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The Born approximation treatment of the (d,p) reaction is modified so as to eliminate integrations over
the interior of the. target nucleus where the distortion of the incident wave is most severe. This treatment
yields the S. T. Butler result when certain additional physical assumptions are made. An approximate
expression for the (d,p) cross section is given in which (a) the Coulomb interaction is taken into account,
(b) the effects due to the interaction of the deuterons and the protons with the target nucleus are expressed
in terms of the boundary conditions for the wave functions of these particles at the nuclear surface, and
(c) the effects arising from the fact that the mass of the target nucleus is not infinite are not entirely ne-
glected. The methods presented can be used to get the corresponding result for the (d,n) reaction.

'HERE are two approximate treatments of the
(d,p) reaction that currently have been of

interest. One is the boundary condition matching treat-
ment introduced by Butler' an]. the othe': is the Born
approximation treatment. ' %hen the Coulomb inter-
action and the interaction between the proton and the
residual nucleus are neglected, the boundary condition
matching treatment gives a simple analytic expression
for the (d,p) cross section which agrees surprisingly
well with experiment. This result has proved to be a
useful tool for determining the spins and parities of
nuclear states. However, when the effects mentioned
above are not neglected, the boundary condition match-
ing cross section involves integrals which are very
di%cult to evaluate.

On the other hand, the Born approximation (d,p)
cross section is not much more complicated when the
Coulomb interaction and the interaction between.
liberated particle and the target nucleus are taken into
account. It is also a simple matter to include the effects
due to the scattering of the incident deuteron beam in
the Born approximation treatment. However, the Born

approximation involves replacing the true wave function
describing the interaction of a beam of deuterons with
the target nucleus%' by the wave function for the unper-
turbed incident beam 0". This is a very dubious
approximation since there must be considerable dis-

tortion of the wave function inside and near the target
nucleus,

AVe demonstrate below that the interior of the target
nucleus can be eliminated from the Born approximation
calculation. This cuts out the region where the distor-
tion of the incident wave is most severe so that replacin
4 bv 4' in the modified treatment may not be a ba
approximation.

Elimination of the interior of the target nucleus from
the treatment introduces a set of parameters which may
be approximately identified with the scattering ampli-
tudes for free particles interacting with the residual
nucleus. If one assumes that the liberated particles do
not interact with the residual nucleus and sets these
amplitudes equal to zero, neglects the Coulomb inter-
action, and assumes the n pint-eraction to have zero
range, then our (d,p) cross section reduces to the
boundary condition matching expression for the (d, p)
cross section.

We will discuss the (d,p) process only, but the exten-
sion of the discussion to the (d, rt) process is straight-
forward.

II. GENERAL EXPRESSION FOR THE (d,P)
CROSS SECTION

To simplify the following discussion we will neglect
the Coulomb interaction, assume all the particles under
discussion have zero spin, and assume that the mass of
the target nucleus is infinite. These approximations will
be removed in Sec. IV of this paper.

Our object is to calculate the cross section for a deu-
teron to interact with a target nucleus to yield a final
state in which the neutron is captured by the target
nucleus with (negative) energy Et It'%tv'/2M an——d
the proton emerges with asymptotic momentum hKp.
Ez and Kp are related by the conservation of energy

O'E '- O'-E '

2M 2M
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g where 8 is the kinetic energy of the incident deuteron
minus its binding .energy. Consequently, all protons
liberated with asymptotic momentum tsKp must be
associated with neutrons captured with energy It'E /iv
2M. Thus our problem is simply to calculate the Aux

of protons liberated with asymptotic momentum ItKp.
Let 4'(P, riv, rp) be the wave function describing the

interaction of a beam of deuterons with the target
nucleus. r,~ and rI are the coordinates of the neutron
and proton, respectively, measured from the center of
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1656 W. TOBOC MAN

mass of the target nucleus. The coordinates of the 2
nucleons making up the target nucleus are lumped
together in the symbol $. I et

pI((, rN) =p( 4, "(4rN) Y,"(8N)

be the wave function for the residual nucleus. Then the
wave function for the protons liberated as a result of
neutrons being captured into the state fI is

This is just the form of the (2+2)-nucleon Schrodinger
equation we would use to discuss the scattering of free
protons by the residual nucleus.

Using the Green's function for the operator Tp
—(O'Ep'/2M), we can transform Eq. (10) into an
integral equation:

M ~seal &I'—&I

fI(rp) = «NdNI~ (2)

for large rp. The current per unit solid angle of these
protons for large rp is

A ( 8 8
FI(KP) = .rp'I fI* fI—fI -fI*)l,

2%i & Brp 8rp

3f ~s&~l rp—r I

pI*[VNP+ Vip]o
2m. k' ~ rp —r

Incorporated into Eq. (11) is the asymptotic boundary
condition that all the liberated protons are outgoing at
infinity. Now substituting Eq. (11) into Eq. (7) gives

so that the (d, p) cross section is

FI(KP)
o(K,)= Q

f
(4)

Hfdf DE;p
o (Kp) =— —p drpdrNd(e ""P'p—

(2~)'O'E

X4I*[VNP+ Vip]+ (12)

o (Kp) = P FI(Kp).
AND f

(7)

The wave function 0 is a solution of the Schrodinger
equation,

(+I+TN+TP+VIN+VIP+VNP E)+=O, (&)

where IIy is the Hamiltonian operator for the target
nucleus, T is the kinetic energy operator, and V,; is
the operator for the energy of interaction of particles
i and j. Expand 0 in terms of the complete set of
eigenfunctions of the operator Hi+ TN+ VIN.

g is the current density of the incident deuteron beam
and the sum over f includes all states of the residual
nucleus having energy E~. We choose our normalization
so that the asymptotic form of the incident deuteron
beam is the plane wave,

+'=X(lrp —rNl)~i(&) expC:&KD'l(rp+rN)). ('&)

Therefore
g= kED/Mn

and

fI(rp) =g ffi~(rp)YI. (0p)
L, M

(13)

Replacing 4 in Eq. (12) by 4', the wave function for
the incident beam of deuterons, gives the Born approxi-
mation result for the (d,p) cross section. As long as the
cross section for interaction with the target nucleus is
small, 4' should be a fair approximation to 4 outside
the range of VIp and V~~. However, inside the target
nucleus the wave function must be considerably dis-
torted so that the Born approximation breaks down.
Even if one believed the Born approximation, one
would. not be able to evaluate the stripping cross section
because the form of pI inside the target nucleus is not
known.

We propose to modify the Born approximation treat-
ment by eliminating (to a good approximation) the
troublesome range of integration in favor of a set of
parameters involving the logarithmic derivative of fI
at the nuclear surface.

First we analyze fI into a sum of spherical harmonics:

+ (5 rN rp) =P f, (rp)4' '(5 rN) (9) Introducing this expansion into Eq. (11) gives

2KpM
d rpj i (Ic pr() 4 "(&pr) )

iA'

X Yi (8P) VppfI(rp), -(14)

rp rp&r

r r&rp

rp rp&r

f)rp
and r& ——

(1o)= —Z&fl VNp+ V»l~)f'(rp)

= —V»fI(rp)
In this expression jL represents the spherical Bessel
function and hL&" represents the spherical Haeckel func-

where the sum is understood to include an integral over f (r)—
the continuum of unbound states. Combining Eqs. (8)
and (9) gives the Schrodinger equation for fI.

where

2M )l fI(rp) = — drNdg I [VNP+ VIP]%
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tion of the first kind. Now for r) R, Eq. (14) may be
written

ffz. M(r) =
2E.IM

dr pj z. (Kpr&) hz. "' (Kpr&)i'
X YL™(ep)Vppf f(1p) IfLMhL"'(Kpr), (15)

where
XVppff(rp) . (16)

jL(Kp—r) jz.(Kp—r) log ffL—M (r)
8'f leaf

PfZM
8 8—hz, o (Kpr) —hL~'~(Kpr) logffzM(r—)

Bt' Bf . g

Using Eq. (15) instead of Eq. (11) in Eq. (7) gives
us an alternate expression for the (d,p) cross section:

where If»,M does not depend on r. If».M can be expressed
in terms of the first term on the right of the above
equation and the logarithmic derivative of ffLM at
r=R. This can be accomplished by means of the
Schrodinger equation and Green's theorem. However,
it is simpler to take the logarithmic derivative of both
sides of Eq. (15), set r=R, and solve for IfLM, The
result is

2K~M
IfL4z PfLM drPhL"'(~prp) YL (ep)

tends to decrease as we move away from the targeL-

nucleus, and we intend to replace + by something like
eventually. However, we cannot choose R&RI;,

since then our expression for the scattering amplitude
Af becomes simply ff(R) which is of no use to us. We
will find that the choice R=R» is most convenient.

The elimination of V»~ by choosing R=R» leads to
the opportunity for an important simplification of the
scattering amplitude A~. With V»I absent, the integrand
is proportional to V». The short range of V» and the
fact that ~I»R» cuts down the contribution to the
integral due to the range 0(r~&R». In fact, assuming
V» to have zero range, as is often done, completely
removes the interior of the target nucleus from the
ranges of the integrations over r~ and rI. Thus we have
to a good approximation eliminated the interior of the
target nucleus by introducing the parameters pfLM*.

III. INTERPRETATION OF THE PARAMETERS

We have seen that ff(rp) satisfies the Schrodinger
equation for a proton interacting with the residual
nucleus. However we cannot immediately conclude that
[(8/Br) logffLM(r) jz4z is the logarithmic derivative ap-
propriate to the scattering of free protons out of an
incident beam by the residual nucleus. First of all R»
is smaller than the radius of the residual nucleus and
secondly the boundary conditions for the two problems
are not obviously the same.

Actually the difference between R» and R& cannot be
very great. Taking Rz=fYA' and RP ——X(A+1)I gives

M3IDE;»
~(KP) =

(27r)'h4Ko f

Af —— drzzd$ drp8*(Kp, rp)
dg

Xgf*(g, rzz) LVzzp+ Vzz ]+
drpB*(Kp, rp) Vppff(rp),

so that
Rp 3(A+1)

for carbon, R~—R» =0.026RI;,.

for aluminum, R~—R» =0.012R~,'

for iron,

(20)

where

4(KP rp) e 4KP rp 44r p $
—LY L (~KP)

L,M

X YL™(gp)PfL1f*hL"'(Kprp)

=4m P i LYLM(OKP)Y—L, M(8p)
L,M

(19)

X[jL(Kprp) ELM hL (Kprp—)].
Associated with the target nucleus and the residual

nucleus are characteristic radii R» and Rg such that
V»~ =0 for r»» R» and Vp~ =0 for rj. &R» . We wish to
choose R no smaller than R» so that V»I drops out of
the stripping amplitude. We would like to choose R as
large as possible since the difference between 4' and 0'

Since the logarithmic derivative of ffLM must be con-
tinuous, we expect that its value must be essentially
the same at R» as at R~.

In order for the boundary conditions for ffz iz(yp) at,
r» =R» to be that same as those for free incident
protons, all the protons represented by ff must originate
at values of r» greater than R».

Because of the large extension of the deuteron and its
small binding energy, the deuteron bond must be
broken as soon as one member interacts with the target
nucleus. In this process the other member of the deu-
teron is left free just outside the surface of the residual
nucleus. Thus we can picture two sequences for the
(d,p) process. (a) The neutron interacts with the target
nucleus to form the residual nucleus leaving the proton
outside. (b) The proton interacts with the target
nucleus leaving the neutron free outside. The neutron
is subsequently captured by the proton + target
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nucleus system and following this the proton is ejected
to leave the residual nucleus. Sequence (a) is called
stripping. Clearly sequence (b) is much less probable
than sequence (a). Sequence (a) is a one-step process
while sequence (b) is a three-step process. The one step
of (a) is equally as probable as the first step of (b).
Taking the Coulomb interaction into account will tend
to favor the one step of (a) over the erst step of (b).
But then the probability for each of the two succeeding
steps of sequence (b) is much less than one. We conclude
that sequence (b) is of little importance for the (d,P)
reaction. Thus almost all the protons are liberated
outside «p=E». This is our reason for choosing «I =R».

Assuming that all the protons are liberated outside
the target nucleus allows us to identify [(8/Br)
XlogffLM(r)]pz with the logarithmic derivative appro-
priate for free protons incident on the residual nucleus.
From what we have just said this assumption is equiva-
lent to neglecting the contribution of compound nucleus
formation to the (d,p) reaction. The extent to which

[(8/cjr) logffLM(r)]ziz can be identified with. the loga-
rithmic derivative for incident free protons is a measure
of the importance of stripping for the (d,p) reaction.

We have shown that although R» is smaller than R~,
the diGerence between them is very small so that the
logarithmic derivative of ffLM at Rz is very nearly the
same as the logarithmic derivative at Ep. We have also
shown that practically all the protons produced in the

(d,p) process are liberated outside rp=Rz. Consequently
the logarithmic derivative of ffLM at rp Rz is essen-——
tially the same as the logarithmic derivative appropriate
to the interaction of free protons incident on the re-
sidual nucleus.

The value of the logarithmic derivative of ffLM is

given by the particular theory of nuclear reactions we

choose to employ. For example, we may assume that the
surface of the residual nucleus presents an inpenetrable
barrier to the liberated protons. This was done by J.
Horowitz and A. M. L. Messiah [J. phys. radium 14,
695 (1953)].Alternatively, we may use the continuum

theory of nuclear reactions' to estimate the logarithmic
derivatives. According to this theory, we should write

Equation (17) now becomes

j z. (KpRz)
PfLM

hL~'& (Kz Rz)

Rz(a/ar) logj L(Kpr)+1+z'KRz

Rz(8/Br) loghL"'(Kpr)+1+zKRz pz
(23)

If one supposes that the liberated protons have no
interaction with the residual nucleus, one sets pf LM*——0.
It will be shown below that this assumption leads to
the boundary condition matching result for the (d,p)
cross section.

where

M2MDE»
~(KP) = 2 IE v'vi &f'"I',

2/6+~ D f &,m

A™(Gr~)
I drzzd( ~ drp Y$ (gx)

J J& y tm@(R )

(23)

X &*(Kp,rp) [Yzzp+ Yzp]+, (24)

A2R»

I
yf'™(Rz)I'2' ' (25)

yf'"(Rz) = dH'z*(k)A'"(5 Rz)

C z(() = the wave function for the target nucleus.

To take the Coulomb interaction into account, one
merely replaces the proton wave functions by their
Coulomb analogs. Thus the function 8*(Kp,rp) is

replaced by

IV. EFFECTS DUE TO SPIN) THE COULOMB
INTERACTION, AND THE FINITE MASS

OF THE TARGET NUCLEUS

The derivation of the previous sections can be carried
out without neglecting the effects listed above. We will
not give the details of the calculation, but we will

merely state the results. For this purpose we write Eq.
(18) for the (d,p) cross section in the following form:

where

8—logffLM(r)
t9« B»

[1+iKRz]
(21)

h'*(Kp, rp) =4m. P z', LYLM(8zp) YL M(8p)—

FL(rip Kprp) PLM HL(rip Kprp)
X&

—szrl, (rip) (26)
K»«p

K= (K '+Kp') l K,=1X10—"cm-' where

E»«

8 HL(qp, Kpr) HL(qp, Kpr) 8—logff L M (r)cI«EI « E»~«« =&»

Fz, (qp, Kpr) FL (qp, Kpr) 8—iogff L-M (r)8«E»« 8«
cg

L z'f

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley and Sons, Inc. , New York, 1952), p. 340.
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rIp= Ze'M/h2Kp,

o.L(r)p) = arg(1'(I.+1+irIr )),

IIL(n,p) = FL(n, p) —iGL(n, p)

F», and GL, are defined as the regular and irregular
solutions of the differential equation

FL(rI,p) =0.
where

(2J+1) Kr
X- —2' -IB '-I', (28)

(2I+1) Krr t, m 2l+1

V. THE (d,P) CROSS SECTION

We conclude that the expression which should be
compared with experiment is

[1+M/(M+Mr)] ' MDM'
o. (Kr ) =

(1+M/Mr) (1+MD/Mr) (2rr)2''Rr

They are normalized so that they have the asymptotic, (' t'" A™(kirrr)
forms Bf drrrd$ 4pQ V$ (err)

4r' *(Rr)
FL(r),p)—+sinLp —

rI ln2p ——',I~+0L(rI) j,
GL(r),p)~cosLp —rl ln2p ——,'I w+o L(rI)],

in the limit as p—&~.
The eGect of taking the finiteness of the mass of the

target nucleus into account is to

(a) introduce the factor

(1+My)/Mr) '(1+M/Mr) '[1+M/(M+Mr) j '

into the expression for the cross section,
(b) replace rr by yr =rr —rrrM/(M+Mr) in the

argument of 8'* and as the variable of integration in
g &m

(c) replace Urrr+Vrr by Ver+&V= Vrrr+Urp
yze'(1/rr 1/pp) in B—r'™.

For 3f»= ~, AV makes no contribution to B~™.For
finite M» the contribution of 4U to 8~™cannot be very
large since while p~ ranges from E» to ~ the fact that

describes a bound state of the residual nucleus
means that r~ is restricted to a relatively small region
around the origin. It follows that rr gr r+/(2+1)
is small and consequently d V must be negligible over
practically the entire range of integration.

I et I be the spin of the target nucleus, and let J be
the spin of the residual nucleus. Taking the conserva-
tion of angular momentum and parity into account
gives in place of Eq. (23)

X h *(Kr,yr)[Vrrp+~V j~, (29)

/=spin of the residual nucleus, I=spin of the target
nucleus, and y~=the reduced width of the level into
which the neutron is captured. The sum over l is re-
stricted as in Eq. (27). If the level into which the
neutron is captured is characterized by a definite value
of l as well as definite values of J and parity, then only
those terms in Eq. (28) corresponding to that value of
1 are to be retained.

To evaluate B~' we introduce the following approxi-
mations. ~U is neglected so that the effects due to the
finite mass of the target nucleus are only partially
taken into account. The (unknown) terms in 4 repre-
senting the dissociation and distortion of deuterons are
dropped. That is to say, 4 is approximated by the ex-
pression @, (~(rrr+rr)) x(rr —rrtr)C'r(p), where x is

the normalized wave function for the internal motion of
an unperturbed deuteron, C» is the wave function for the
target nucleus, and 4', . describes the motion of the
centers of mass of the incident and scattered deuterons.
For 4', .„,. we write

((R,) =4~ g iLVL (Sx~) YL~-(e(a)e 'L—
FL(rID&KD@) ~LIIL('gD)KD)X— (30)

M'Mg)Kp (2J+1)y(
~
B,'-~'. (27)

27r Ir RrK& Lm 2(2I+1)(2l+1)

The primed summation symbol is used to indicate that
the sum over 1 is restricted to the range [ ~I J~ —f-
&1&I+J+~, I being restricted to even integers or odd
integers depending on the change of parity. This simple
result is the consequence of the assumption that
hV is not spin dependent and the assumption that it
is a good approximation to replace@' by a wave function
having the same spin dependence as the incident deu-
teron beam.

where 8,= (rr +rrr)/2. Lastly, Vrrr is approximated by
the zero range potential. This last step is the source of
two important simplifications. First of all, the interior of
the target nucleus is completely eliminated from the
range of integration. Thus, since r~ is now restricted
to a range in B~' where it is always greater than E»,
Pr'~ can be replaced by 4»(g)I&"&(rK&r )rr

Secondly, our six-dimensional integral is reduced to
a three-dimensional integral. In this three-dimensional
integral the integration over angles can be performed
leaving an expression for B~' which is a sum of one-
dimensional integrals.
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The result of these approximations is

h'(Sm. n) i
Bl —— dxV "'(0)

M
i Ezz i

'& Rz[KN[ &1+M/Mz)

h, &» (ix) «xX- S*( K~, (KD, x)
hi&'& (il E&«I I&.'z) 0 1+M/Mz~

energy by

O'Ezz'(M+Mz) O'Ep' (Mz+'2M)

2MMz 2M (Mz+M)

h'Ez&' (Mz+Mz&) h'n'
(32)

M

(31)
4 h, (1+M/M )[2 (21+1)]. pL '* is defined after Eq. (26).

P P [m[(cose~ ) Setting Z=O, PL,„'*=0, and 8&=0 causes Eq. (31)
to have the form

where

Xi" L exp( i[a—L(r)z)+o&(r)D)))FL&,™fL&,', h'(Sxn) i
p Lm dry; ([),)

Mhi& & (EzzRz) Rs&1+M/Mi)

(2)&+1)(2L+1)((L—~m~)!q *
Lm

(21+1) [, (I.+ fm])!)
Kz

Xh, &'&(Ezzr) exp il Kz&
~

r . (34)
1+M/Mz~

X (L)&00
~
L)&10) (L)&m0

~
LXlm),

Carrying out the integration over angles gives
hi&'& (ix) —[F&,(rlz&, ux)

iX
h &i)

i
& 1+M/Mz~

Lm

4zrh225 o[2n(21+1)]l
drr'

Mhl"'(EN&z) Rl &1+M/M1)

Xh[&i& (Kzzr)j [(&&r), (3g)

b&H&,(z)z&, &z—x)][FL(r)p,bx) PL '*HL(r—1p,bx)],

Eg)
a=—

fE [(1+M/M, )

X=&zI Ez/I (1+M/Mz),

Ze'M (M&+M)
'Qp

h2Ez (Mz+ 2M)

Ze'&Der
'gg)—

O'Ez& (Mz+Mz&)

(&zjL)
=rargF (1+L+irl),

HL(ri, p) =FL(z) p) iGL(z) p)
FL(i),p) =the regular radial Coulomb function,
GL(r),p) = the irregular radial Coulomb function,
hi&'& (x) = the spherical Hankel function,
h'n'/M=binding energy of the deuteron,

M= the nucleon mass,
ML) = the deuteron mass,
Ml= the target nucleus mass,
Rg = the radius of the target nucleus,

AX~=asymptotic momentum of the incident deu-
terons relative to the center of mass,

kKz = asymptotic momentum of the liberated
protons relative to the center of mass,

h'Ezz'(M+Mz)/2MMz= energy of the captured neu-
tron,

(LAmO
~
LMm) = the Clebsch-Gordan coefficient.

ED, EP, E&, and o. are related by the conservation of

where i&= Kz&—Kz [1+(M/Mz)] ' and 5 o is the
Kronecker delta symbol. The radial integral can be
performed to give

ski'b„o[2n (21+1)]'
Lm r' —j,(Kr)

M (Ezz' —«') Br

—j,(&&r) logh, &'& (E—&& r)
Or r =RI (1 +M/MI)

(36)

g Lmf
2~hi'5„0[2n (21+1)] r' —j[(&&r)

OrM (n'+ kg')

j i («r) logh—i "& (E&«—r) (37)
Or r =RI (1+M//MI)

Thjs exprgssjon js the boundary
condition matching scattering amplitude when V~P is
assumed to have zero range.

We see that Eq. (31) gives a spherical harmonic
expansion of Bf™of the form

EL PL («»1))E&, AL&' fL&'

The fact that AL&,
' is proportional to (LXOO~L)&10)

limits the sum over 'A to the values )&=l+L, l+L—2,
l+L 4, , [L 1~[. So for e—ach valu—e of t. we must
evaluate no more than 1+1 radial integrals. For cases
where the energy of the incident deuterons is about 15

By means of the conservation of energy the denominator
is changed:
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Mev, the sum over I.can be broken oG at I.= 15 without
introducing great error. For smaller incident energies
the range of I. that is important is correspondingly
smaller.

Since hi&'& (ix) contains the factor e * we will usually
introduce an error of about 1 percent if we replace the
upper limit of infinity for the radial integrations by
XL1+(4.6/X) ).X generally has values in the neighbor-
hood of 4, so we see that the important range of inte-
gration for the radial integrals is from about r=R to
about r=2R.

The radial integrals appear to be suited to numerical
evaluation. However, since the radial Coulomb func-
tions are not adequately tabulated for this problem,
the evaluation of these integrals will have to be done
with an automatic computer or by means of some
approximate method.

VL AN ALTERNATE DERIVATION

We present here an alternate treatment of the (d,p)
process. While this treatment leads to a result very
similar to that given above, the approximations made
are somewhat different and the final result is related
very directly to the boundary condition matching
result.

Again we neglect the Coulomb interaction, assume
that all particles have zero spin, and assume that the
mass of the target nucleus is in6nite for the sake of
simplicity. Let f (Kp, rp) be the wave function describing
the motion of the liberated protons with asymptotic
momentum SKp. For large rp the outgoing part of f has
the same form as the outgoing part of e'"p'p. The (d,p)
cross section is proportional to the rate at which deu-
terons are broken up to liberate protons with wave
function f(Kp, rp)

Assume f is a member of a complete set of ortho-
normal functions. Then the wave function for the 2+1
nucleons associated with the proton in the state
f(Kp, rp) is

In terms of J the (d,p) cross section is

(Xp+
o (Kp) =

) dICo i(K),

E2 Mg)
o, (K) =—J(K)= K'J(K).

kEn

(40)

The integration is over a resonance due to a level in the
residual nucleus.

Equation (40) would provide an exact expression for
the (d,p) cross section except for the fact that we must
assume f is a member of a complete set of functions.
This means that the interaction between the proton
and the residual nucleus is assumed to be elastic so that
it can be represented by a real potential function
Vpp(rp). This assumption rules out the possibility for
compound nucleus formation so that the (d,p) process
is pictured in this treatment as going entirely by strip-
ping.

To evaluate Eq. (40) for the cross section we proceed
as before. Namely, we write the integral equation for

P(Kp, (,r~), eliminate the interior of the target nucleus,
and substitute the result into Eq. (40).

First we define f(Kp, rp) to be the solution of

k2Ep~ )
! I'p+ Vpp !f—(K—p, rp) =0, (41)

+(5 r~ rp) = dxp4(k r~ Kp)f(Kp rp)

which is the time reAection of the wave function for a
beam of protons incident with momentum —hKp on
the scattering center Vpp. Let C, (g) be the orthonormal
regular solutions of

(a,—Z,)C, (g) =0.

Then we expand the wave function 4($,r~, rp) as
follows:

P(Kp, ),r~) = drpf*(Kp, rp)4(g, rN, rp) (38)

The rate at which protons are liberated into state
f(Kp, rp) is just equal to the rate at which the nucleons
described by P(Kp, ),rN) are forming residual nuclei.
This is just the net Aux of neutrons into the target
nucleus predicted by P:

dKpy, '"(Kp,r~)
i, , ' J

X I',-(tI~)C, (~)f(K....). (42)

Introducing this expansion into Eq. (8) gives the
Schrodinger equation for @,'™
[Tir &'& E~~]4 (Kp,r~)—

J(Kp) =—kR2
dpdQN

2Mi &

(39)

where

drpdgdn~f*(Kp, rp)C, *(P)V;"(tIir)

X[V~p+VIp+Vm Vpp J+, (43)—
8' 2 8 l(I+ 1)+-

2M! Br~' r~ Brir rN'
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Eg =E—8 ——
2M 2M
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By means of the Green's function for T~~"—E~; we
get the integral equation for @,'

2KN, M
dr&drpd(j &(K&,r&)

iVP
y lm(K r)

where

Xh(&'~ (Kx;r)) V;"(8~)C,*(])
X f*(Kp,.p)[VNp+VIp+VrN VFp]+, (44)

r)r~
f(— 7 &

&x«
Equation (44) contains the asymptotic boundary con-
dition that all the liberated neutrons at infinity are
outgoing.

Let VI~=0 for r~&R. Proceeding as before we
eliminate the contribution to P,' due to the range of
integration 0&r~ &R by introducing the logarithmic
derivative of p,' at rN R. ——

2K~,M
(Kp, r) = drpdp, dr&j ~(Kv,r&)

iO'

xh"'(E, )v™(e)c',*(p)f*(K, )

X[VNP+Vrp VFp]4 —II,' h~o'(Kz, r), (45)

The (d,p) cross section due to a level of the residual
nucleus results from integrating 0.

~ over the correspond-
ing resonance. To represent such a resonance we assume
that for values of E~ near EI', the

[8 log&,™(Kp,r)/Br jg
for one value of i, say i = f, become very nearly equal
to [8 logh&" (K&,r)/Br]s. In this energy region we can
write

8—logpf™(Kp,r) ——logh~&'~ (K~~r)
. l9f Bp

1 iF
Bxf Barf—+ —(48)

Rp $f 2

We substitute Eq. (48) into Eq. (47), integrate
0 I (Kp) dEp over a narrow range, and let I —+0. The
result is

4aM'EI gfD
~(Kp) = »v I

Bf™I'.
O6RED &,m

Taking spin, the Coulomb interaction, and the 6nite
mass of the target nucleus into account changes this to

where r)E

g .Lm

j,(K~,r) —j&(K&,) —log&,' (K—pr)
l9'r Br

8—logh(&" (K~,r) log&, ™(K—p—r)
Br l)II'

2E~3f
B,lm

~(Kp) =

where

( M
I 1+

M+MI ~

IB tmIu (50)
t, m 21+1

Mg)M2 (2I+1) EI

M ~ ) MDq O'R (2I+1) KD
I 1+—II 1+

h"'(, )B.™drpd( ' dr~ V~ "(e~)
h("&(E~ R)

iO' Lmf i depdk «+hi"'(Kxrx)
hg&'& (K~R)

XI;-g )~,*(p)f *(K.,&.)

(1 ip
X Vm+Vrp+Ze'I ——

I

—VFp @, (51)
Erp pp)

(()f (Kp rp) [Vxp+ VIp VFP]+
&or r=R, Eq. (45) becomes

2' ()
(Kp R) = B 'm —loghg"~(K~ r)

O'R' Br

Ze O~Eg
2 P+ VFP+

ps
f'(Kp, yp) =0.

2M
8——log&,™(Kp, r)
81'

Equation (50) is identical with Eq. (28) except for a
factor of (2m)' due to the difference in normalization
between f and h and except for the difference in the
definitions of 8 and B.

Let us assume that Vg~ can be approximated by a
potential function Vrp(rp). Then we would expect that
V~~ is very nearly the same function of r~ as Vpr is of
p~. It follows that the contribution of

(46)

Substituting the expansion of f(g, r~, Kp) contained
in Eq. (42) into Eq. (40) and using Eq. (46) gives

4EI'SEDAN

O4R'Eg)
~g(Kp) =—

t9

IB' I'Im. —logy™(Kp,r)
Br

t'1 1)
AV= Vrp —VFp+Ze'I ——

I(r p)
(1 iy= Vrp —VFp+Ze'I ——

I(r p)

(47)X
i, l, m l9—loghg&" (K~;r) log&,™(Kp,r)——

Br Br



THEORY OF (d, p) REACTION 1663

to Bf™is small and tends to vanish as M~~~. Upon
dropping DV we see that the range of integration
0 ~& pp &R(1+M/Mr) will make a negligible contribu-

tion to By™because of the short range of V~~ so let us
drop this range of integration. Since pp is now always
greater than R in Vf', the form of f'*(Kp, yp) is

4m FL( IP)KPPP) PL +L("IP)KPPP)
f

cw (Kp pp) + $ L VL M (gpp) VLM (exp) g )01(0P)

(2lr) * L, M EIpI
(52)

p
cO)

8 FL(rIP,Epr) FL(rip, Epr) 8—log] LM *(Kp,r)
Br BrEpr

8 IIL(rIP, Kp, r) HL(rip, Kpr) 8—log fLM'*(Kp, r)
Br Eg r EIr Br R

f'" is the wave function describing the scattering of
protons of momentum —hKp by the potential Vpp(pp).
Hence the pL'* are the scattering amplitudes for free
protons incident on Vp~. Thus if Vp~ is a good approxi-
mation to Vpp, then f'* is a good approximation to h'*
defined in Eq. (26).

Setting AV=O, V~~= the zero range potential, and
+4» causes BI™to be essentially equal to Bf™

defined in Eq. (31) when Vpp=Vpp. This derivation
of Eq. (31) is not so satisfactory as our previous
derivation since we are forced in the present derivation
to replace UgI by a real potential function of pI and
the contribution of AV is not so obviously small as the
contribution of AV. However in the present derivation
the interpretation of P'* is unambiguous and agrees
with our previous interpretation of p'*. plr on the other
hand can only approximately be identified with the
reduced width of the level of the captured neutron in

the residual nucleus.
The present derivation is also of interest because it

is connected directly with the general boundary con-
dition matching result. To demonstrate this we assume
that Vpp= Vip and Z=O. Then Eq. (51) becomes

hlO& (Kir,r~)
B m=

I dgpd( ~ drN — Vl "(Ol0-)
hl &'l (Kl0 g)

XC',*($)f*(Kp,pp) V + (53)

O'E' 8
= ———A ' —A ' —logh &" (K~frl)l)

2M 8r 8r

where

2ME~,
A,'"= dypdr~dgj l(K0l;r()hl"'(E~, r&)

N'

lm (@)
X Vl

—
(gv)@,*(p)f*(Kp,y p) V imp+

4'""(Kprlr) = dypdgfIll vl (air) f*(Kp,pp)&', *($)+',

is the solution of the integral equation

Therefore
y Olm g A lm()I)0) (54)

b r&'R'
B.lm y Olm y Olm

2M Br~

Xloghl &'& (Elrrll), (55)

which is the general form of the boundary condition
matching result.
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Now set%'= +', the wave function for the incident beam
of deuterons and the target nucleus. But by Eq. (44)
the transform of 0",


