
1600 L. G. PARRATT AND C. F. HEMPSTEAD

oscillator strength and summed over all q shells, gives
easily and quickly the anomalous dispersion for any
atom.

Sample calculations for the E region of copper and
for the I. region of tungsten have been made, using in
each case only one term in the oscillator distribution for

each q shell. Comparison with experiment shows less
satisfactory agreement than with the previous less exact
calculations. This disagreement is believed to be due to
(a) the difficulties inherent in the experimental meas-
urements, and (b) neglect of parts of the calculations
in previous comparisons.
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By studying the self-consistent-Geld (SCF) functions tabulated in the literature, it is shown that a
quantity, which for a hydrogenlike function would equal the atomic number Z, for SCF functions will
represent a form of "effective nuclear charge" Z,ff, which for a series of consecutive atoms or ions appears
to be an almost linear function of the atomic number, convenient for interpolation purposes. The positions
and magnitudes of maxima and minima, nodes, derivatives in origin, eigenvalues, etc. , are investigated by
considering the corresponding effective nuclear charges. It is important that the nodes may be interpolated
separately, since the logarithm of an SCF function, divided by a polynomial having the same zero points
as the function itself, may be used for interpolating SCF functions as a whole. This logarithm may also be
used for defining a continuously varying effective charge Z,«(r), which is convenient for interpolation
purposes or for estimating fields with exchange from those without exchange.

'HE numerical work involved in each cycle of the
integration of the Hartree-Fock equations for

atomic self-consistent fields (SCF) with exchange by
using the technique developed by Hartree' is quite
large, and, in order to secure a rapid convergence of the
process, it is therefore important to have as good
"initial" functions as possible. For this purpose it is
now possible to utilize the properties of already tabu-
lated fields; Hartree has shown that rather good esti-
mates of the initial functions could be obtained simply
by interpolating their departures from properly scaled
hydrogenlike wave functions. A function Ii(r) is here
said to be obtained from another f(r) by change of a
scale factor A., if

F(r) =Mfa, r),

which transformation leaves the normalization integral
invariant.

Brown, Ba,rtlett, and Dunn'' have shown that the
SCF wave functions can be approximately transformed
into each other by using scale factors P, which are ob-
tained from the reciprocals of the positions of the
maxima and minima of the tabulated functions and
which appear to be almost linear functions of the atomic

*This work was supported in part by the U. S. Office of Naval
Research, in part by the Swedish Natural Science Research
Council, and in part by the Elizabeth Thompson Science Fund.

'For a survey, see D. R. Hartree, Repts. Progr. in Phys. 11,
113 (1946).' Brown, Bartlett, and Dunn, Phys. Rev. 44, 296 (1933).

'See also Hartree, reference 1, p. 126, Fig. 1, for another
example.

number Z. Hartree and Hartree' have used a similar
idea for scaling the departure of the SCF functions with
exchange from those without exchange. In a slightly
modified form, the scaling method has recently been
used also by Scherr' in Chicago.

Using a somewhat diferent approach, Arnot and
McLauchlan' and Manning and Millman~ have shown
that, instead of the wave functions themselves, the
eGective nuclear charges associated with the SCF poten-
tials may be used for interpolation purposes. On a
large-scale basis, these total charges have recently been
tabulated by Freeman' for all 6elds available.

In the first paper of this series, ' it was shown that
SCF wave functions could be interpolated (and to some
extent extrapolated) with a surprisingly high accuracy
by means of analytic expressions of Slater type. The
purpose of the present paper is to investigate whether
it is possible to carry out similar interpolations directly
in the numerical tables of the functions involved,
without the help of the analytic forms. We will 6rst
show the existence of some simple regularities for
quantities like the positions and the magnitudes of
maxima and minima, derivatives in origin, nodes,

i D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).' C. W. Scherr, J. Chem. Phys. 21, 1237, 1241 (1953).

s F. L. Arnot and J. C. McLauchlan, Proc. Roy. Soc. (London)
A146, 662 (&934).

r M. F. Manning and J. Millman, Phys. Rev. 49, 848 (1936).' A. J. Freeman, Phys. Rev. 91, 1410 (1953).
'P. O. Lowdin, Phys. Rev. 90, 120 (1953), in the following

referred to as Part I.
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TABLE I. Properties of the hydrogenlike radial wave functions
f„~(Z~r)=ZV7Q„&(p) exp( —p/2), expressed in the variable
p =2Zr/n. The values of p correspond to the maxima and minima;
the positions r and the magnitudes f of these extreme values are
given by the relations r =c /Z and f =d Z& Th. e values of po
correspond to the nodes.

nl N I 0 (p) pm dm PO

1$ p
2$I 2~2 2p —p'
2$2
2P 2+6 p'
3$g 6%3 6p —6p2+ p'
3$2
3$3
3P& 6/6 4p' —p'
3P2
3d 6+30 p'

2
3—+5
3++5
0.49336
2.79063
8.71602

2
8
6

0.76393
5.23607

0.74004
4.18595

13.07403
3

12
9

0 73576
0.22786 2—0.43700
0.44200
0.12179 1.26795—0.19667 4.73205
0.31864
0.20025 4—0.31903
0.32723

eigenvalues, etc., and we will then describe the general
interpolation rule for the numerical wave functions
themselves.

lim Z—If„t(SCF
( r/Z) = f„~(H

~
r) . (2)

A more rigorous proof" of this relation can be derived
by considering the Hartree-Fock equations in greater
detail. For large Z, we will therefore have

f„g(SCFfr)=Z'(f„t(H/Zr)+(Z ')}, (3)

where the remainder (Z ') can be expressed asymptoti-
cally as a power series in Z '. In a similar way, each
characteristic SCF quantity can be expressed in the
corresponding hydrogenlike quantity and a power series
in Z '. The explicit form of this asymptotic expansion
may be useful in interpolation problems, where only one
or two SCF data are available, but otherwise it seems
to be simpler to use the numerical informations in a
more direct way, as described below.

As basic interpolation rule, we will here use the prin-
ciple that a quantity, which for a hydrogenlihe function
equals the atonsic number Z, for a series of SCFfunctions
for consecutive atoms or ions will be an almost linearly
varying function of the otomic number Z. The function

"D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

I. INTERPOLATION PROPERTIES OF THE MAXIMA
AND MINIMA, THE DERIVATIVES IN ORIGIN, THE

NODES, AND THE ENERGY EIGENVALUES
OF THE SCF FUNCTIONS

If (n, l,m) is a fixed triple of atomic quantum numbers,
there is a close connection between the normalized
radial wave function fn~(SCF~r) for a self-consistent
6eld (SCF) with or without exchange and the corre-
sponding hydrogen function f„~(H~r). With increasing
atomic number Z, the attraction from the nucleus on
an electron in the orbital (n, l,m) will dominate entirely
over the repulsion from the other electrons, and the
function fn~(SCF

~
r) will therefore tend to be more and

more hydrogenlike. In the limit, we obtain

obtained in this way will be called the effective nuclear
charge with respect to the SCF quantity under con-
sideration and will be denoted by Z(SCF~ ) plus a
suKx indicating the quantity, which is investigated.
Numerically, this function is very convenient for inter-
polation purposes, and, physically, it will give us an
idea of the effect of the screening of the electrons around
the nucleus in the various atoms under consideration.

Given properties of the function fz-. Solution of Eq. (12).
fge (r) fgs/I' c(t) rm Qm

0.03 0.393 13.10

0.04 0.429 10.73

0.05 0.432

0.06 0.410

8.640

6.833

1.2214

1.2413

1.2644

1.243

1 0.04596 1.2435

2 0.04589 1.2434

3 0.04590

"Extensive tables of hydrogenlike radial wave functions
R ~=f„~ r are given in I.. Pauling and E. H. Wilson, Introductiol
to Qaantnsn Mechanics (McGraw-Hill Book Company, Inc. , New
York, 1935),p. 135.

(a) The Extreme Values

In order to investigate, for instance, the properties of
the maxima and minima of the SCF functions, we will
start with considering the scaled hydrogenlike functions
f„~(Z~r) having the explicit form

f„~(Z~ r) =Z'f„r(H~Zr) =Z'*A'Q„~(p) exp( —p/2), (4)

where p=2Zr/n; X is a normalization constant, and
Q„& is a polynomial in p of degree n, which is explicitly
given for the lowest quantum numbers" in Table I.
The numerical values p, corresponding to the extreme
values of fnr(Z~ r), are obtained by solving the alegbraic
equation Q(p)=2dQ(p)/dp. The positions r and the
magnitudes f of the extreme values are then given by

r„=c„/Z, f =d Z',

where the coe8Rcients c and d are listed in Table I,
too.

In investigating the numerically given SCF functions
we should now, according to the analogy rule stated
above, study the quantities

Z(SC ~Fr ) c„/r Z(SCF—~f ) (f /d ) (6)

where the coeKcients c and d . are taken from Table I,
whereas r and f have to be determined from the SCF
functions under consideration. In order to compute r
with some accuracy from the numerical tables, one can
utilize the behavior of "quotient series" of the same
type as described in Part I. We will start from the
assumption that, in the neighborhood of an extreme
value belonging to the slope number I. in order from
origin, the SCF- function is of the form

f„~(SCF
~
r) =const r"e '", p= i+I,

Ts.nrz II. Calculation of r for the erst maximum of f~, (r) for
Cl with exchange according to Ecl. (12); k =number oi iterations.



P E R —OLO V LOW D I N

TABLE III. Positions 7„, and magnitudes f of maxima and minima for SCF functions with exchange for some ¹like ions.

10
11
12
13
14

Element

¹

Na+
Mg+2
Al+'
Si+4

0.10295
0.09343
0.08550
0.07875
0.07309

1$
fm

2.268
2.382
2.492
2.598
2.700

rm

0.08088
0.07333
0;06672
0.06140
0.05675

2$1
f7n

0.4752
0.5190
0.5607
0.6019
0.6400

0,6848
0.6119
0.5483
0.4972
0.4555

2$2
fm

1.087
1.169
2.246
1.320
1.390

I 7n

0.6342
0.5478
0.4833
0.4310
0.3893

2P
fin

0.965
1.070
1.257
1.243
1.321

TABLE IV. Positions 7 and magnitudes g, of maxima and minima for SCF functions with exchange for some A-like ions.

17
18
19
20

Element

Cl
A
K+
Ca~

rm

0.05992
0.05651
0.05351
0.05083

1$
f7n

2.982
3.069
3.157
3.240

rm

0.04672
0.04390
0.04142
0.03944

2$1
fm

0.7427
0.7722
0.8035
0.8342

0.3636
0.3412
0.3196
0.3014

2$2
fm

—1.575—1,632—1.687—1.743

0.3033
0.2825
0.2637
0.2477

2P
fm

1.5188
1.5805
1.6407
1.6979

Z

17
18
19
20

Element

Cl
A
K+
Ca~

0.04590
0.04314
0.04078
0.03877

0.2168
0.2397
0.2621
0.2841

3$1
rm f

3$2
rm fm

0.3026 0.4036
0,2825 0.4430
0.2652 0.4812
0.2500 0.5176

3$3
rm fm

1.3021 0.8635
1.1767 0.9242
1.0851 0.9823
1.0010 1.036

I 7n

0.2430
0.2247
0.2099
0.1961

3p1
fm

0.3175
0.3712
0.4180
0.4622

1.4825
2.3010
1.1641
1.0527

3p2

0.7340
0,8208
0.8933
0.9578

r =Ph/1 g.qo(r)A. (12)

From this equation, the position r=r may be deter-
mined in a few steps by iteration by using only the
quotient table. A typical example of the procedure is
given in Table II.

The magnitude f=f of the extreme value of the

where a=a(r) is a function of r, which, in the actual
computations, is found to be rather slowly varying. The
extreme value is then situated in a point r = r satisfying
the relation

r =p/(a+ra')

In order to determine the denominator without the
explicit evaluation of the function a(r), we will intro-
duce the auxiliary functions

g(r) =f„&(SCFIr)/r,

qA (r) =g (r—h/2)/g (r+ h/2) . (10)

The functions qz(r) are called the "quotient functions"
associated with the interval h, and a table for them is
easily formed by taking the successive quotients
between consecutive values of g (r) in equidistant points
having the interval h. Using a Taylor-series expansion
of the exponent ra(r) in (7) and Eqs. (9) and (10), we
obtain

log, qs(r) =h(a+ra')+hs(3a"+ra"')/24+ . . (11)

For the SCF functions under consideration, we have
found that the function qz(r) is so slowly varying that
one may use linear interpolations, and, consequently,
the higher terms in the expansion (11) may be neglected.
in comparison to the first term. By using (11), the rela-
tion (8) may then be written in the form

SCF function is then given by f = r 7'g(r ), where

(t'i+ 1'

log,g (r ) = log,g (ri)+ log, qAI I. (13))
Two isoelectronic series have been investigated in

this way, namely some Ne-like ions (Ne, Na+, Mg+',
Al+', and Si+') and some A-like ions (Cl, A, K+, and
Ca+'), for which self-consistent-field functions with
exchange are already available in the literature, "
calculated by D. R. and W. Hartree, and others. Tables
III and IV contain the results of our computations of
7 and f; we note the existence of such regularities as
make these tables directly suitable for interpolation
purposes. The corresponding effective nuclear charges
Z(SCFI ) with respect to r and f, calculated from
Eqs. (6), are then given in Tables V and VI. These
quantities may be written in the form

Z(SCFlr )=Z—», Z(SCFlf )=Z—ss, (14)

where the quantities s& and s2 may be interpreted as the
"shielding constants" with respect to the positions and
the magnitudes of the extreme values, respectively.
From the tables, we note that, at least for the inner
electrons, the quantities s& and s2 are approximately
constant for fixed quantum numbers (nl) in each series,
but also that they differ appreciably from each other:
s~Qs2. The last fact indicates a result of importance for
understanding the special character of the SCF func-
tions in comparison to the hydrogenlike functions.

"The proper references to the original articles used in the cal-
culations in this paper may be found in the extensive bibliography
given by Hartree in our reference 1. However, the data for Ne
and Al+7 are taken from our own SCF calculations (to be pub-
lished).
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TABLE V. Effective nuclear charges Z(SCF ( ) for the positions r and the magnitudes f of some Ne-like ions with exchange.

Z Element

10 Ne
11 Na+
12 Mg+'
13 Al+'
14 Si+4

Average di6erence:

Z(r )

9.713
10.704
11.696
12.699
13.683
0.993

Z(f.)
9.502

10.481
11.472
12.464
13.471
0.992

Z (rm)

9.445
10.417
11.450
12.441
13.461
1.004

2$1
Z( fm)

4 349
5.188
6.055
6.979
7.889
0.885

Z(rm)

7.646
8.557
9.549

10.531
11.497
0.963

2$2
z(i )

6.184
7.161
8.134
9.124

10.122
0.985

Z(r )

6.307
7.302
8.277
9.281

10.276
0.992

2P
Z( fm)

4.771
5.860
6.852
7.908
8.932
1.040

TABLE VI. Effective nuclear charges Z(SCF
~ ) for the positions r and the magnitudes f of some A-like ions with exchange.

Z Element

17 Cl
18 A
19 K+
20 Ca+2

Average difference:

Z(r )

16.688
17.695
18.687
19.673
0.995

1$
Z (fm)

16.426
17.399
18.411
19.392
0.989

Z (rm)

16.351
17.401
18,442
19.368
1,006

2$1
z(f )

10.624
11.485
12.435
1.3.400
0.925

Z(r )

14.402
15.344
16.381
17.371
0.990

2$2
Z(fm)

12.990
13.947
14.903
15.909
0.973

2P
Z(r )

13.188
14.160
15.168
16.146
0.986

Z( fm. )

11.807
12.786
13.779
14.756
0.983

Z Element

17 Cl
18 A
19 K+
20 Ca~
Average difference:

3$1
Z(rm) Z( fm)

16.122 3.169
17.147 3.873
18.147 4.631
19.089 5.441
0,989 0.757

Z( )

13.832
14.818
15.783
16.748
0.972

3$2
z(f )

4.211
5.074
5.987
6.943
0.911

Z (rm)

10.040
11.023
12.049
13.061
1.007

3$3
Z(f )

7.344
8.412
9.484

10.571
1.076

3P1
Z(r ) Z(f )

12.480 2.514
13.352 3.436
14.294 4.357
15.296 5.312
0.939 0.933

3P2
Z(rm) Z(fm)

8.094 5.293
9.224 6.619

10.309 7.840
11.400 9.073
1.102 1.260

In the first attempts to treat atomic wave functions,
it was natural to consider them as hydrogenlike func-
tions having an effective nuclear charge of the form
(Z—s), where the single shielding constants s were
determined, e.g., by the rules given by Slater. " The
results concerning the SCF functions, contained in
Tables V and VI, show now that, in order to describe
such a function around one of its extreme values, it is
necessary to use tmo independent screening constants,
s1 and s2, and a relation of the form

f„~(SCF
~
r) = (Z—ss)~ÃQ„~(p) exp( —p/2),

(15)
p =2 (Z—sr) r/n,

which actually corresponds to Eq. (3) with part of the
remainder taken into account. This formula gives the
values of the SCF function under consideration only
within a small range, and, in order to describe the same
function around another extreme value or in another
region, different values of s& and s2 are necessary. %'e

note that, if the values of s1 and s2 would be kept
constant from r= 0 to r= ~, the resulting function (15)
would no longer be properly normalized.

As a typical example of the limited validity of formula

(15), we have in Table VII listed the values of the
right-hand side of this expression for the region around
the maximum of fs~ for Na+ with exchange in com-

parison to the actual values. If two effective nuclear

charges Z1 and Z2, taken from Table V, are used, the
SCF function will be correctly represented in the
maximum r=r and with the accuracy desired within

"J.C. Slater, Phys. Rev. 36, 3'I (1930).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
09
1.0

SCF
Hartree-
Hartree

0.000
0.231
0.578
0.842
0.997
1.061
1.061
1.021
0.956
0.880
0.799

Eq. (15)
Z1 =7.302
Z2 =5.860

0.000
0.183
0.508
0.793
0.978
1.061
1,061
1.002
0.908
0.798
0.684

Eq. (15)
Compromise
Z = (ZIZ2)&

0.000
0.161
0.465
0.753
0.966
1:088
1.130
1.109
1.044
0.953
0.848

a small interval (r —0.05; r +0.05) around this
point, whereas the errors, e.g. , in the interval (0;
r —0.05), will be appreciable and amount to as much
as —0.070. However, if only ore effective nuclear charge
Z,ff is used, for instance the compromise value
Z= (ZtZr)l, the position and the magnitude of the
maximum show errors of about 0.05 and 0.070, respec-
tively, whereas the errors in the interval (0; r ) amount
to as much as —0.110. The example shows that, even
if two effective nuclear charges are used, it is desirable
to have these quantities continuously varying in order to
describe a SCF function with complete accuracy over
a larger region. This idea will be further developed in
Sec. II.

We have also investigated the interpolation properties
of the extreme values of the SCF functions for a series
of neltral atoms, namely C, N, and 0. These atoms can

TABLE VII. Approximate representation of the 2p function of
Na+ with exchange around its maximum according to Eq. (15)
and Table V.



PER —OLOV LOWD I N

TABLE VIII. Positions r, magnitudes f, and the corresponding
effective nuclear charges Z(SCF,' ) for the maxima of the 2p
functions of some neutral atoms, namely carbon ('D, p=0.04),
nitrogen ('P, p=0), and oxygen ('S, p=0).

Z Element State

6 C 'D
7 K 'I'
8 0 'S

rm fm

1.221 0.7134
0.994 0.7813
0.837 0.8430

Average difference:

Z(SCF jrm)

3.276
4.024
4.779
0.7515

Z (SCF ( fm)

2.605
3.124
3.637
0.516

occur in several different states, characterized by
Slater's" parameter P, and we have here treated the
actual or interpolated functions belonging to P=0. The
results for the 2p functions are given in Table VIII;
again it is found that the lAseurity rule for the quantities
Z(SCF

I ) holds with a surprisingly high accuracy. The
average differences in each series are now appreciably
smaller than 1.000, as one could expect from physical
reasons for a sequence of neutral atoms, since one outer
electron with some shielding effects is added to the
system when the nuclear charge is increased by one.

(b) The Region Around r =0
In order to investigate the SCF functions in greater

detail in the neighborhood of the point r=0, we will

again start from the hydrogenlike functions given in
Table I. The quantity f l(ZI r)/r'+' is nonvanishing for
r=0, and, according to (4), we have

y(l+i) (SCF
I
0)

(2l+2) /2/~

(1+1)l

(20)

TABLE IX. Effective nuclear charges E'„& for SCF functions
belonging to the CNO series, the Ne series, and the A series. The
upper values refer to Gelds m ith exchange, the lower to fields millhout

exchange.

CNO series (SCF with exchange)
Element State K1s K2s

neighborhood of r=0 and to extrapolate its value for
r=0 by means of "quotient analysis" or logarithmic
extrapolation.

The results of our calculations of E„~ for the CNO
series, the ¹like ions, and the A-like ions are con-
densed in Table IX, where the upper values refer to
fields with exchange and the lower to fields without
exchange. From this table, we conclude that the eGec-
tive nuclear charge E ~ with striking accuracy is a
linear fgrictiorl of the atomic number Z, and that there-
fore interpolations and extrapolations to neighboring
atoms are possible as soon as two SCF data are avail-
able; the existence of additional data will, of course,
increase the accuracy. A table of E&, for the He-like
ions was also given in Part I.

According to (19), one can determine the first non-

vanishing derivative in origin for a SCF function from
the corresponding effective nuclear charge E & by the
relation

j„i(ZIr) Q„l(2Zr/ )22
lim =EZ'
r~o &l+i r=O

6
7

(16)

C 'D
'I'

0 'S
Average difference:

5.760
6.757
7.751
0.996

4.115
4.971
5.787
0.836

3.85
4.66
5.50
0.825

From this relation we can then solve the atomic number
Z and obtain

Z= C~-lf-l(ZI ~)/r"'j.=o"""", (17)
10

where O.„g is a constant which for the lowest quantum
numbers has the following values:

(2sl) = 1s 2s 2P 3s 3P 3(E

(r„l——0.5 v2 2&6 1.5+3 3.375&6 20.25&30.

Element

Al+'

Ne series
K ls

~ ~ ~

8.746

9.736

10.725

12.718
12.737

K2e

~ ~ ~

6.516

7.403

8.382

10.364
10.160

K22)

~ ~ ~

5.913

7.139

8.168

10.198
10.022

According to the analogy rule, stated above, the corre-
sponding quantities for the SCF functions will then
represent the effective nuclear charges Z(SCFI ) with
respect to the first nonvanishing derivative in origin,
and, for the sake of simplicity, we will denote these
quantities by the symbol E„&, introduced in Part I:

Si+4

Z Element

17 Cl

Kls

16.701
16.722

Average difference:

13.735
13.743
1.000
0.999

A series
K2s Xsp

11.368
11.176
0.991
0.932

14.301 14.163
14,024 13.968

9.527
9.981

11.206
11.014
1.017
j..202

9.976
9.817

E„l Pn„lf„l(S—C—F
I
r)/r'+' j, (P«"+')=

18 A 17.690 15.284 15.150 10.561 11.217

In publishing the results of their calculations of self-
consistent fields, Hartree and Hartree have usually
given the value of f„i(SCFIr)/r'+' for r=0, and the
evaluation of E„~ is then straightforward. In other
cases, one has to study the function f„l(r)/r'+' in the

r4 J. C. Slater, Phys. Rev. 34, 1293 (1929).

19 K+

20 Ca~

Average
difference:

18.698
18.712

19.691
19.706
0.997
0.995

16.271
15,979

17.266
16.955
0.988
0.977

16.145
15.946

17.141
16.925
0.993
0.986

11.645
11.898

12.717
12.888
1.063
0.969

12.385
12.273

13.523
13.420
1.182
1.201
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This is of particular importance in the calculations of
self-consistent fields m ith @@charge by solving the
Hartree-Fock equations, since, in this case, it is desirable
to have as good estimates as possible of the initial condi-
tions in origin in order to obtain the solutions directly
in correctly normalized form. The interpolation rule
based on (19) may therefore be of value for SCF calcu-
lations in the future.

We may conclude that, in a close neighborhood of
r=0, it is possible to describe a SCF function as a
hydrogenlike function with Z,«——E„&. However, the
range of validity of such a representation is rather short,
as is shown by the example for f» of Na+ with exchange
in Table X, where the function (4) is compared to the
actual SCF function, given by Hartree and Hartree.

Table IX gives also a comparison between the values
of E„g for fields with and without exchange, and we
note that, except for (3s), the inclusion of exchange
corresponds to a slight increase of the eGective nuclear
charge, which confirms an earlier observation by
Hartree. However, a much stronger tool for investigat-
ing the inAuence of the inclusion of exchange will be
described in a following section.

In order to give a detailed description of the SCF
functions in a longer range around r=0, one should
investigate also the next derivative of order (1+2),
writing the function in the form

f„i(SCF
~
r) =ci+tr'+'(1 —ar+ ). (21)

By substituting this expression into the Hartree-Fock
equations, one finds that a=Z/(3+1), where Z is the
atomic number of the nucleus. This is a general result
which is valid both for the hydrogenlike functions and
the SCF functions. However, in their papers concerning
self-consistent fields, Hartree and Hartree have usually
given tables also of the quantities f i/r~' for the range
around r=0, and by making a "quotient analysis" of
this material, we have found that, in the nearest neigh-
borhood of origin, the SCF functions are better ex-
pressed under the form

0.000

0.005

0.010

0.015

0.020

fgs/r

15.295

13.895

12.595

11.39

10.27

1.1008

1.1032

1.1058

1.1091

65.30

62.28

59.41

56.68

54.09

1.0485

1.0483

1.0482

1.0479

TABLE XII. Quotients gs(0) for h= 0.005 and corresponding
effective nuclear charges Zo, defined by (24), for SCF functions of
some A-like ions with exchange.

Z Element is 2s 3$

17 Cl 1.0885 1.0887 1.0427

0 18 A 1 0941 1.0941 1.0462
19 K+ 1.0997 1.0993 1.0488
20 Ca+' 1.1053 1.1049 1.0514

1.0929' 1.0429
1.0937 1.0461
1.0996 1.0486
1.1045 1.0509

17 Cl 16.960 16.997 16.726 17.767' 16.802
18 A 17.986 17.986 18.066 17.913 18.028
19 K+ 19.008 18.935 19.058 18.989 18.982
20 Ca~ 20.023 19.951 20.050 19.879 19.858

a The SCF data for Cl (3s) contain apparently some slight error.

Here a=a(r) is constant or extremely slowly varying
over the interval (0; 0.02) under consideration, as is
shown by the example in Table XI. A comparison
between (21) and (22) shows then that, for r=0, we
should simply have

a(0) =h ' log, qj, (0)=Z/( +f1), (23)

where Z is the atomic number of the nucleus, and q& is
the quotient function defined by (10).

Let us now consider the actual numerical material,
given by Hartree and Hartree, from this point of view.
The result of our quotient analysis for the A-like ions
with exchange is condensed in Table XII, where we also
have listed a quantity,

TABLE XI. Example of "quotient analysis" of the numerically
given functions f„~(SCF jr)/r'+' for K+(3s) and (3p) with
exchange.

f~i(SCF
~
r) =cr~tr'+'e ~" (22)

Zs ——(k+1)h ' log, qs(0), (24)

0.00
0.01
0.02
0.03
0.04

0.06
0.08
0.10
0.12

SCF

0.000
0.004
0.014
0.030
0.050

0.102
0.163
0.231
0.302

Eq. (4)

0.000
0.004
0.014
0.031
0.053

0.110
0.180
0.259
0.343

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SCF

0.578
0.842
0.997
1.061
1.061
1.021
0.956
0.880
0.799

Eq. (4)

0.688
1.029
1.216
1.263
1.209
1.094
0.949
0.799
0.654

TABLE X. Comparison between the SCF function f» for Na+
with exchange, given by Hartree and Hartree, and the corre-
sponding hydrogenlike function (4) with Z,a=I'» in the neigh-
borhood of r=0. The numerical value of E2„——8.168 is taken
from Table IX.

qs = 1+hZ/(1+ 1)+-,' {hZ/(3+1) )s, (25)

for, e.g., k=0.005. We note that the values in the
example in Table XIII are in excellent agreement with
the SCF data given in Table XII.

obtained from the Hartree-Hartree quotient. Except
for the case of Cl (3s), where the SCF data apparently
contain some accidental error, the quantities Zo are
all very close to the real atomic number Z, in agreement
with (23). In the following, we may, therefore, simply
get an approximate idea of the behavior off„~(SCF

~
r)r '+'

by starting from the value of c&+i, found from (20), and

by using a quotient q&, given by the three-term formula
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TABLE XIII. The quotient qs(0) for h=0.005 for the A-like
ions according to the three-term formula (25). Compare the SCF
data in Table XII.

17
18
19
20

t=0

1.0886
1.0941
1.0995
1 ~ 1050

1.0434
1.0460
1.0486
1.0513

TABLE XIV. Example of the procedure of evaluating the posi-
tion ro of the node for the 2s function of Na+ with exchange; ro& )

gives the successive approximations for ro in Aitken s iteration
scheme.

continuously varying scale factor, we will meet this
problem again, since the nodes will be a little bit "out of
scale" and lead to sudden discontinuities.

In general, the nodes cause such complications in the
interpolation problem as to make it highly desirable to
transform them away. As we shall see in the next
section, such a transformation can be carried out even
for the numerically given SCF functions, if the nodes
are evaluated with sufficient accuracy. The possibility
of a separate interpolation of the nodes, based on (26),
will in this way prove to be of essential importance for
the solution of the interpolation problem for the func-
tion as a whole.

f2s

+0.215
+0.102—0.015—0.301

0.16
0.18
0.20
0.25

k=1

0.198 053
0.197 391
0.197 500

(c) The Nodes

re (I-)

k=2

0.197 476
0.1.97 91.3

(d) The Energy Eigenvalues

The "tails" of the SCF functions for large r may be
interpolated simply by considering the outmost Slater

0 197 45 exponential in the analytic expressions, described in
Part I. This single exponential term is quickly found
by a "quotient analysis" without evaluating the whole
expression, and we note that the exponents satisfy the

Another characteristic property of the SCF functi&ns
is the position rp of their eventual nodes. For the hydro-
genlike functions, the nodes are given by the zero points
pp of the polynomials Q(p) in Table I; and by solving
the atomic number Z, we obtain, therefore, Z= rcpp/2rp

According to the analogy rule, the corresponding effec-
tive nuclear charges for the SCF functions are then
defined by

Z (SCF
~
rp) = rtpp/2rp. (26)

The zero points rp of the numerically given SCF
functions may be determined by solving the equation
f„&(SCF~r)=0 by inverse interpolation, and, for this
purpose, we have used the Aitken iteration scheme. "
An example of the procedure is given in Table XIV.

The final results of our calculations of the nodes of
of the 2s functions, associated with fields with and
without exchange, are condensed in Table XV. Ke
note that the linearity rule for Z(SCF ~rp) holds with
the same striking accuracy as before, and that therefore
this auxiliary quantity is very convenient for inter-
polation purposes. The nodes of the 3s and 3p functions
have been evaluated only for the fields with exchange,
and the results are given in Table XVI.

Let us finally consider the possibility of expressing a
SCF function in the form (15) in the neighborhood of a
node. The quantity p is defined by p=2Z, «r/e, but it
is not u priori evident that the value of Z,u in the poly-
nomial Q(p) is identical with the value of Z, tt in

exp( —p/2), particularly not in the region around a
zero point r=rp where the former is sharply defined.
In order to describe an SCF function in such a region,
it may therefore be necessary to use three independent
shielding factors in formula (15). In considering a single

"See, for instance, W. E. Milne, Numerical Calculus (Princeton
University Press, Princeton, 1949), p. 69.

TABLE XV. The positions ro and the effective nuclear charges
Z(SCF trp) of 2s functions belonging to self-consistent fields with
and without exchange.

State
Z Element P value

With
exchange

Without
exchange

Z(SCF ) rp)

With Without
exchange exchange

3 Li
4 Be
5 B
6 Cc~
7 N

N
8 0

0
0+
0+2
0+'

9 F
10 Ne
11 Na

Na+
12 Mg+2
13 Al+'
14 Si+'

$i+3
Si+4

17 Cl
18 A
19 K+
20 Ca

29 Cu+

'D 0.04

'S 0
2P 0
'P —0.8
'S 0
2P 0
intp. 0
'P 0

0.829 96
0.589 57

0.375 41
0.370 75
0.318 15
0.317 98
0.276 36
0.276 11
0.275 54
0.274 25
0.272 53

0.218 36
0.197 45
0.197 45
0.180 14
0.165 42

0.153 04
0.124 80
0.117 65
0.11107

0.679 76
0.504 45

0.400 45

0.289 94
0.289 48
0.288 57
0.287 10
0.254 02

0.185 03
0.169 57
0.156 54
0.156 51
0.156 54
0.127 06

0.112 91
0.106 91

0.105 30
0.071 612 0.072 302

2.4098
3.3923 2.9422

3.9647
5.3275
5.3945
6.2863
6.2897
7.2369
7.2435
7.2585
7.2926
7.3386

9.159
10.129
10.129
11.102
12.090

13.068
16.027
17.000
18.007

4.9944

6.8980
6.9089
6.9307
6.9662
7.8734

10.809
11.795
12.776
12.779
12.776
15.741

17.713
18.707

18.993
27.928 27.662

Z(SCF jr0}

28.687
29.625
30.670
31.628
35.616
53.559
78.573

Element

0.069 719
0.067 510
0.065 210
0.063 236
0.056 155
0.037 342
0.025 454

Zn
Ca
Ge.
As
Rb
Cs
Hg

30
31
32
33
37
55
80

The positions rp and the effective nuclear charges Z(SCF ~rp)
for 2s functions of some heavier elements for self-consistent fields
without exchange.

Z re
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TABLE XVI. The positions ro and the effective nuclear charges Z(SCF Irpl for 3s and 3P functions belonging to
self-consistent fields mth exchange.

Z

17
18
19
20

29

Element

Cl
A
K+
Ca~

Cu+

ro

0.121 60
0.11437
0.108 00
0.102 33

0.069 238

0.554 99
0.515 72
0.481 89
0.451 62

0.292 38

3$
Z(SCF i

ro')

15.641
16.630
17.610
18.586

27.469

Z(SCF i
ro")

12.790
13.763
14.730
15.717

24.277

0.531 53
0.488 69
0.431 99
0.420 42

0.262 63

3P
Z(SCF ) ro}

11.288
12.278
13.273
14.271

22.846

linearity rule, whereas the coeAicients satisfy Kq. (I, 7).
Typical examples may be found in Part I.

Another quantity characteristics for the asymptotic
behavior is the eigenvalue parameter e„&. For hydrogen-
like functions we would have e„f——Z'/n, and, for SCF
functions, the corresponding effective nuclear charge is
then defined by

Z(SCF
i e„f)=nQe„f (27)

Table XVII gives a survey of this quantity for some
¹likeand A-like ions, and we note that, for the outer
electrons, the electronic shielding is so strong that the
linearity rule for Z(SCF

~
e„f) holds only with a rather

moderate accuracy as long as this quantity is com-
paratively large, whereas there are considerable devia-
tions from this rule when Z(SCFi e) tends to zero on
the side of the negative ions. However, if only two SCF
data are available, the interpolation based on (27) gives
at least a first estimate of the eigenvalue parameter, and,
in actual computations, we have found that this value
might be just as good as, e.g., the approximate eigen-
value obtained from the average value of the energy
operator with respect to an interpolated SCF function.

If three of more SCF data are available, it is usually
simpler to carry out the interpolations directly in the
quantity ~ i itself, which is then considered. as being a
polynomial of at least the second degree in the atomic
number Z.

In our investigation of the SCF functions, we have
found that the hydrogenlike behavior decreases when
the point under consideration moves outwards from
origin, which depends on the simple fact that the elec-
tronic screening gets an increasing importance in com-
parison to the nuclear attraction. The idea of the
"effective nuclear charge" must consequently lose some
of its validity when it is applied to the asymptotic
behavior, and it is therefore probable that a more
detailed description of quantities like, e.g., the eigen-
values can be given first after a closer investigation of
the basic Hartree-Pock equations.

TABLE XVII. The effective nuclear charge Z(SCF Is f) corre-
sponding to the eigenvalue parameters e i for some ¹like and
some A-like ions.

Z Element
Ne series, with exchange.

1$ 2s

10 Ne
11 Na+
12 Mg~
13 Al+'
14 Si+4

Average difference:

8.093
9.026
9.973

10.94
11.90
0.952

3.925
4.960
5.981
7.019
8.042
1.029

2.598
3.796
4.895
5.985
7.046
1.112

A-series, upper values with exchange, lower values without exchange.
Z Element 1s 2$ 2P 3$ 3P

17 Cl- 14.46
14.46

9.049 7.846
8.567 7.582

3.617
3.116

1.635
1.013

15.40 9.930 8.752 4.795 3.260

attempts to treat this question have shown us that the
eventual nodes in the SCF functions cause considerable
complications in this connection, and we will therefore
take advantage of the fact that these nodes may be
interpolated separately by using (26).

Let us start by dividing the function f„f(SCFir) by
a polynomial r'+'(rs' —r) (rs"—r) where rs', rs",
are the (n —/ —1) zero points oi the function. itself; the
quotient is nodeless and monotonously decreasing with
increasing r. I.et us also form a table of the quantity

g„f(SCF I r)
=log, {f„f(SCF

~

r)/r'+'(rs' r) (rs"——r) }. (28)

We observe that, except for the normalization constant,
the quantity @„f(Zir) for a hydrogenlike function is

linear in rZ/n, and, according to the analogy rule, we

may then consider ft f(SCF i r) as being the same linear
function of rZ, ff(r)/n:

g„,(SCF I r) =p„f(SCFio) rZ. ff(r)/n. —(29)

We postulate that the effective charge Z, ff(r) should be
an almost linear function of the atomic number, con-
venient for interpolation purposes.

II. INTERPOLATION OF SELF-CONSISTENT-FIELD
%AVE FUNCTIONS

16.36
16.35

10.85
10.33

9.693
9.374

5.947
5.268

4.590
4.096

In the previous section we have investigated the
interpolation of certain point properties of the SCF
functions, and will now study the problem of the inter-
polation of the SCF functions as a whole. Our diferent

20 Ca~

Average
difference:

17.32
17.31

0.953
0.950

0.914
0.901

0.935
0.913

11.79,,
10.65

11.27 10.32
7.072
6.390

5.814
5.330

1.152 1.393
1,091 1.439
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Z ff ( )r/ =ps{@ &(SCF
~
0)—$.&(SCF

~
r) }/r. (30)

By using (20) and (22), we obtain

4 ~(SCFIO)=
2

log, K„t—log~„trp'rp ' ' ', (31)

where all quantities in the right-hand member may be
interpolated according to rules given in the previous
section. We note, however, that the value of p„t(SCF

~
0)

is in all events rather unimportant since it corresponds
only to a normalization constant in the wave function,
which can always be determined afterwards. If there
is an uncertainty of hgp in the value of p„t(SCF~O),
there will be a corresponding uncertainty of Dpp//r in
the quantity Z,«(r)/e, which is particularly large in the
vicinity of r=0. Using (22), (23), and (28), we obtain
for the point r =0 in particular

z
Z, rr(0)/n =

3+1 rp' rp"
(32)

TABLE XVIII. The error in the SCF functions for K+ with
exchange obtained from the given functions for Cl and Ca~ by
linear interpolation in the auxiliary function (28). Unit=10 '.

y
interval

0.00

0.02

1S 2$ 3s

+0.5

0.08
+1.5

The problem of interpolating an SCF function as a
whole may now simply be solved by performing linear
interpolations in the functions p„&(SCF~r) given by
(28) for each r value under consideration, with an
eventual renormalization of the first preliminary result
as to the entire wave function. In order to test this
rule, we have applied it to the series of A-like ions,
where we have interpolated the SCF functions with
exchange for K+ from the tabulated functions for Cl
and Ca+' and compared them with the correct ones. The
results in Table XVIII show that the errors for the 1s,
2s, and 2p functions are hardly of the order &0.002,
whereas the errors for the 3s and 3p functions are slightly
larger.

Let us now study in greater detail the continuously
varying effective charge which, according to (29), is
defined by the formula

In addition to Z,rr(r), we have also studied the
quantity

cd„t (r) =Z, ff(r)/Z, ff(0). (33)

This function is monotonously decreasing with in-
creasing r from the value pp(0) =1, and it describes,
therefore, in a simple way some of the essential proper-
ties of the SCF functions, particularly their deviations
from the hydrogenlike form. Practically we have found
that this function is very slowly varying with the atomic
number and that the accuracy of the interpolations may
be improved by performing them in pp(r) instead of in
Z, ff(r) or in (28). In this way, the error in, for instance,
the 3p function of K+ with exchange derived from Cl
and Ca+' may be reduced by about 50 percent in com-
parison to the values given in Table XVIII.

As an example, we have given the co functions for the
series of Ne-like ions with exchange in Table XIX.The
rp functions for some A-like ions (Cl, A, K+, Ca+') and
Cu+ with and without exchange have also been calcu-
lated and are available on special request. "The tables
are all aGected by small normalization constant uncer-
tainties App/r of the type described above, and it is,
therefore, remarkable that they still fit rather smoothly
together in spite of the fact that the tables are given
in their original form without being adjusted to each
other.

In the results for the A-like ions and Cu+, one can
observe another characteristic feature of the co func-
tions, namely, that for an isoelectronic series the dif-
ference between the two ~ functions for fields with and
without exchange seems to be approximately the same
function of r for all elements of the series. This property
may be used for estimating wave functions with
exchange from those without exchange in case only
one field with exchange is known in the series.

A comparison of the or functions for the 1s, 2s, and
2p functions with exchange for the Ne-like and the
A-like ions, respectively, shows further the eGect of
adding a complete outer electronic shell.

Finally, with respect to the tables published here, we
would like to emphasize that, in order to utilize the full
accuracy of the given material and to avoid rounding-off
errors, we have in general kept at least one figure more
in the tables than is actually valid. This is particularly
true for the "tails" of the wave functions.

Up till now, several fields with exchange have been
determined for atoms and ions up to Z=39(Cu+),
whereas quite a few additional fields without exchange
have been calculated up to Z=80 (Hg). However,

0.30

0.60

1.20

4.00
—0.5

"Tables of the &u functions for some A-like ions (Cl, A, K+,
Ca~) and Cu+, supplementary to this article, have been deposited
as Document number 4222 with the ADI Auxiliary Publications
Project, Photoduplication Service, Library of Congress, Washing-
ton 25, D. C. A copy may be secured by citing the Document
number and by remitting $1,25 for photoprints, or $1.25 for 35-mm
microfilm. Advance payment is required. Make checks or money
orders payable to: Chief, Photoduplication Service, Library of
Congress.
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TABLE XIX. The characteristic functions ur„&(r) for the SCF functions of some Ne-like ions with exchange. These quantities, de-

fined by ca(r)=Z, ii(r)/Z. ii(0), describe. the relative decrease in the specific effective nuclear charge under consideration here. In addi-

tion, the first nonvanishing derivative in origin, the position ro of the node of the 2s function, and the values of Z, ff(0) are tabulated
for the calculation of the @rave functions themselves.

Ne
1s functions with exchange.

Na+ Mg+'- Si+4 Ne
2s functions with exchange.

Na+ Mg+' Al+g Si+4

0.0
0.1 .

0.2
0.3
0.4
0.5
0.6
0.7
fp
Zp

0.0
0.1
0.2
0.3
p4
0.5
0.6
0.7
0.8
P 9
1.0
1.1
1.2

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4

1.0000
0.9858
0.9735
0.9637
0.9550
0.9468
0.9381
0.9284

60.76
10

1.0000
0.9553
0.9161
0.8831
0.8571
0.8333
0.8123
0.7928
0.7749
0.7585
0.7431
0.7288
0.7157

0.6917
0.6708
0.6522
0.6358
0.6214
0.6083
0.5959
0.5857
0.5754
0.5659
0.5583

1.0000
0.9851
0.9730
0.9631
0.9542
0.9452
0.9351
0.9239

70.25
11

1.0000
0.9851
0.9732
0.9632
0.9537
0.9442
0.9335
0.9287

80.26
12

1.0000
0.9858
0.9734
0.9629
0.9528
0.9427
0.9301
0.9148

90.77
13

Al+g

1.0000
0.9531
0.9128
0.8830
0.8559
0.8323
0.8109
0.7918
0.7742
0.7581
0.7434
0.7297
0.&173

0.6948
0.6756
0.6588
0.6445
0.6311
0.6191
0.6090
0.5992
0.5900
0.5829
0.5730

1.0000
0.9533
0.9102
0.8810
0.8547
0.8313
0.8103
0.7915
0.7745
0.7589
0.7448
0.7319
0.7203

0.6998
0.6822
0.6670
0.6530
0.6400
0.6278
0.6163
0.6051
0.5943
0.5839
0.5737

1.0000
0.9533
0.9134
0.8824
0.8558
0.8325
0.8121
0.7937
0.7774
0.7627
0.7495
0.7375
0.7269

0.7081
0.6921
0.6794
0.6677
0.6577
0.6490
0.6414
0.6348
0.6275
0.6237
0.6184

2s functions with exchange.
Na+ Mg+2

1.0000
0.9863
0.9735
0.9630
0.9520
0.9413
0.9287
0.9218

101.8
14

Si+4

1.0000
0.9533
0,9122
0.8817
0.8556
0.8328
0.8129
0.7953
0.7798
0.7659
0.7537
0.7427
0.7326

0.7159
0.7016
0.6890
0.6781
0.6685
0.6599
0.6520
0.6446
0.6377
0.6312
0.6245

3.6
3.8
4.0
'rp

fo
Zp//2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
34
3.6
3.8
4.0

/ II/2
Zo/2

0.5510
0.5443
0.5352

0.21836
14.24
5.4204

Ne

1.0000
0.9489
0.9025
0.8637
0.8323
0,8046
0.7804
0.7582
0.7381
0.7192
0.7021
0.6858
0,6709

0.6439
0.6203
0.5992
0.5808
0.5643
0,5492
0.5362
0.5240
0.5129
0.5030
0.4935
0.4852
0.4776
0.4697

27.79
5.0

0.5656
0.5588
0.5552

0.19745
17.16
5.9354

0.5637
0.5538
0.5442

0.18014
20.24
6.4488

0.6110
0.6093
0.6076

0.16542
23.60
6.9548

2p functions with exchange,
Na+ Mg+g

1.0000
0.9485
0.9007
0.8639
0.8327
0.8058
0.7820
0.7603
0.7409
0.7230
0.7065
0.6915
0.6777

0.6527
0,6314
0.6129
0.5970
0.5828
0.5700
0.5588
0.5490
0.5391
0.5307
0.5218
0.5143
0.5072
0.5014

38.92
5.5

1.0000
0.9447
0.8989
0,8630
0.8330
0.8067
0.7832
0.7626
0.7437
0.7268
0.7114
0.6975
0.6847

0.6624
0.6436
0.6271
0.6136
0.6014
0.5904
0.5806
0.5721
0.5648

52.00
6.0

Al+g

1.0000
0.9445
0.9008
0.8648
0.8352
0.8094
0.7870
0.7672
0.7494
0.7337
0.7193
0.7066
0.6950

0.6749
0.6581
0.6443
0.6319
0.6214
0.6122
0.6041
0.5967
0.5904
0.5851
0.5784
0.5737
0.5675

67.81
6.5

0.6191
0.6133
0.6078

0.15304
27.10
7.4658

Si+4

1.0000
0.9444
0.8996
0.8654
0.8364
0.8117
0.7902
0.7713
0.7549
0.7401
0.7270
0.7153
0.7047

0.6866
0.671&
0.658'
0.6469
0.6351
0.6276
0.618@
0.6083
0.6010
0.5918

85.80
7.0

there are also a rather large number of atoms and ions
left out in the first treatment of the periodic system
where the interpolation methods described here may
prove to be useful. Further applications of the theory
will be given in a later paper of this series.
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