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Magnetic Internal Compton CoeKcients in the Born Approximation*
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The absolute and relative probabilities of a nuclear transition in which there is a simultaneous ejection
of a E electron and emission of a gamma ray has been calculated quantum-mechanically for the case in which
the virtual radiation field is a 2~ magnetic multipole. The process will be referred to as an internal Compton
effect. The Born approximation has been used and hence the calculations are expected to be valid only if
the nuclear charge Z is small and the nuclear energy level separation large. The ratio of the number of con-
tinuous energy gamma rays to the number of discrete energy E electrons is independent of the nuclear
matrix element and decreases as Z or as I increases. This is true for any energy range and any angular range
of the continuous energy gamma rays, where the angles are measured with respect to the coincident con-
tinuous energy E' electron. The angular distribution is most sensitive to L for comparable electron and
gamma-ray energies and for large angular separation. These conclusions are not much affected by inclusion
of the L shell. In the limit of small gamma-ray energies, the results reduce to those predicted by semiclassical
theory.

I. INTRODUCTION

HE transition of a nucleus to a lower state of the
same nucleus by the emission of a gamma ray or

by the ejectrion of an orbital electron, i.e., internal con-
version, is very well known. Another possible mode of
decay is the simultaneous emission of a gamma ray
and ejection of an orbital electron; the electron and the
nucleus exchange a virtual photon and the electron
emits a real gamma ray. This process bears the same
relationship to the Compton effect as internal pair
production does to pair production, and will be re-
ferred to as the internal Compton eftect. In the same
sense, internal conversion is often referred to as the
internal photoe6ect. In all of these cases, the essential
distinction between the internal and the external
process is the presence of a virtual rather than a real
photon.

The relative probability of the internal Compton
effect is quite small and thus far the effect has been
detected' only in the case of Ba"' .' One should, never-
theless, have some quantitative estimate of its prob-
ability if only in order to be able to correct for the
contributions due to this event in measurements of the
internal conversion coefficient, or the angular correla-
tion between a gamma ray and a beta particle emitted
in cascade, or the angular correlation between a gamma
ray and an internally converted electron emitted in
cascade. In these latter cases the distinction between
the process under consideration and the internal
Compton effect can also be made by energy measure-
ments, but this is often quite difFicult.

The probability of an internal Compton transition
was considered previously by Cooper and Morrison&

* One of the authors (L.S.) was partially supported by the
U. S. Atomic Energy Commission.' H. B. Brown and R. Stump, Phys. Rev. 90, 1061 (1953).

2 The present calculation cannot be expected to be valid for
this nucleus. See L. Spruch and G. Goertzel, Phys. Rev. 93, 642
(1954).

P E. P. Cooper and P. Morrison, Phys. Rev. S7, 862 (1940).
We would like to thank Dr. J. Levinger for calling our attention
to this article.

who refer to the process as internal scattering. The cal-
culation was limited to high-energy electric dipole
transitions and is not valid over the entire range of
permissible electron energies. Angular correlation be-
tween the electron and the photon was not considered.

A similar process, inner bremsstrahlung, i.e., photon
production accompanying charged particle transforma-
tions, has been studied in the past in connection with
nuclear P decay, ' ' E capture, ' ' charged meson pro-
duction in high-energy nuclear collisions, " the decay
of charged m mesons «0, » and & decay u, i3

II. NOTATION

Pprp, lPivr imp, and Pr are the initial and final nuclear
and electronic wave functions, respectively.

(pp, p), (E,p), (q, q), and (kp, k) are the energy-momen-
tum four-vectors of the electron in the intermediate
state, the electron in the final state, the real photon,
and the virtual photon, respectively.

So=energy of the electron in the ground state.
8"=energy given up by the nucleus.
AE and BErc(e+y) are the total width and the E shell

internal Compton width, respectively, of the initial
nuclear energy level.

Q=P+q.
0 is the angle between P and q.
p, = cosO.

E =E Ip.
4 J. K. Knipp and G. E. Uhlenbeck, Physica 3, 425 (1936);

F. Bloch, Phys. Rev. 50, 272 (1936),
"" C. S. W. Chang and D. L. FalkoH, Phys. Rev. 76, 365 (1949).
"Madansky, Lipps, Bolgiano, and Berlin, Phys. Rev. 84, 596

(1951).
P P. Morrison and L. I. Schiii, Phys. Rev. S8, 24 (1940).' J. M. Jauch, Oak Ridge National Laboratory Report ORNL-

1102, 1951 (unpublished).' S. Mayakawa and S. Tomonaga, Progr. Theoret. Phys.
(Japan) 2, 161 (1947).' L. I. Schi(I, Phys. Rev. 76, 89 (1949).

'0 H. Primakoff, Phys. Rev. 84, 1255 (1951)."T.Eguchi, Phys. Rev. 85, 943 (1952)."D.B.Feer, Phys. Rev. 75, 731 (1949).
"A. Lenard, Phys. Rev. 90, 968 (1953).
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o.= fine structure constant.
Z= nuclear charge.
F= [(Q'—W')'+ (2zziWzrZ)'j '.

E+', E+, and 8+ are the propagation kernels of an
electron in a potential V, a free electron, and a
photon, respectively.

m~, and the projection of the spin of the electron, are
defined with respect to the axis n3 of the set of unit
vectors ni, ns, n, fixed in space and denoted by [n].

The probability 5'~ that at some much later time
this internal Compton process will have taken place
is given by

&+(K,K)=('/1«4)J (P—~) 'exp( —il) P)dsPdPo (Plc — S i Mt+&Vs i
'(2zr) 'PEdEq'dqdzd. dpp„(1)

where

p [(g,—gs)'j= —(1/4zro)
J exp( —if g )f 'd'kdko. S= (2Jp+1) 'QmpgmrSpSrSo„. (2)

MI and M2 are the matrix elements corresponding to
the two possible Feynman diagrams for an internal
Compton transition.

Jo, mo, J~, m~, and L,, 3f are the angular momentum
quantum numbers of the initial and final nuclear
states and of the virtual radiation field, respec-
tively.

Al, sz' & and Br.sz-' & are the magnetic vector potentials
of the radiation field multipoles which interact
with the nucleus and electron, respectively.

%sr(L,nzp, mr, JIf) is a nuclear matrix element.

~

3frz(L)
~

' is proportional to a sum of squares of nuclear
matrix elements.

I= Jf exp( iQ. —)xBz sr~i (Wx) e x'd'x.

(F; G) =2(F I) (G I), for arbitrary F and G.
EI, is a radial integral.
E and I. refer to the respective shells.
6'z is the absolute probability of an internal Compton

transition.
EIc(I.; qr, qs, 8) and Ex(L; qr, qs) are magnetic internal

Compton transition rates.
Bx(L ql qs 8) and Bz (L; qt, qs) are magnetic internal

Compton coefEcients.
Sir(L) is a magnetic internal conversion rate.
Prc(L) is a magnetic internal conversion coe%cient.
[nj= (nz, ns, no) represents a set of unit vectors fixed in

space.

III. MATRIX ELEMENTS

We take as our initial state one in which the nucleus
is in an excited state with angular momentum Jo and
the E shell is filled. We want to find the absolute and
relative probabilities that after some time the nucleus
is in a lower energy state with angular momentum J~
and that either E electron has been ejected and a coin-
cident gamma ray has been emitted. We also want
to find the energy distribution of these gamma rays
and their angular correlation with respect to the elec-
trons. It will be assumed that in the absence of orbital
electrons the gamma ray emitted in the transition is
a pure 2~ magnetic multipole. The angular momentum
projections of the initial and final nuclear states, mo and

S represents the average over the initial state and the
sum over the final state angular momentum projections
of the nucleus, the sum'over the initial and the final
electron spin projections, and the sum over the states of
polarization of the gamma ray. The matrix elements
3f& and M& follow immediately'4 from the Feynman
diagrams 1 and 2 drawn in Fig. 1.

M~ is given by

e
J 1»(~s)1 &(~') (~r)++ (~' ~s)&~6's

where
X~+[(4—4)'jf~p(Ks)A(Ko)d'rsd'Kpd'P (3)

A (p) =y„S„e(2zr/q)'*e '« *z—oz».

The S„represent the states of polarization of the real
photon. We substitute in the explicit expressions for b+
and use the relationships

eik (xo-xg)

fdkpe —"oz f dok
&ps —k k

~ei) I o~ *65

2zrs I s—isotoodP (g)
$65

where ass ——~xp —xs~, and ye„y„=/sr/(1 —
orner zr). By our

assumption as to the nature of the nuclear states,

(1 or sr. zr) s'I o I.oo(ass)
—i (6)

can be replaced by that portion of it which is propor-
tional to the interactions of the nucleus and of the

ELECTRON

CASE (I)

NU
ELECTRON

CASE (2)

FIG, 1. Feynman diagrams for an internal Compton transition.

'4 We follow rather closely the methods and notation of Feyn-
man, with some slight notational modifications as introduced by
Baranger, Bethe, and Feynman. We use the normalization
zztzz= 1. R. P. Feynman, Phys. Rev. 76, 749, 769 (1949); Baranger,
Bethe, and Feynman, Phys. Rev. 92, 482 (1953), see in particular
reference 8.
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electron with a magnetic 2~ pole, that is, by"

2~'ilkol '[n ~L~™(lk.lxs)]
x[n BL,~™(lkpl»)], (7)

where
M =m{,—mf,

ALM' '(I kol xs) =&jL(lko I
ms)iLF'LM(xs [n]), (8)

BL~'-'(Ikol») =»L"'(Ikol~)iI I'L~(» ["])
x= {2/[7rL(L+1)])ll kpl.

YLsr(x, [n]) is a spherical harmonic whose polar angles
are those of the vector x with respect to the set of fixed
axes [n]. The spherical Bessel function, jL, and the
spherical Hankel function of the first kind, hI, &'&, are
defined as in Schi6." In the above replacement, the
quite negligible contribution due to those cases in which
the orbital electron is ejected from within the nucleus
has been ignored.

Since the initial state of the nucleus has a width
AE (which is proportional to its initial rate of de-
cay by any process whatever), we can write (see
Appendix III)

where
upt= (1,0,0,0) or (0,1,0,0). (16)

The neglect of the small components, unlike the first
two approximations, does not greatly simplify the cal-
culation. It is done since it is consistent with these
approximations, where terms in Q.Z have already been
neglected. The replacement of Dirac large components
by Schrodinger components gives rise to an error of order
(~)'

(4) The binding energy of the electron in the ground
state, which is of course proportional to m(nZ)', is
neglected with respect to its rest energy, i.e., Eo is
replaced by m.

With these approximations it is a trivial matter
to carry through the integrations over 17, ts, kp, Pp x7,
and y, in the given order. We then find

M„=s7'es2l (mnz) &(qsW) 'fM N (L,mo, mr M) (E')—'T,

(3) The small components of the electron ground
state are neglected and the Dirac large components are
replaced by the Schrodinger components, i.e, ,

p (1s) fp (xs)e 7Eo 7—y7r 1(m
—nZ)1E ma z—xo )Eo 7—su o (15)

where

~s t6 (—k9—&+id, 8)d]6

Jo
(10)

where
(17)

f'= ( ko W+ihE) —'. —
We now have

I

Mi=7res MN'(L, mo, mf)M) Ikpl if($7)A(p)

X& "(p gs)Pn BLsr'"'(I kpI xs)E+'""

(11) T,= (uytn S[W+n 0]n Iup),

0=P+q,

I= exp( —i0 x)BLM™(Wx)e" d'x,
~J

E =E Ip)

Xpp(gs) f'd pd pdkp, (12) f= ( W m+E+q+ih—L) —'

(1g)

(19)

(20)

(21)

(22)

where we have defined a nuclear matrix element,

MN (L,mo, mr, M) = ~4'Nf (xs)PNnN ALt)i ' ' ( I
ko

I
xs)

MN (L,mo, mf, M)

J 4 Nf (xs)PNnN' ALM ' (Wxs)4'Np (xs)d xs (23)

At this point we make a number of approximations
which should be valid when the nuclear charge is small,
and when the energy given up by the nucleus, 8', is
of the order of or larger than m.

y„s„=pn S,

we have used pup=up, and we have dropped the sub-
script 5 on xs in the expression for I. We have further
replaced (E+q—m) by W in all terms other than f,
which is permissible due to the form of f, as we shaH

see later.
Proceeding in the same manner, but making the

further approximation that Fourier momentum com-
ponents of the ground state of order m can be neg-
lected (see Appendix IV), we find for Ms

(1) It is assumed that the electron in the intermediate
state is free, i.e., E+' is replaced by E+.

(2) It is assumed that the electron in the final state
is free, i.e.,

lt)r (r7) ll)r (x7)E iEt)~uf E )-(P ~ x7 E to ) — (14)—
where I'= (E'—m')'*.

XAo(xs)d'xs (13) In arriving at the above result, we have made use of
the fact that y„S„represents a real photon so that

"N. Tralli and G. Goertzel) Phys. Rev. 83, 399 (1951). See
Appendix A.

'6 L. I. Schi6', Qgantem Mechanics (McGraw-Hill Book Com-
pany, Inc. , New Vork, 1949). Ts (uf tn I[tt)+n. q]n Sup). (25)

Ms im'es2&(mnz)&(tJ&W——) 'fMN(L)mp)m~)M)m 'Ts, (24)

where
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&& t q-
i
fi'P(Q~H)dEdqd~. d~, . (30)

IV. RESULTS

It can be seen from the results derived in the ap-
pendices that the only angular dependence of the inte-
grand of (P~ is the dependence upon p. The angular
integrations thus reduce to

(31)

Further, for any slowly varying function of E, g(E),
we have, ignoring terms in (hE)/(W —q),

~" g(E)ifl'dE

g(E)[( W m+E+q)'+ (h—E)')——'dE
aJ

=g (W+m —q)s. (AE)—'. (32)

(Px can now be expressed in the form AEx(e+y)/gE,
where AE&(e+p) is that part of the width of the initjai
state which is due to the probability of decay via a
E-shell internal Compton transition. Since an initial
transition rate is given by twice the corresponding
width, the initial transition rate for an internal Compton

Performing sums in the usual way, we find

s,s,s.„iM,+M, i

8s-4es (moZ) s
i Miv (L,ms, mr, M) i i f i

'
II, (26)

q'8"E
where

/= (E')—si Ii s[q&E'+WPs(] —y, ))
+(mE')-'LiIl'qP'(~' —1)—m(«; «)+q(P; P)

Pp Re—(P; «))+(q/m')I III'qE+Re(p' «)»

where Re denotes the real part, and where, for arbi-
trary vectors F and 6,

(F; 6)=2(F I)(6 I). (2g)

In the above expressions, the M in Miv(L, ms, mr, M) and
in the expressions of the form (F; 6) represents ms —mr.
It is permissible, however, to consider M arbitrary and
to sum over 3f, for only the one value mo —mf will con-
tribute. If we now define

i Miv(L) i

' by the relation

(u,+1)-'P,P, i M~(L,m„m, ,M) i'
= iMiv(L) i', (29)

i Miv(L) i' is independent of M and we obtain

e'(mrrz)'i Miv(L) i

'

dq dpq 'Pi gr—,l, i'~, (33)
Ql ~ —1

where

3i' = (E')—~[WPs (1—p&)+ q~E')

—(mE') '[qP'(1 p, ') (—mq+P'+Pqp) Q ')

+ (q/ms) [qE~—Psq& (1 —p~) Q
—s) (34)

E= W+m —
q,

i~.l'= (1/W') (Q/W')'~

F= [(Q'—W')'+ (2mWnZ)') '.

(35)

(36)

(37)

Use has been made of the results derived in the ap-
pendices. As in the notation for internal conversion, the
dependence of the rate upon 5' and Z has been sup-
pressed. A transition. rate Rz(L; qi, q&, 8) per unit solid
angle for an angle 0 between the electron and the ganima
ray can also be defined.

While in principle measurements can be made in
which the lower limit qi approaches zero, the calculated
rate diverges in this limit. There is no need, however,
to modify the calculations so as to properly eliminate
this infrared catastrophe, for experimentally it would
be difficult to distinguish a very low-energy internal
Compton gamma ray in coincidence with a continuous
energy electron from an x-ray of comparable energy in
coincidence with an "ordinary" internally converted
electron with the maximum possible energy. The ex-
perimental procedure would then be to measure only
those gamma rays above some minimum energy q&,

which is above the maximum x-ray energy for the given
nucleus. It is to be noted that in a calculation of the
energy imparted to the continuous gamma rays, the
extra factor of q' in the integrand automatically elimi-
nates the infrared catastrophe. This energy calculation
would probably be fairly accurate even though the
number of very low-energy gamma rays is of course
incorrectly given.

While the upper limits q2 can be set equal to the
true maximum 8' without any divergence, the calcu-
lations are not valid in this energy region for the elec-
tron energy is then so small that the Born approxima-
tion cannot be used.

To the same Born approximation, the transition
rate for the internal conversion of either E electron is
given by'~

(Rx (L)=8~'e'm (o.Z)'(2L+ 1)
y iM~(L) i

(W/2m)~+l(W) r sos (3g)

"S.M. Dancoff and P. Morrison, Phys Rev. 55, 122 .(1939).

process in which the gamma ray has an energy between

qI and q~ and in which either E electron has been
ejected is given by

Rx (L; qi, qs) = 16m es(mnZ)'
i M~ (L) i

'(2L+ 1)
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inserting into an external spinor line an external photon
line.

V. DISCUSSION

Ignoring any small trends in IM~(L) I' with increas-
ing Z, the Z dependence of the internal Compton transi-
tion rate is contained in the factors Z' and f. H the
measurements do not include the region Q=W, the Z
dependence of F can be neglected and the rate exhibits
a Z' dependence. If they include only the region Q= W,
5 has a maximum at Q=W which shows a (1/Z')
dependence while the width of the maximum has a Z
dependence; the integral is then proportional to (1/Z)
and the rate has a Z' dependence. The J dependence of
the rate, for those values of L that are allowed by the
selection rules, is determined essentially by the strong
L dependence of IMz(L) I', which decreases sharply
with increasing L. This dependence cannot be offset
by the factor (2L+1)(Q'/W')~ since for W of the
order of or greater than ns, for which the calculations
are valid, (Q'/W') cannot be more than about 3, the
value it assumes for 8'= m, g =0.

The Z dependence of the internal Compton coeffi-
cients is contained in the factor F. Therefore, unlike the
internal conversion coefficients, they decrease as Z
increases. However, Bx(L; qq, q2, 8) will be relatively
independent of Z except in the region Q= W. Their L
dependence is contained in the factor

[Q'/(W'+2') ]~

Since the argument within the square brackets is less
than or equal to one, they decrease as J increases, again
unlike the internal conversion coefficients. The J. de-
pendence of Bz(L; q&, q&, 8) will be strongest for large
angles 8, due to the factor Q' . If 8 and qp are small,
Bx(L; q&, q&, 8) will be relatively insensitive to L.

Because the Born approximation was used, the results
can be expected to be valid only if mnZ/E(&1. A similar
requirement holds for the intermediate states. For the
Feynman diagrams 1 and 2, we have p= Q and p= —q,
respectively. These relations follow from conservation of
momentum at the real photon junction. The calculation
of M~ is valid then only if mnZ/Q&(l; however, if
Q=O, almost all of the small contribution (the total
contribution vanishes at Q =0) comes from

I M2 I '. This
can be seen by an analysis of 3'., whose three terms
originate in IM~I', the cross term, and IMpI', respec-
tively, for, as Q~O,

I' +W(W+2m) 2(m+W) —'
I"(1—p')Q '—+1.

Similarly, the calculation of M2 is valid only if mnZ/q«1;
however, if q=0, almost all of the contribution comes
from

I M~ I'. Another possible criterion is that the calcu-
lations will be valid only for those values of Z and 8'
for which the Born approximation calculations of the
px(L) are valid. On the one hand, the Bx(L; q~, qp, 8)
can be expected to be more reliable than the px(L),

since the former involve the ratio of two calculations in
which similar approximations have been made. On the
other hand, the Bx(L; q~, q2, 8) refer to a more com-
plicated process involving intermediate states which are
also treated by the Born approximation.

The ratio of continuous gamma rays to discrete
gamma rays is given by

Bx(L; qg, qp, 0)Px(L).

(This ratio, rather than the one chosen, might well have
been called the internal Compton coeKcient. ) In this
case, the exact px(L) should be used.

Calculations of the electrical internal Compton coeffi-
cients are in progress. (See also reference 3.)

%e would like to thank Miss Pearl Khrlich for per-
forming the numerical calculations.

APPENDIX I

Evaluation of P~ I II ~ and of Ppr(E; &)

The integral I is defined by Eqs. (9) and (20). If we
define

(Lv
I LI IM) by LF&~(x,[n])

=Q„Fg„(x,[n]) (LvI LI I.M),
and note that

exp( —iQ x)
=4~2 ~,.(—i) 'j~(Qx) F~.(Q [n])F~.*(»[n])

we may write

I= t 32pr/[L (L+1)]}-:(—z) ~'WE'LL Fr~ (Q,[n]),
where

f
EJ. h&&'& (Wx)j (——Qx)e "s*x'd—xL

Consider now the dyadic D defined by

D= p~[LFL~(Q, [n])][LFL,~(Q,[n])]*.
Since

(L ILILM)*=(LMILIL ),
and since L connects only states with the same L, the
expression becomes

D=Z, .F .(Q,Ln])
& (L~IL ILM) (LM IL IL~) F~.*(Q,[n])

=g„,Fr,.(Q,[n]) (Lp
I
LL

I Lo) FL, *(Q,[n]).
The basis [n] affects the terms in the sum only in de-
termining the projections v and 0-,. since v and 0. are
summed over, D is independent of the basis. It is con-
venient to choose a basis [u]= (u~,u2, up) in which up

is in the direction of Q. The polar angle is then 0 and D
reduces to

D=
I Fgp(0, &) I (LOI LL

I IO)
= (2L+ 1)/(4pr) (LO

I
LL

I
LO) .

The dyadic is then invariant under a rotation about u3
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and is symmetric in the first and second unit vectors.
It must then be possible to write

(LO
~
LL

~
LO) =a(uiui+u2u2)+buau~.

Since
Lug Fzo (Q,[u])=0,

the coeScient 6 vanishes. Taking the spur of both sides

gives L(L+1)=2@, and thus

D= L(L+1)(2L+1)(1/8s) (uiui+u2u2).

From the definition of D, it follows that

Pm~I~'={32+/[L(L+1)]}W'~Rz~' Spur D
=8(2L+1)W'~ Rz ~'

and that

Z~(F; G) =2K~(F I)(& G)
= {647z/[L(L+1)]}W'(Rz~'F D G
=8W'(2L+1) ~Rz, ~'[(F G)

~ ~

In particular

Z~(q' q) =E~(p ' P) = —Z~ Re(p '
q)

=8W2(2L+1)
~
R,

~

2P2q~(1 p2)Q-~.

APPENDIX II

Evaluation of ~Rz~'

~R&~', where R& is given by Eq. (A-1), must be
evaluated. As is consistent with our previous approxi-
mations, correction terms in o.Z are to be neglected.
If QWW (i.e., if Q is not approximately equal to W),
the exponential then simply serves as a convergence
factor, i.e.,

Rz(Q& W) =Lim(Z —&0)Rz,

where the limiting process must be performed after the
integration. This latter expression is equivalent to

pOO

Lim (Z—+0) gz(Qx) hz&'& (W'x) x'dx,
~0

where W'=W+imnZx. In this form the integral can
'readily be performed, and we find

IRz(Q& W) I'= (1/W') (Q'/W')'(Q' —W') '.

This approximation is obviously not valid for Q= W.
Since the integrand is bounded, the divergence at Q = W
must be due to the infinite range of integration. It is
then su%.cient for our purposes, in the neighborhood of
Q=W, to replace jz, and hz~" by their asymptotic
forms, in which case the integration is trivial. Neglect-
ing correction terms in nZ, and replacing Q by W in

some terms, we find

( Rz(Q= W) (2= (1/W2)[(Q2 —W2)2+ (2mWnZ)2] —i

A form which is applicable over the entire range is then

~
Rz

~

'= (1/W') (Q'/W') z[(Q' W')'+ (2m—WnZ)'] '

I

It is to be noted that the radial integral E~ arises in
internal conversion in the Born approximation with Q
replaced by E', the momentum of the ejected electron.
Unlike Q, the momentum P' has a definite value,
namely,

P'= [(W+m)' —m']&W W.

The situation corresponding to Q= W therefore does not
exist in internal conversion. The physical meaning of
this difference is that in the internal Compton process,
as opposed to internal conversion, the virtual photon
can conserve energy even in the Born approximation.

APPENDIX III

The decay factor exp( —AEt6) is justified by the
realization that the amplitudes of the states that we are
interested in, namely, those which arise via an internal
Compton transition, satisfy a set of differential equa-
tions in which they are coupled to the initial state but
not to one another. The specification of the time de-
pendence of the amplitude of the initial state then de-
termines the time dependence of all of the other amp1i-
tudes. The use of the decay factor could have been
avoided in a number of ways. One method would be the
usual one of ana]yzing the time dependence of the initial
state amplitude only for infinitesimal times after t=0.
Another method would be the determination of the
energy shift of the initial state by the use of Feynman
diagrams in which the initial and final states involve the
nucleus in its excited state and the E electron in its
ground state and the intermediate states are those
which arise in an internal Compton transition. The
negative imaginary part of the energy shift, which is
one-half of the initial transition rate, is found by con-
sidering those internal Compton intermediate states in
which energy is conserved. There are four possible
Feynman diagrams; two of the diagrams consist of one
of the diagrams of Fig. 1 followed by its mirror image
and two consist of one of the diagrams of Fig. 1 fol-
lowed by the mirror image of the other.

APPENDIX IV

Evaluation of ~~

The expression for M2 involves the integral

exp( mnZx& i—q x7 ip—x7+ip—x~)(P m) 'd'x—7d'p

Unlike the situation for M», integration over xv does
not lead to a 8 function, so that integration over y can-
not readily be performed. However, it is permissible
at the outset to replace the p which appears in P by
(—q). This would be exact were it not for the factor
exp( —mnZx~). Integration over p and xq is then trivial
and one arrives at the result given in Eq. (24).

The factor exp( —mnZx7) cannot simply be dropped,
for it is ultimately required for convergence. The re-
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placement of p by (—q) in P corresponds to the neglect
of Fourier momentum components of order m, or,
equivalently, to the neglect of residues due to the poles
of (P—nt) '. (A pole occurs on the real axis only if the
real photon has an energy q&2m, for if energy is to be

conserved in the intermediate state the electron must
jump into a negative energy state. ) The error involved
in the replacement of p by (—tl) in p is of order crZ, and
the approximation is therefore consistent with previous
ones.
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Average Neutron Total Cross Sections in the 3- to 12-Mev Region*

NQRRIS NERESQN AND SPERRY DARDEN't

University of California, Los A/amos Scientifi Laboratory, Los A/amos, XeIo Mexico

(Received March 1, 1954)

Measurements of the average neutron total cross sections of N, F, Mg, P, Cl, Ti, Mn, Co, Ni, Zn, Se,
Br, Mo, Ag, Cd, Sn, Sb, Te, La, Ta, W, Au, Hg, and Tl have been made over the 3- to 12-Mev energy range.
The average energy spread of the measurements is approximately 10 percent and the over-all accuracy of
the results is ~10 percent or better. The above data, together with those of a previous experiment, provide
information on average cross-section behavior as a function of energy and atomic weight over most of the
periodic table.

VKRAGE total cross sections for neutrons have
been measured for a set of 24 elements over the 3-

to 12-Mev energy region. The present measurements
are an extension of a set of previous measurements
made for 13 elements. ' These earlier measurements
showed that neighboring elements exhibit similar
patterns in their average cross-section behavior. The
aim of the present experiment was to supplement
the previous data and to establish cross-section trends
over the entire periodic table. Therefore, most of the
elements were selected with the above objective in
view; however, certain elements were chosen as a
result of specific requests for total cross-section
information.

The experimental arrangement for the present
measurements was the same as that used in the previous
measurements except for an improvement in the sample
and detector geometry. In the present case, the distance
from the sample to the detector was increased to 18
inches as compared to 11 inches in the earlier arrange-
ment. All of the scattering samples were 1 inch in

diameter and their length was chosen so as to give a
neutron transmission of approximately 0.5. During
the course of the work, the neutron source for the
experiment was changed from one reactor to another
reactor. The data from 6 to 13 Mev were obtained

by using the Los Alamos fast reactor as previously
described, while the 3- to 6-Mev data were acquired

by using a U23' converter' placed in a hole which goes

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

f Present address: Department of Physics, University of
Wisconsin, Madison, Wisconsin.' N. Nereson and S. Darden, Phys. Rev. 89, 775 (1955).

2 This converter was made by L. D. P. King of this laboratory
and consisted of an assembly of 120 U"5 disks each having a

through the center of the Los Alamos water boiler.
The neutron spectrum obtained from these two sources
is the same over the energy region utilized for this
experiment, i.e., above 3 Mev.

The results presented here retain the same charac-
teristics as the previous measurements, i.e., the average
energy spread is about 10 percent of the measured
energy, and the over-all accuracy is at least &10
percent over the 3- to 12-Mev energy range. Above
12 Mev the present data are subject to considerable
error and the more accurate 14.1-Mev point obtained
by Coon and others' has been weighted accordingly in
determining the curve over the 12- to 14-Mev region.
As previously, a smooth curve has been drawn through
the data points and small Quctuations which are not
well resolved by the experiment have been averaged
over the curve. A curve has not been drawn where
better-resolved data already exist. No corrections have
been made on the measured cross sections for the
eRect of neutrons scattered into the detector by the
sample. The geometry is such that this correction is
probably less than 1.5 percent at 12 Mev.

The results obtained are shown in Figs. 1, 2, and
3 where the average neutron total cross section, a&,

is plotted as a function of the neutron energy, E„.
In Fig. 1 the two sets of nitrogen data do not agree
well over certain energy regions. The measurement
employing Inelamine and polyethylene is probably

thickness of 0.01 inch and a diameter slightly less than 1 inch.
This series of disks were sealed in an aluminum tube 3 feet long
and 1 inch diameter and placed at the center of the reactor where
the average thermal neutron Aux is about 10~. At a neutron
energy of 3 Mev, this converter produced a collimated neutron
flux at the wa11 of the reactor (77 inches distant from the con-
verter) of 9X10 neutrons cm sec ' Mev '. The above 6gures
are for a water boiler power of 25 kilowatts.

e Coon, Graves, and Barschall, Phys. Rev. 88, 562 (1952).


