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Anomalous Dispersion and Scattering of X-Rays*
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The theoretical expressions for the anomalous dispersion of x-rays have been integrated for any positive
value of p, in a C~X&~ term in the distribution of "dispersion" oscillators for the q shell of electrons. This
distribution may be written generally as the sum of rI, terms of the form C,„X&~ or, as is commonly done, as
a single term. Damping has been retained, its effect evaluated and shown to be negligible except for )
extremely close to the wavelength of an absorption discontinuity. With damping neglected, universal dis-
persion curves are presented. If p, and g, (the oscillator strength) are known, the anomalous part of the
refractive index or of the atomic scattering factor cd be readily deduced from the universal curves.

Comparison of the more exact theoretical values with experiment shows less satisfactory agreement than
before.

INTRODUCTION varies with atomic number. Needless to say, the
numerical value of the exponent is important in' the
region of anomalous dispersion.

As an'additional complication, the exponent may vary
with wavelength. Honl' used a two-term expression for
IC electrons, viz , Cz&(X/'A. x)'+Dtr(X/)tx)', where Ctr =4/3
and Dz = —1/3; this is equivalent to a single term with
exponent px(X), such that px=2.67 at X~, 2.78 at
Xx/2, and 2.94 at Xx/200. Hall' also discussed this
expression. Victoreen' concluded that it expresses well
the experimental data for the net eGect of all the
electron shells; the C/D ratio depends markedly upon
the atomic number and upon the wavelength region
(i.e., X(Xx or X&('A()t&). However, careful analysis of
the available experimental data for the E electrons of
copper, for example, indicates that p& is very nearly
2.75 and does not vary significantly in the range 0.1A
&X&)~. Kith more extensive and accurate absorption
measurements, it may well be necessary to use two (or
more) terms in the general sum P„C„)toe . In any case,
the general integration must be carried out separately
for each term.

In the present paper, the dispersion expression is
integrated for a general X&& term, where p, may be any
number greater than zero. Combinations of such terms
may be made when and if desired. Typical calculations
are shown for p= 2, 7/3, 5/2, 11/4, 3, and 4. The neces-
sity of including the anomalous effects of more than one
shell of electrons is pointed out' with the correlative
conclusion that there is practically no region of "normal"
x-ray dispersion.

It has also become the custom to neglect the damping
factor. In the present integrations and calculations,
damping has been retained so as to allow evaluation of
the error made in any specific case due to neglect of

''N comparing theoretical predictions with experi-
~ - mental measurements of refractive index r for
x-rays,

r=1—(5+ iP),
and for the atomic scattering factor f, written for very
small scattering angle as

f= (1/A)ts) (5syP') i,

where 2 is a constant, it has become the custom to
assume that the frequency distribution of the theoretical
"dispersion" oscillators follows a )' relation, where X is
the wavelength. ' This assumption makes for easy inte-
gration of the expression for o (or for f), but it is not in
accord with x-ray absorption measurements: In general,

is probably better for the photoelectric absorption
by E electrons, ) '" by L electrons, ' ' and perhaps ) '"
by M electrons. ' The exponent for a given electron shell

* This research was supported in part by The United States Air
Force under a contract monitored by the Once of Scientihc
Research, Hq. Air Research and Development Command, Post
Once Box 1395, Baltimore 3, Maryland.

' For example, see R. W. James, The Optical Principles of the
DQfractt'on of X Rays (G. Bell an-d Sons, Ltd. , London, 1948);
and A. H. Compton and S. K. Allison, X-Rays in Theory and
Experimerit (D. Van Nostrand Company, Inc. , New York, 1935).

W. Heitler )The Qnantnrn Theory oj Radiation (Oxford Uni-
versity Press, London, 1944), second edition, pp. 129—137) dis-
cusses "dispersion" oscillators quantum mechanically in terms of
matrix elements of transitions of the inner electron to the various
bound and unbound states. This discussion includes "oscillator
strength" as introduced later.' K. Grosskurth, Ann. Physik 20, 197 (1934); S. J. M. Allen,
Phys. Rev. 28, 907 {1926);Compton and Allison, reference 1;
A. Jonsson, Inalglral Dissertatiorl, (Upsala University, Vpsala,
1928); and J. Victoreen, J. Appl. Phys. 19, 855 (1948) and 20,
1141 (1949). These measurements refer to all types of electrons;
appropriate subtractions are necessary to deduce the exponent
of X for a particular electron shell. (Subtraction must 6rst be
made for the scattering part of the measured absorption. )' With damping terms neglected, the integration for S or f has
been done for X'~' by K. J. Williams, Proc. Roy. Soc. {London)
A148, 358 (1934).Williams, and also J.A. Bearden and C. H. Shaw
/Phys. Rev. 46, 759 (1934)g have interpolated between 7'» and
)3 for )"~'.

4 No direct measurements of p in X& for ys electrons are known.
However, pLz is smaller than pr, zz, zzz, and it is the behavior of the
Lz-electrons that causes pl, to be so small. Similar behavior is
observed for the Mz-electrons relative to the other M electrons.
See H. Robinson, Proc. Roy. Soc. (London) A104, 455 (1923);
and H. Hall, Revs. Modern Phys. 8, 358 (1936), and references.

1

~H. Honl, Ann. Physik 18, 625 (1933) and Z. Physik 84, 1
(1933.). Honl's treatment is based on theoretical assumptions that
are known to be not valid in the present range of x-ray energies.
(Note added in Proof H Eisenlohr and G. .L—. J.. Miiller LZ.
Physik 136, 491 and 511 (1954)j have recently extended Honl's
treatment to L electrons).

The authors note, after completion of the present work, that
this point has also recently been made by H. Eisenlohr and G. L.
Muller, Z. Naturforsch. 8a, 429 (1953).
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damping. It turns out that neglect of damping is well

justified except in the case of ) extremely close to A„
the wavelength of an absorption discontinuity; and for
this narrow region the difference between P and X, has,
as yet, very little practical meaning. With damping
neglected, universal curves for anomalous dispersion are
useful and convenient.

Comparison of the present calculations with experi-
ment show less good agreement than before.

EXPRESSION FOR 5 OR f
The Integral

According to quantum-mechanical dispersion theory, '
the refractive index, in terms of various electron shells

g) is
t" ~'(da/d~ ).r=1—(5+iP) =1—A)' Q ~~ dko, . (1)

~coq v &'gq~

The real unit decrement and the imaginary terms are

=0 for Mv(cog)

where ikq is the coeKcient for kq„= kqq. With Eqs. (4) and
(5) placed in (1), we may write

8=+q bq=A)'Qq g, Re(Jq),

where J„containing the integral to be evaluated, is

f M~

~ a&q GO COy 'lpga

(6)

The operating oscillators involve the photoelectric
absorption process, and the oscillator density can be
written

(dg/dkq„), = (m,e/2qr'e') p (kq.)„(4)
where p(kq„)q is the atomic photoelectric absorption coef-
ficient of q-type electrons for frequency co,. For con-
venience we shall write the absorption coeKcient as
following a single term in the sum P,.C„,),"q", then

P (kq.),= (kq„/kqq)
—

&qik, fOr kd „)kd„

8=+ 8q=A)'
t."kq' (kq„' —kqq) (dg/dkq„),

dkq„, (2)
q J (kq2 kq 2)2+ rf 2kq2

The quantities o, and x are defined explicitly below. If
the absorption coefficient is expressed as a sum, as
discussed in the Introduction, Eq. (6) becomes

P=Q Pq ——AX'
/qkq (dg/d~v)q

dCO v)
(~2 ~ 2)q+ri 2~2

(3) 8=AX' Qq gq[P„C,„Re(jq),„] (6a)

where
17e p p—=2.7019'10«—

2~m, c' M 3I

and e= electronic charge, S=Avogadro's number,
m, = electronic mass, c =velocity of light, p = density,
3f=molecular weight, cv=2ms, u=incident x-ray fre-

quency; co.= 2x v. , v„=frequency of dispersion oscillator,
u, =2m& „s~= frequency of the q-absorption discontinuity;
(dg/dkq„)q = oscillator density of q-type electrons near kq„,

and q, = damping factor. Although the oscillators extend
in frequency from 0 to ~, the only ones actually operating
are those from kqq to ~.The quantity (8+iP) ispositive;
the minus sign in Eq. (1) indicates that the phase of
the scattered waves is opposite to the phase of the
incident wave. The imaginary term, iP, represents a
wave qr/2 out of phase, and is an absorptive term. This
wave has a negligible e8ect in angular deviations of the
beam, but has a significant role in scattered intensity
in the anomalous region, especially at small scattering
angles. ' The integral of Eq. (3) for P is easy to evaluate
and is discussed later. The essential problem is b.

~ For co very close to or„we must be careful of the value we
choose for or~. Fine structure is observed in the experimental ab-
sorption coefBcient in this region, structure composed of "reso-
nance absorption lines" Lof the sort reported by L. G. Parratt,
Phys. Rev. S6, 295 (1939);J.Trischka, Phys. Rev. 67, 318 {1945),
and by Y. Canchois and N. F. Mott, Phil. Mag. 40, 1260 (1949l].
Transitions to unfilled outer levels in the atom (or "bands" in
the solid) are properly included in the integral. It has become the
custom arbitrarily to take as co~ the frequency at the first inQection
point in the absorption curve, whereas a point about midway up
the absorption discontinuity is probably more realistic for use in
the dispersion equations.

I'" f' df l
fq

mac cog

Pa)
2qrse' Pq

—1
(8)

or g, may be obtained by some other method. "
Evaluation of the Integral

The following relations are convenient:

X=—kq/kq„y= (kqq/kq„)', S—=

l ='Qq/kq~

a—= (s(""—= 1/b

8—= tan 'l,

y =exp (2qri—/m)

Equation (7) becomes
1 ya

fJ,j,=kiss' dy,
~p y —s

and this can be evaluated by contour integration.

(10)

'E. J. Williams, reference 3, and J. A. Wheeler and. J. A.
Bearden, Phys. Rev. 46, 755 (1934).

and Eqs. (5), (8), (16) and (18) must be similarly
modified.

The oscillator strength g, in Eq. (6) may be obtained
from an integration of Eq. (4), in which Eq. (5) has
been inserted, viz. ,
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the use of this rule here minimizes calculational errors
due to uncertainties in the g, values, and conveniently
separates the normal and anomalous dispersion parts.
The P.A, 'A'Z, term is the normal dispersion term 0 the
P, terms are the anomalous contributions.

The expression for the modulus of the complex
atomic scattering factor is

j=Z.Lf~'+ f~,']-'*, (17)

Case I
I
s

I ( 1, i.e., x & 1/(1+/) ~. (I s
I

is the modulus of the
complex s).

~~~a~—n/2

sin+a.
LJ,]„r=sx' 1—

The sum from j=1 to ~ is easily evaluated to about
1 part in 10' by taking no more than 7 terms when

For
I sI near unity, the number of necessary terms in

Eq. (11) becomes impractically large, and we need a
closed form expression. When o. is rational, i.e., when m

and m are integers, the closed form is

where, for a single atomic species,

fi= f0++—g, I Re(J,)—1], f~ —=p/(AX'), (18)

and fo is the "normal" (i.e., &u not near co,) atomic scat-
tering factor (=Z if the scattering angle is zero as is
assumed for 6). Equation (17) neglects quadrupole and
octopole oscillators; this neglect is justified unless the
incident wavelength is small compared with the radius
of the Bohr orbit 8,. Quadrupole oscillators cause an
increase in f~ of the order of (2m 8,/X)' g,g, I Re(J,)—1]
and this increase depends, as does also fo, upon the
scattering angle. '

The expression for f2 requires evaluation of P. The
integration of Eq. (3) is readily carried out since (a)
only those dispersion oscillators respond appreciably
whose frequencies are very close to the incident fre-
quency, i.e., co„need be distinguished from co only in
their difference, and (b) the variation in the oscillator
density is negligible in this restricted range of frequen-
cies. Then,

= —s P yk" ln(1 —yksum)
=& (j ~)-

Case II
IsI &1, i.e., x&1/(1+/)&,

1J ] rr=sx' 1—a.
i Os/( j=+n) ~

(13)

and the closed form of the sum of Eq. (13), with e and
ys integers, is

so. P +k(m —n) ln(1 +ks—1/m) (14)
/-o z/( j+n) . ( dg i (2(1—x))

p =—A~'I —

I
cot '

2 Ed~„&, ( i. ) '

and, by use of Eq. (4),

c Sp p2(1 —x) ip=p p, = p / (~)„cot-'I I. (19)
q Zm(o M e

Equations (12) and (14) restrict u to the range
0(n(1, i.e., 1(p&3. Theory (with hydrogenic wave-

functions) predicts p)3 for ~&&&a, (see Hall, reference

4), and some advantage may accrue from use of the two-
term absorption expression C,).'+D,M discussed in the
Introduction. For o. ) 1, but for case I, o. cannot be an
integer, the open sums must be put into the form

T m—1
2'e Q ~km ln(1 gkT1/m)

2=1 j—6 kM
(20)w= 9'//~)Z. / (~).,

When x is appreciably greater or less than unity, the
cot ' term is m or zero for the q-type electrons, and

(15) P= a/k//4/r where /k~,

where 0 &e =e/m&—1, and 0 —=exp( —27ri/m), by sepa-
rating the appropriate terms and adjusting the index
of summation. For o. an integer, integration of Eq. (10)
is straightforward: The change of variable u=y —s
produces an elementary integral always containing as
one term J',' *I 'du. Since the path of integration is
well defined, there is no question about the argument
of the resulting logarithm.
I' Our final expression for 8 for a medium containing
different atomic species s becomes

h= P, A,)PfZ,+P, g,LRe(J,)—1]}, (16)

where the real part of Eq. (11) or (13), in either open
or closed form, is used for Re(J',). The q summation of

g, gives the atomic number Z by the so-called sum rule

'W. Kuhn, Z. Physik 33, 408 (1925), and F. Reiche and W.
Thomas, Z. Physik 34, 510 E,

'1925).

is the linear photoelectric absorption coefficient.
A more accurate method for evaluating P is to gather

the imaginary terms in the expression for J,. This
method is usually unnecessarily cumbersome; however,
it has been carried. out in the case of p= 2.5. If f terms
are neglected compared with ~, the value of p so ob-
tained agrees with Eq. (18) except that now the cot '
argument is 4(1—x')/| for x & 1/(1+t 2) *' and 4(1—x')/
x~f for x&1/(1+t2)'.

DAMPING FACTOR

There has been some ambiguity as to the proper value
of q, for use in the above expressions. Radiation damping
of a dispersion oscillator predicts q 02e' //3dnz, eTahis

' Confirmation of the theory for the normal dispersion term is
beautifully demonstrated by Bearden and Shaw, reference 3, and
by J. A. Bearden, Phys. Rev. 54, 698 (1938).
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0.01
0.03
0.05

0.10
0.20
0.30

0.40
0.50
0.60

0.65
0.70
0.75

0.80
0.85
0.90

0.95
0.98
1.02

1.05
1.10
1.15

1.20
1.25
1.30

P =2.0 p =7/3 P =5/2 P =11/4
—0.0001—0.0009—0.0025
—0.0100—0.0406—0.0929
—0.1695—0.275—0.416
—0.504—0.607—0.730
—0.879-1.068—1.325

—1.740-2.252—2.344

—1.44-1.36—1.32

0.0025
0.0097
0.0174

0.0368
0.059
0.059

0.018-0.061—0.190

-0.285—0.410—0.550
—0.72-0.94—1.35

—1.74—2.477—2.722

-2.195—1.840—1.657

—1.541—1.458—1.397

0.0021
0.0092
0.0181

0.042
0.092
0.111

0.098
0.033-0.080

—0.175—0.305-0.390
—0.65—0.89—1.25

—1.74—2.692—2.888

—2.308—1.91—1.71

—1.58—1.49—1.43

0.0014
0.0083
0.0197

0.048
0.116
0.169

0.195
0.169
0.064

-0.020—0.150—0.240

—0.52—0.78—1.25

—1.74—2.889—3.144

-2.469—2.021—1.794

—1.650—1.549—1.474

0.0009
0.010
0.013

0.046
0.128
0.209

0.266
0.275
0.202

0.139
0.035—0.150

—0.37—0,68
1023

—1.74—3.062—3.380

-2.619—2.08—1.83

TABLE I. Universal values of Re(J~—1).

0.0003
0.0027
0.0075

0.0297
0.1151
0.2449

0.3987
0.544
0.631

0.629
0.578
0.456

0.233—0.147—0.790

—2.004—3.606—4.225

—3.141—2.45—2,05

—1.87—1.74—1.63

course, if the q electrons are near the outer part of the
atom in a solid the splitting may be very large.

The state width 8', has not been measured for many
q's for many elements, but we may infer their values
from measurements of emission line widths, making
appropriate correction for the width of the final state,
or by extrapolation from a nearby Z whose t/V; has been
measured (the energy width may be taken as propor-
tional to Z4 if it is not much greater than W0). Thus, for
example, 8'~ for copper is about 0.30 x.u. ; 8 L,z, 5'i,zz

and S'I,zzz for wolfram, 0.56, 0.27 and 0.40 x.u. , respec-
tively. 8'~ and 8'~ values are much larger because of
non-radiative transitions.

To arrive at the value of g, for use in the above dis-
persion equations, we note that po ~ oP, and may become
very large for or))or~. For large or/or„ the "premature"
death of the q state (filling by another process) is of no
concern. For any or/or, and for any ratio rt, /rtrr, we may
write approximately

1.40
1.50
1.70

2.00
2.50
3.00

5.00
10.00
15.00

—1.014—1.003—1.00

—1.310—1.252—1 ~ 179

—1 ~ 119—1,072—1.048

—1.017—1.001—1.000

1033—1.270—1.195

—1.13—1.078—1.051

—1.019—1.002—1.00

—1.369—1.299—1.211

—1.140—1.084—1.057

—1.019—1.005—1.002

—1.40—1.320—1.225

—1.148—1.091-1.063

—1.02—1.005—1.00

—1.49—1.390—1.270

—1.180—1.107—1.070

—1.023—1.006—1,00

where 5", is in x.u.

.0.6

0,4

Fe
0.118

/
4.0

(21)

value gives for the full width at half maximum of the
q-state W0= (2rro/or, ')r10=0.118 'x.u. for all states of all
atoms; whereas observed E-state widths, for example,
vary from 0.70 x.u. (0.58 ev) for argon, "0.15 x.u. (8 ev)
for silver, "to 0.118x.u. (62 ev) for gold;" and observed
I.i widths are 4.6 x.u. (5.3 ev) for silver, "and 0.52 x.u.
(8.7 ev) for gold.""

In general, H/'0 is less than the observed widths, and
two reasons are presented to account for the difference:
First, the classical oscillation may be prematurely
interrupted by the 6lling of the q-electron vacancy by
another electronic transition (either radiative or non-
radiative), and, second, the energy position of the

q state is broadened by splitting of the state into unre-
solved multiplet states due to interactions between the

q vacancy and outer electrons of the atom or neigh-
boring atoms. The early interruption of the oscillation
may properly be considered as contributing to p„but
not the splitting of the state. The splitting is probably
negligible for E states for atoms Z) j.6 and for I states
for Z~45, except for the transition elements 5 and, of

"L.G. Parratt, Phys. Rev. 56, 295 (1939)."L.G. Parratt, Phys. Rev. 54, 99 (1938).
'3 F. K. Richtmyer, Revs. Modern Phys. 9, 391 (193'l). The

E width for gold has not been directly measured; the value 62 ev
is believed to be better than the value reported by Richtmyer.

'4Previous discussions of the comparison of classical and ob-
served widths have been in terms of emission lines; this is incor-
rect. It is evident from the integrated form of Eq. (3), that
f(=q, /co) refers to the width of the absorption edge or state.

'~ Widths of lines for transition elements have been measured
for E lines; e.g., see Fig. 6 of L. G. Parratt, Phys. Rev. 50, 1
(1936).

0.2

0.0

-0.2

.04

-0.6

UNIVERSAL ANOMALOUS
DISPERSION CURVES

-0.8
Re(Jq-I)

- I.O.

- I.2

- I.4

l,6

l.8

-2.2

-2.4
I

OX)2 004 OQ6 O.l 0.2 04 (I 1.0 20 4.0 6Q l0

4

Fxo. 1. The anomalous dispersion for any q shell of electrons
for any atom is equal to Re(J~—1) multiplied by the oscillator
strength. Re(J~—1) may be taken from this curve for the appro-
priate P~ value where P~ is the parameter in the distribution of
dispersion oscillators C,X~~. Curves for five di6'erent p~ values are
shown.
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TABLE II. Dispersion calculations for copper E region.

Line x(A) x/xx gg Re(J~ —1) gl.r Re(JI.r —1) gL,rr, rrr Re(Jrr, rrr —1) gm Re(Jm —1) f2

Mo Enr
Pb Lnr
Ge Enr
Zn EPr
Ir Lnr
Cu Epr
Zn Enr
Cu En1
Ni Enr
Co Enr
Fe Enr
Cr Enr

0.709 0.514
1.175 0.852
1.254 0.910
1.295 0.939
1.351 0.980
1.392 1.010
1.435 1.041
1.541 1.117
1.658 1.202
1.789 1.297
1.936 1.404
2.290 1.661

+0.209—1.097
—1.793—2.358
—3.850—4.949
—3.471—2.565
—2.187—1.965
—1.816—1.629

—0.005—0.014
—0 016'
—0.017
—0.019—0.020
—0.022—0.025
—0.029—0.033
—0.039—0.055

0.083
0.156
0.168
0.175
0.184
0.190
0.196
0.213
0.231
0.251
0.272
0.321

0.013
0.026
0.029
0.030
0.032
0.034
0.035
0.039
0.043
0.048
0.054
0.068

52
198
234
261
290
38

51
62.8
76
96.3

150

1.37 0.332
3.16 —0.752
3.49 —1.390
3.77 —1.906
4.02 —3.337
0.51 —4.740
0.55 —3.255
0.62 —2.349
0.71 —1.932
0.80 —1.688
0.93 —1.513
1.23 —1.267

)K= 1.379A
XLz ——12

&I.rr, zzr =
XM = 160

px= 11/4
pLI =2

pzzz. zn=s/2
p~=5/2

gK = 1.33
gLr =

gLzz, zrz= 4
gM

WK =0.30 x.u.
8"Lz —— 30

~Lrr, rrl =
5'M =2000

p= 8.936
3/I =63.57

The only reliable method of knowing the relative
effect of damping is to have the complete expressions
and to make the necessary calculations. In the special
cases of p values shown below, an eGort has been made
to separate the damping terms so that, with g, known,
their relative effects can be readily seen.

Re[J,—1$~),' ———3a' 1 (1+a)'
—ln

4 2 1—2a cos~~O+a'

For this case, v=3 and nz=4. For ~s~ &1

( a sin48
+2 tan —'a —n.

~

1——
~

——tan —'(
~

. (24)
4 ) 4 &1—a cos~O)

SPECIAL CASES OF P VALUES

(1+b)'3
—ln

4b' 2 1—2b cos~~O+b'
Re[J,—1]„,"=—

7f ( b sin48—2 tan-'b+ —tan-'I —

~
. (25)

4 &1—b cos~~O)

For p (or n) equal to an integer, the integration for

J, is readily carried out as already discussed. In this Fol
) s~ ) j)

section we shall give examples for p=7/3, 5/2, and
11/4.

In the following formulas, 2nd and higher powers Of

f' have been neglected compared to unity except where

important, and the terms have been written in a form
intended to make calculations easy.

P ='7/3

For this case, v= 2 and m=3. For
~

s
~ &~1,

2a' 1 ( 1+a+a'
Re[J,—1)pP= — —lnj

3 2 (1—2a cos-', 8+a')

(v3a q ~ ( 51-)
+v3 «n-'I

VS E VS)

5f ( a sin —',8——tan-')
~

. (22)
3 41—a cos-', 8)

2 1 ( 1+b+b'
Re[J,—1]„,» = — —ln(

3b' 2 &1—2b cos-', 8+b')

(u3b y 5| ( b sin-', 8
I+—«n—'(

I . (23)
&2+b) 3 E1—b cos-,'8)

Re[J,—1j&g)4'=—
/a' 1 (1+a)'

—ln
8 2 1—2a cossO+a'

1 (1+&2a+a'y
+—1n( ~+2 tan 'a

I 1—&2a+ a2)

(v2a q ( 15|
+%2 tan 'I

I
—~ cot-,'~l 1— tan-', m

&1—a') ( g j
15$ ( a sin-,'8

tan —'i
i . (26)

8 &1—a cos-',8)

Note that in this case p=5/2, if damping is assumed
to be zero, Eq. (1) or (7) can be integrated directly,
since p is a half-integer. ' The value for b, obtained from
Eqs. (25) and (16), when )=0, is identical with the
value reported by Williams. '

p= ll/4
For this case, I=7 and m=8. For js~ &1
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K-Region of Copper

~Normal
Scattering

small that it can be neglected in all cases where X/P, »

differs from unity by more than 10 ' (or 10 ' in most
cases). In general, no oscillator strength g,ris rneaning-
fully known as well as one part in 10', nor is the ratio
/), meaningfully known as well as about one art in

104 ',because of the large intrinsic line width, and
Ilail

T
ecause of unresolved structure in the absor tion edp ione geq.
hus, for practically all experimental problems in

anomalous dispersion, we may write

-5.0-

60-

-7,Q-
I i I

0.4 G6

~ ~ ~ Rusternotz

+ + + Glocker and Schoter

X X X Wyckatf

x

+ I

I

I

I.6
I &

X I r I & I

0.8 I.o I.2 I.4

and
cos (II/rm)

=' 1—(1s/2m ) =' 1, (29)

s/sL ( 12 q ) s/m

I 1+ + I=I —
I (»)

b E)s) ( 2m ) E),s)

E IG. 2. ComparIson of calculated and measured scattering factors
(at zero angle) for copper in the E region.

For IzI &1,

ReP', —1j
7 1 (1+b)'

—ln
Sb' 2 1—2b cos-'8+b'

1 )1+i/2b+b'y
+—lnI I

—2 tan 'b
v2 &1—V2b+b')

/r v2b y 15& ( b sin-,'0
I+

E1—b') ll E1—b cosse)

In each of these cases the closed form of the sum has
been used, but the open form may be the more con-
venient except when x is between about -,'and 2 de-

pending upon the desired accuracy.

and introduce thereby a negligible error, less than about
0.2 percent.

With damping neglected, Re(J,—1) is independent
of the atomic number and of the particular electron
shell, and depends upon only p, . Curves of Re(J,—1)
es )t/)t, for various values of p, are therefore universal
anomalous dispersion curves; and if p, and g, are known,
the magnitude of the anomalous dispersion for each
q-shell of electrons in any atom can be readily deduced
therefrom. The calculations for such curves are pre-
sented in Table I for five different p, values, and the
curves are shown in Fig. 1. Interpolation for an inter-
mediate p, value is possible.

TfI we wish numerical values of anomalous dispersion
when )t/)t, is within 10 4 or 10 ' of unity, we must
revert to the equations and retain the damping factor.

CALCULATIONS

0 -o

ANOMALOUS DISPERSION

( Atomic Scattering Factor)

L- Region of Nittlfram

g
(For comparison with the two L subgroups listed in

Table II, we have also calculated gr. Re(Jr.—1) for the
L electrons as a single group with pr, =7/3. The dif-

ference ranges from 21 percent at 0.709A to 10 percent
a,t 2.290A.)

For the wavelengths of Table II, the largest f value

isirc 5. &(41 Oa——t0.709A, and smallest the is lrc ——0.40
)&10 4 at 2.290A.

6.0

8.0-
L111

l

I

I

I ~
I & I

LO 12

L1 L11

I I

I I

I
/

I I
I I ag

0.8

xperlmen

' R. Glocker and K. Schafer, Z. Physik 73, 289 (1931) and 86,
738 (1933);and R. W. G. Wyckoff, Phys. Rev. 36, 1116 (1930).
The corrected observed values of f are subtracted from the
Thomas-Fermi fj&=1/.3 for the 1110)planes of Fe.

'7 A. A. Rusterholz, Z. Physik 82, 538 (1933).
'8 J. Brentano and A. Baxter, Z. Physik 89, 720 (1934).

IO.O—
I & I

0.4 0.6
I r I i I

I.4 I.6 I.8

FIG. 3. Comparison of calculated and measured scattering factors
(at zero angle) for wolfram in the L region.

UNIVERSAL ANOMALOUS DISPERSION CURVES experimental measurements of f fs for iron, "—copper"

By evaluation of the above equations, we see that and for wolfram 18 The wavelengths used in these ex-

the term t is of the order of 2&&10 ' or less, sufficiently periments are not sufliciently close to X, to warrant
inclusion of the damping factor.

Table II lists calculations for copper. The f fs-
values are compared with experiment in Fig. 2. The
constants used in the calculations are given under the
table. The calculated curve from Honl's theory for E

2.0- electrons is also shown in the 6 ure.
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TABLE III. Dispersion calculations for wolfram I region.

Line X(A) &/&Lrrr gz Re(Jz —1) gIr Re(JIr —1) grrr Re(Jirr —1) glrrr Re(Jirrr —1) gM Re(JM —1) gx Re(JN —1) pl jp f2 f—fe

Sn Xnr
Ag Xnr

Rh Enr
Mo Enr
Zl Enr
Th Lnr

Zn Xpr
Zn Kxr
Cu Xnr
Fear
CrEnr

0.491 0.404
0.560 0.461
0.613 0.505
0.709 0.584
0.786 0.647
0.956 0.788
1.295 1.067
1.435 1.182

1.541 1.269
1.936 1.595
2.290 1.886

—1.284—1.266
—1.259—1.247
—1.236—'1.222
—1.214—1.211
—1.209—1.206
—1.204

—0.052—0.156
—0.266—0.536
—0.851—2.305
—2.014—1.833
—1.750—1.591
—1.529

0.086
0.020

—0.049—0.239
—0.466—1.444
—1.889—1.668
—1.573—1.399
—1.332

0.234
0.165

0.082—0.143
—0.411—1.422
—5.128—3.904
—3.522—2.948
—2.755

0.679
0.813
0.902
1.059
1.179
1.425

1.808
1.912
1.967
1.967
1.649

0.061
0.074

0.084
0.104
0.120
0.158
0.241
0.277

0.305
0.415
0.521

36 3.98 0.150
52 5.04 —0.178
68 6.01 —0.260

104 7.94 —0.572
137 9.44 —1.052
238 13.49 —3.508
107 4.48 —8.045
141 5.32 —6.218
172 6.05 —5.513
303 8.48 —4.245

470 11.12 —3.764

)K= 0.179A
XI.I= 1.024

'Al, zz = 1.074
)ltl.zzz —1.214

X~= 5.51
)~=56

pK= 11/4
pr, r = 7/3

pr.n =3/2
pr, nr =3/2

pm= 5/2
pg ——5/2

gK= 1.2
gLI =

gr.zz = 1.2
gr.zzz= 2.4

go=18
go=36

~"l,z =0.56 x.u.
W'L, zz =0.27

5"l,zzz =0.40
20

W~= 1200

p= 19.30
3E= 183.92

Table III lists calculations for wolfram, and com-
parison with experiment is shown in Fig. 3. Again the
constants used are given under the table. The I.
electrons are subdivided; the M and S electrons are not.
The oscillator strengths used here, as in the copper
calculations, are selected on an arbitrary weighted
average basis from theory and experiment, '»" as are
also the p, values. Since fs is of minor importance, the
electron shells are not subdivided for P.

For the wavelengths of Table III, the largest 1 value
is /sr=15. 5X10 ' at 2.290A, the smallest is t err 2.5
)&10 4 at 0.786A.

For such cases as this one for wolfram, the magnitude
of Re(Jx) is sometimes assumed to be zero and the
normal dispersion reckoned as 5=A7i'(Z —gx) of

fs Z gx W——ere —this .done, the f fs scale o—f Fig. 3
would be dropped by 1.2 units and the calculated curve
would go above f fs= 0, as it do—es for the copper case.

Wavelengths for both tables are taken from Cauchois
and Hulubei. "

So-called normal dispersion refers to a region of wave-

lengths for which f fs is a con—stant; whether this
constant is zero or gx (or gx+gr„etc. ) is not now im-

portant. It is seen from the above calculations that the
anomalous contributions from various electron shells,
in addition to the particular shell whose ), is in the
wavelength region under study, is rarely negligible—

there is Praclically no region of normal disPersion This.
is illustrated in Fig. 4 for the entire region 0.1 &'A & 100A
for copper.

.28

CALCULATED

OlSPERSIQN

for Copper

K- electrons only

SUMMARY

The distribution of "dispersion" oscillators in an
atom can be written generally as the sum of e terms of
the form C„,) &&".This distribution appears in a complex
integrand in the expression for x-ray dispersion (either
for the refractive index or for the scattering factor).
The general integration of any term of this distribution
has been carried out.

Damping of the oscillators has been retained in the
integration, and the resulting equations allow ready
evaluation of the numerical e6ect of damping. For prac-
tically all of the dispersion region, the damping can be
neglected with an error of less than 0.2 percent. Then,
universal anomalous dispersion curves can be used to
determine Re(J,—1) which, when multiplied by the

'9The 3f-oscillator strength is, on one hand, less than the
number of j/I-type electrons because of virtual transitions from
outer shells, but, on the other hand, it is augmented by virtual
transitions to inner shells. It is estimated that the increase is
greater than the reduction for copper, and about equal for wolfram.

0 Y. Cauchois and H. Hulubei, I.onglelrs d'Orlde des Emissiorls
X et des Discont&zuites d'Absorptiori, X (Hermann and Company,
Paris, 1947). For copper, )K is taken as 1.379A, about 9 ev less
energy than is reported in this reference, for the reason men-
tioned in footnote 7 Lalso see Fig. 6 of W. W. Beeman and H.
Friedman, Phys. Rev. 56, 392 (1939)7.

-22

-20

,j K-8 L-eleCtrOnS
I only

Ql 0.2 Q.4 Q.6 I.Q

I

4 6 lQ 20 40 60 l00

(A) ~
FIG. 4. There is practically no region of normal dispersion when

several electron shells are included in the calculations.
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oscillator strength and summed over all q shells, gives
easily and quickly the anomalous dispersion for any
atom.

Sample calculations for the E region of copper and
for the I. region of tungsten have been made, using in
each case only one term in the oscillator distribution for

each q shell. Comparison with experiment shows less
satisfactory agreement than with the previous less exact
calculations. This disagreement is believed to be due to
(a) the difficulties inherent in the experimental meas-
urements, and (b) neglect of parts of the calculations
in previous comparisons.
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By studying the self-consistent-Geld (SCF) functions tabulated in the literature, it is shown that a
quantity, which for a hydrogenlike function would equal the atomic number Z, for SCF functions will
represent a form of "effective nuclear charge" Z,ff, which for a series of consecutive atoms or ions appears
to be an almost linear function of the atomic number, convenient for interpolation purposes. The positions
and magnitudes of maxima and minima, nodes, derivatives in origin, eigenvalues, etc. , are investigated by
considering the corresponding effective nuclear charges. It is important that the nodes may be interpolated
separately, since the logarithm of an SCF function, divided by a polynomial having the same zero points
as the function itself, may be used for interpolating SCF functions as a whole. This logarithm may also be
used for defining a continuously varying effective charge Z,«(r), which is convenient for interpolation
purposes or for estimating fields with exchange from those without exchange.

'HE numerical work involved in each cycle of the
integration of the Hartree-Fock equations for

atomic self-consistent fields (SCF) with exchange by
using the technique developed by Hartree' is quite
large, and, in order to secure a rapid convergence of the
process, it is therefore important to have as good
"initial" functions as possible. For this purpose it is
now possible to utilize the properties of already tabu-
lated fields; Hartree has shown that rather good esti-
mates of the initial functions could be obtained simply
by interpolating their departures from properly scaled
hydrogenlike wave functions. A function Ii(r) is here
said to be obtained from another f(r) by change of a
scale factor A., if

F(r) =Mfa, r),

which transformation leaves the normalization integral
invariant.

Brown, Ba,rtlett, and Dunn'' have shown that the
SCF wave functions can be approximately transformed
into each other by using scale factors P, which are ob-
tained from the reciprocals of the positions of the
maxima and minima of the tabulated functions and
which appear to be almost linear functions of the atomic

*This work was supported in part by the U. S. Office of Naval
Research, in part by the Swedish Natural Science Research
Council, and in part by the Elizabeth Thompson Science Fund.

'For a survey, see D. R. Hartree, Repts. Progr. in Phys. 11,
113 (1946).' Brown, Bartlett, and Dunn, Phys. Rev. 44, 296 (1933).

'See also Hartree, reference 1, p. 126, Fig. 1, for another
example.

number Z. Hartree and Hartree' have used a similar
idea for scaling the departure of the SCF functions with
exchange from those without exchange. In a slightly
modified form, the scaling method has recently been
used also by Scherr' in Chicago.

Using a somewhat diferent approach, Arnot and
McLauchlan' and Manning and Millman~ have shown
that, instead of the wave functions themselves, the
eGective nuclear charges associated with the SCF poten-
tials may be used for interpolation purposes. On a
large-scale basis, these total charges have recently been
tabulated by Freeman' for all 6elds available.

In the first paper of this series, ' it was shown that
SCF wave functions could be interpolated (and to some
extent extrapolated) with a surprisingly high accuracy
by means of analytic expressions of Slater type. The
purpose of the present paper is to investigate whether
it is possible to carry out similar interpolations directly
in the numerical tables of the functions involved,
without the help of the analytic forms. We will 6rst
show the existence of some simple regularities for
quantities like the positions and the magnitudes of
maxima and minima, derivatives in origin, nodes,

i D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).' C. W. Scherr, J. Chem. Phys. 21, 1237, 1241 (1953).

s F. L. Arnot and J. C. McLauchlan, Proc. Roy. Soc. (London)
A146, 662 (&934).

r M. F. Manning and J. Millman, Phys. Rev. 49, 848 (1936).' A. J. Freeman, Phys. Rev. 91, 1410 (1953).
'P. O. Lowdin, Phys. Rev. 90, 120 (1953), in the following

referred to as Part I.


