.

The bombarded sample was dissolved in hot nitric
acid containing ions of In, Cd, Pd, Y, Sr, and Rb as
carriers. The resulting solution was diluted with water
and AgCl precipitated by addition of HCl. The washed

*This research was supported by a contract with the U. S.
Atomic Energy Commission

t Postdoctoral Research Associate in Chemistry.
' Bendel, Shore, Brown, and Becker, Phys. Rev. 90, 888 (1953).

solid was dissolved in NH4OH and the solution
scavenged twice with Fe(OH), . Addition of HsS to the
solution gave a precipitate of Ag2S, which was washed
and dissolved in hot concentrated HNO3. Dilution and
addition of HCl resulted in precipitation of AgCl,
which was dissolved in NH4OH and the Fe(OH)s,
Ag2S, AgCl purification cycle repeated. The final
AgC1 precipitate was washed with water, alcohol and
ether and suitably mounted for counting with P-
proportional, scintillation, and x-ray proportional
counters. Samples were also prepared for P-ray spec-
trometer and aluminum absorption measurements.

In milking experiments a known amount of
Pd(NOs)s as carrier in solution was added to a known
weight of purified active AgCl. The mixture was
allowed to stand for 45 minutes and then dissolved
in NH4OH solution. At the end of 1.1 hours from the
previous precipitation of AgCl, the NH4OH solution
was made acid with HCl and AgCl reprecipitated and
separated. The supernatant was scavenged with AgC1,
after which palladium dimethylglyoxime was pre-
cipitated, separated, and washed. A solution of the
precipitate in hot concentrated HNO3 was again
scavenged with AgC1. After dilution of the supernatant,
palladium was separated as palladium dimethyl-
glyoxime, washed, dried, mounted, and weighed. The


