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Gyromagnetic Ratio in the Hyperfine Structure of Doublet States*t'

W. W. CLENDENINf.
Yale University, %em IIaven, Connecticut

(Received March 10, 1954)

Perturbation of the hyperfine structure of an electronic p«& state by the p»& state is calculated using
relativistic electronic functions. The main effects are a change in apparent nuclear g factor and a common
lowering of all pl&2 sublevels. Energy corrections due to the perturbation of one level of a doublet term by
the other when i is —, and j is arbitrary are also obtained.

I. INTRODUCTION where
Hp —cn y ———eAp —Pnzc'."N the usual theory of hyperfine structure of an atom

- ~ in a magnetic field, the eBects of the nucleus and
applied field are treated as perturbations and the part
of the secular determinant arising from unperturbed
levels of the same energy is considered. When either j
or i is» this leads to an equation of the Breit-Rabi'
form. Inclusion in the secular determinant of matrix
elements between the components of a doublet elec-
tronic term, e.g. , between p; and p. components, gives
second-order corrections to this equation. Foley' has
treated the corrections for p; states, using nonrelativistic
wave functions, and he has shown that they lead to a
change in the apparent nuclear g factor. In the present
work this treatment is modified by using relativistic
electronic functions and the case i = -,'is also considered.
The procedure has been to compute matrix elements of
the perturbing terms of the Hamiltonian between states
of definite f, mr. These are used in the secular deter-
minant and this determinant is solved to order 1/8,
where 8 is the doublet separation. Expressions for the
energy are thus obtained which are applicable for a
range of 6eld strengths such that the perturbing terms
are small compared with 5

For application to a single electron outside of closed
shells, Ao is assumed to depend only on the radial
distance r, of the electron from the nucleus and the
nucleus is taken to be stationary. The solutions of Kq.
(2) used here are the same as those given by Darwin'
except that a factor exp['pri(rtt, ——',)] is included for
m, &0. This choice of phase is convenient since the
operation of the electronic angular momentum J then
takes the form

J,%, ( tr)t=m, M, (tpt, ), (4)

(J,at'J„)+, (rrt;) = h[(j +rrt, ) (j+m+1) ]&l;(rrt, +1).
(5)

Here +, (rrt, ) is the sol'ut;ion of Eq. (2), corresponding to
particular electronic quantum numbers j, m;.

The nucleus has been treated as of negligible spatial
extent and of infinite mass so that it is taken to be
stationary. 4 As is well known the angular momentum
operators I, I„, I, of the nucleus may be represented
by noncommuting matrices and the nuclear spin func-
tions by column vectors 1V, (rrt~), belonging to values i
and m, of the nuclear spin quantum numbers. Wave
functions of the combined system of electron plus
nucleus are linear combinations of products of the type
+, (m, )~V;(ttt,). Combined functions belonging to par-
ticular quantum numbers f, mr of the total angular
momentum F=J+I are obtained by using the coef-
ficients of the product functions given by signer. '
These functions with definite f, rite are the base func-
tions used in the perturbation calculation.

II. UNPERTURBED SOLUTIONS

The Dirac Hamiltonian for an electron in an electro-
magnetic field is

H = cn (p+—(eA. )/c) —eA p
—Pmc',

where —e is the charge on the electron and Ap and A

are the scalar and vector potentials, respectively. In
this problem the e6ect of the vector potential is treated
as a perturbation. The unperturbed electronic functions
are solutions of the equation

III. PERTURBATIONS

IIp@ = Ep@',
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The perturbing term of the vector potential is, from
Eq. (1), —en A. The vector potential A has a part

(2) t K)&r,]/2 due to the external field K and a part.
L'1s;)&r,]/r, ' due to the nuclear moment It;. Here r, is
the position vector of the electron with respect to the
nucleus. An additional perturbation is the energy
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a, , ,= (2eg,ppk/j (j+1)] F,G,r, 'dr„
Jo(6)

7
b;,; i= —[eg,lip/2j]) (F, iG+F,G, i)r, 'dr,

(8) 0

(e/2)BC,B.—=X,

eg;yo(I B)/kr. '= I',

g;p—pe,I,/k =Z. —

—y.; X of the nuclear moment in the external held. Here a, , , and b, , I are the coupling constants
If 3!is taken in the s direction, the three perturbations
become (16)

(17)

f00

g, '=g, 1—{4k/(2k —1)) F dr, ,

~00

E= Gg+(Il'2) G~ (~l'~)dre. (12)

Here g, is the Lande g factor while k is the quantum
number introduced by Dirac and equal to —l—1 for
j=l+srand to l for j=l——,'. The functions F; and G,
are solutions for particular j of Dirac's radial equations
in the form used by Gordon, ' with the normalization

f
(Fys+GP)dr, = 1. (13)

The second term in the brackets of (11) is the relative
correction to g, discussed by Breit' and by Margenau. "

The matrix elements of (7) are most readily ex-
pressed in terms of coupling constants of the interaction
between electron and nucleus. Between states of de6nite

f, m the matrix elements are

(ij,f,mi I Y
~
i,j,f,m~)

= (a,;,/2)ff(f+1) j(j+1)—i(i+1)]—, (14)

(ij f mf
I
Fli,j—1, f mi') =~ (», -i/2)l:(f+ j—i)

X (f+i j+1)(f+j+i+1—) (j+i f)]l (15)— .

o P. Guettinger and W. Pauli, Z. Physik 67, 743 (1931).
r M. H. Johnson, Jr., Phys. Rev. 38, 1635 (1931).
s W. Gordon, Z. Physik 48, 11 (1928). In order to avoid double

double subscripts, F is here used for Gordon's &1, and 6 for his p2.' G. Breit, Nature 122, 649 (1928).I H. Margenau, Phys. Rev. 57, 383 (1940).

Here B is the matrix vector nX r„pp is the Bohr mag-
neton, and the nuclear moment p, is g,'@pi/k, I being
the nuclear angular momentum operator.

Matrix elements of matrix vectors of the type of (6),
(7), and (8) have been given by Guettinger and Pauli'
and by Johnson. ' All the nonvanishing elements are
diagonal in no~, and f differs in the initial and final
states by 0, &1. The elements of (7) are diagonal in f
while those of (8) are diagonal in j.

Matrix elements of (6) between states of different f
are given in terms of the elements of (6) between elec-
tron states 4', (m, ). These are

(@,(m, ), X%', (m;)) = lPiCp, g,' m, , (9)

(4'i+; (m, ), X+i;(m, ))= lip X.Ã{(l+ ,')' m-p—) l/(2l+1)
(10I

The quantities g,
' and Ã are given by

Choice of the double sign in (15) depends on the relative
phases of the functions belonging to j and j—1. The
coupling constants a, , ; and b,;, ~ are those of Breit and
Wills' paper. " In their notation which was also that of
Goudsmit" a, ,= a' for j= l+ —',, a;,=a" for j= l—st, and
b

fll

Matrix element. s of the third perturbation, (8), may
be expressed in terms of the diagonal matrix element
between states X,(m, ), which is

(lt7, (m, ), ZX, (m, ))= —g,pp X,m, . (18)

Here Eo is the unperturbed energy and AI is the zero-
field separation, given by

Zv = (i+-,')Lu"—2 (a"')'/8].

The remaining undefined quantities are

(20)

g = g, (1+4%a"'/3g, b), (21)

x= (g, '+g, ')po 3('./&V. (22)
"G. Breit and L. A. Wills, Phys. Rev. 44, 470 (1932).In terms

of q1, q 2 of Breit and Wills the functions used here are F= p&,6= q2, Ii, G of Breit and Wills dier from those here and are
expressed in terms of y&, y& by their Eq. (15).

'~ S. A. Goudsmit, Phys. Rev. 37, 663 (1931).

All matrix elements of the perturbations between states
of definite f, m~ are given in terms of (9), (10), (16),
(17), and (18) by means of the Guettinger-Pauli for-
mulas, and the secular determinant may thus be set up.

IV. ENERGY LEVELS OF py STATES

Since the matrix elements are diagonal in m~, the
secular determinant breaks up into smaller deter-
minants corresponding to a given mi. For the p;, p;
doublet there are, in general, six values of f and the
smaller determinants have six rows and columns. These
may be solved in an approximation equivalent to the
standard second-order perturbation approximation. The
diagonal elements belonging to p; are approximated
by 6, the doublet separation. Off-diagonal elements be-
longing to the p, state and elements between pl and p,*.

states a,re eliminated to order 1/8 by adding multiples
of rows and columns. The determinant is thus reduced
to one with two rows and columns, the elements of
which contain second-order terms. This is solved for the
energy K The result is

Av Av ( 4mys
gj ppKgmi'&

~
1+ +s

2(2i+1) 2 ( 2i+1 )
2 (8"')' 2lips Kg'iV'

i (i+ 1)— . (19)
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TABLE I. Values of correction terms in Eq. (28) and Eq. (27).

Gallium
Indium

—(~ )/C~(2 +&) '~7

—0.0062—0.0043

—(a2) ~/L6(22, +i)g;a7

—0.0058—0,0035

V. APPLICATION TO GALLIUM AND INDIUM

Using nonrelativistic wave functions for the electron,
Foley' found that

g =g,{1—(Av)/L6(2i+1)g, bj). (28)

Equation (27) is seen to be identical with this except
for the factor Sy in the correction term. Taking S to be
approximately unity, the eGect of p in the cases of
gallium (Z=31) and indium (Z=49) is shown in
Table I.

The change in apparent nuclear g factor appears ex-
perimentally in a diGerence in values of the g factor
obtained from atomic beam experiments and those
measured by magnetic resonance methods. Existence of
such discrepancies has been pointed out by Kusch. "
Using experimental values of the nuclear moments

"P. Kusch, Phys. Rev. 78, 615 (1950).

Equation (19) is seen to have the same form as the
Breit-Rabi equation except for the addition of the last
two terms which are the same for all sublevels of the p;
state. Perturbation by the p; state also adds a small
correction term to Av, but the main eR'ect is to replace
g;withg .

The magnitude of this effect may be estimated by
using the values of a" and a"' obtained by Breit and
Wills. "Near the nucleus, where the integrands of (16)
and (17) are large, a Bessel function approximation may
be used for the electronic functions F and G. In this way
the above authors obtain

(a"'/a") = —(1/16) (8/5). (23)

Here F and 8 are relativistic correction factors given by

&=3~Lp"{4(p")'—1)j (24)

h = (4/prZ'n') sins-(p" —p'). (25)

quantity p'=(4 —Z'rr')', W»ie p"=(1—Z'rr')',
where Z is the nuclear charge and n is the fine structure
constant. The ratio y= h/P is

y = 1—1.396Zsns —0.121Z4a4+ ~ ~ ~ . (26)

Since the term (a"')'/8 in Av is small compared with a",
one has, approximately,

a"= (264 )/(2s+1)
g'ith these approximations the apparent nuclear g
factor is

g''=g'Ll —u ~)iVx/{6(»+1)g'~}3. (27)

quoted by him, the ratio of the apparent moment from
atomic beam work to that from magnetic resonance
work is 1—0.0079&0.0023 for Ga" and 1—0.0077
&0.0017 for Ga". The theoretical values, both the non-
relativistic —0.0062 and the relativistic —0.0058 are
seen to differ from the experimental ones by an amount
about equal to the assigned experimental error. This
difference may be due, as Foley has suggested, ' to con-
figuration interaction in the p, state.

VI. ENERGY LEVELS FOR i=1/2

When i = s, there are just four values of f belonging
to a doublet term, and the secular determinant breaks
down into smaller determinants having four rows and
columns. Solution of these may be carried out along the
same lines as in IV. The energy E of a doublet com-
ponent is

E—Ep —— —+g,'f4 p X,risr
2(2jy 1)

Av" 4nsgx
&—1— +x'+ P +D. (29)

2 2j+1
Here Eo is the energy of the unperturbed level. The
quantities I" and 6 are second-order corrections given by

p = (4/~) {—~fa"'y~Ly'(»)/(j+ s)
—xya"'(l(i+1) —mg') —xysmg(hi )j), (30)

S= (1/S) {—(u+ 1)(2)+ 1) (a'")'/4
~t "'(~ )y+y'(~ )'(i(1+1)— ')3) (»)

The upper signs in (30) and (31) apply to j=/+-,'and
the lower signs to j=l—-', . The parameter x is
(g +g,)pp K /(Ap) and y is pp BC lV(21+1)(54), where
As is the zero-6eld separation given by

~ = (j+l){a"—
I &+1l (a"')'/» (32)

Unlik. e the case when j=-'„ the second-order perturba-
tion does not take the form of a change in apparent
nuclear g factor, but can only be expressed by means of
the more complex correction terms F and A.

VII. SUMMARY AND CONCLUSION

The perturbation of an atomic p, state by the p.;. state
leads to second-order corrections to the Breit-Rabi
equation. The main eGects of the correction terms are:
1) to change the apparent nuclear g factor, and 2) to
add a term which lowers all the sublevels of the p4
state equally. Perturbation of one component of a
doublet by the other when neither j is —,

' buti =
~ leads

to the correction terms (30) and (31) to the energy
equation.

The author takes pleasure in expressing his gratitude
to Professor G. Hreit for suggesting this problem and
for valuable discussions during the course of the work.


