SEARCH FOR F-CENTER LUMINESCENCE

F-center theory, which predicts luminescence near
10 000A with 100 percent efficiency, is not correct.
It is possible that a more detailed theoretical investiga-
tion of the configuration coordinate curves for the
F center, both in its ground state and in its excited
state, might lead to a better understanding of these
results.
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A theory is put forth to explain the electrical effects which accompany phase changes occurring in dielec-
trics and aqueous solutions. Ionic movement in the interface is treated as a transition between energy
levels separated by potential barriers. The height of the barriers and the value of the energy levels are
supposed to be different for positive and negative ions. Such a model results in a net current flow across
the solid-liquid interface. When the interface moves during a phase change of the system, the excess electric
charges thus produced constitute space charges in the solid and surface charges in the liquid. The field of
the global charge distribution causes the appearance of the currents and potential differences which have
been observed between the plates of a condenser containing the dielectric.

INTRODUCTION

OSTA RIBEIRO, a Brazilian physicist, while
studying electret behavior and related effects,
discovered in 1944 that solidification and melting of
many dielectrics are accompanied by charge separation.!
He found that the phenomenon is observed only if the
phase change proceeds in an orderly fashion, that is, if
a definite phase boundary (or interface) exists between
the solid and liquid phase. Displacement of the interface
in one direction corresponds to solidification, and
displacement in the opposite direction to melting. A
system in which such a process occurs, has properties
similar to those of a primary cell with very high
internal resistance. Measurements were made of the
short circuit current and the total charge separation.
The first observations concerned dielectrics like car-
nauba wax, naphthalene (where the effect is particularly
strong), and paraffin; however, occurrence in ice was
also mentioned. Costa Ribeiro concluded that the effect
was a general one: Production of currents and charge
separation in dielectrics during phase changes. Later
Workman and Reynolds? and Alfrey and Gill® found
that orderly solidification of many aqueous solutions
gives rise to the appearance of considerable open-
circuit potentials (of the order of hundreds of volts)
which become measurable when the freezing is observed
1J. Costa Ribeiro, thesis, Universidade do Brasil, 1945; Anais
acad. brasil. cienc. 17, No. 2, 2, 3 (1945); 22, 321 (1950).
2 E. J. Workman and S. E. Reynolds, Phys. Rev. 74, 709 (1948);
78, 254 (1950).
3E. W. B. Gill and S. A. Alfrey, Nature 169, 203 (1952);

E. W. B. Gill, Nature 169, 1109 (1952); Brit. J. Appl. Phys.
Supplement 2, 16 (1953).

inside a condenser in open circuit. These authors also
give astonishingly high values for the total charge
separation in aqueous solutions, and this was thought
to be significant for the interpretation of atmospheric
electricity. For this reason the effect, besides its theo-
retical interest, is likely to become of practical impor-
tance. Recently Krause and Renninger* found that
individual crystals of pentaerythren become electrically
charged during crystallization from a supersaturated
solution. Numerous other papers have been published
since 1944 on similar matters, partly in continuation of
the previously mentioned ones,® partly independently.®
It is also worth mentioning that as early as 1940 some
observations along the same line were reported in
meteorological papers.” It has already been asserted
that the findings of Costa Ribeiro and Workman and
Reynolds refer to the same effect® as does, in the
author’s opinion, the evidence contained in all previ-
ously mentioned papers. It is therefore justified to call

4B. Krause and M. Renninger, Naturwiss. 40, 52 (1953).

5 J. Costa Ribeiro, Abstracts of Simposio sobre Novas Técnicas
da Fisica, Rio de Janeiro, 1952 (unpublished), p. 23; L. Cintra
do Prado, Anais acad. brasil. cienc. 18, 145, 149 (1946); L. Cintra
do Prado and P. Saraiva, Anais acad. brasil. cienc. 19, 30 (1947);
P. Saraiva, Anais acad. brasil. cienc. 18, 161 (1946); A. Dias
Travares, Anais acad. brasil. cienc. 25, 53, 91 (1953).

61. Clay and C. Kramer, Physica 13, 508 (1947); A. Becker
and I. Schaper, Z. Naturforsch. 4a, 194 (1949); W. Rau, Z.
l(\Tatur)forsch. 6a, 649 (1951); V. J. Schaefer, Phys. Rev. 77, 721

1950).

7W. Findeisen, Z. Meteorol. 57, 6, 201 (1940); E. Lange, Z.
Meteorol. 57, 12, 429 (1940); A. Klumm, Arch. Meteorol., Geo-
phys. u. Bioklimatol., Ser. A3, 382 (1951).

8 J. D. Hoffman, Dig. of Lit. Dielectrics (Nat. Research Council)
14, 13 (1950).
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the whole complex of phenomena with which we are
here concerned the ‘“thermodielectric effect,” as it was
called by its discoverer.

It has been mentioned by Costa Ribeiro that elec-
trical phenomena occurring in the interface must be
primarily responsible for the effect. However, an inter-
face mechanism alone would not explain the production
of voltages and currents in the external circuit. An
additional mechanism is necessary to provide the
macroscopic electric fields that force the charge carriers
through the dielectric and raise the potential difference
between the plates. This was found by Gill and Alfrey?
in the production of space-charge distributions in the
nonconducting (or at least badly conducting) solid
phase. According to these authors, charge separation
occurs primarily at the interface. Part of the charge
produced there is, however, imprisoned in the ice, thus
constituting a ‘““frozen-in’’ space charge. The charge
carriers responsible are most likely the ions which are
known to exist in considerable number in solid and
liquid dielectrics unless they are purified to an extreme
degree. Existing evidence about the influence of im-
purities on the effect corroborates this idea. However,
in consequence of the rather general nature of the
assumptions made, the pattern of the theory would not
change basically if the carriers were electrons.

So far, no theory has been advanced that would allow
correlation of the macroscopically observable quantities
—current and voltage in the external circuit—with the
potentials that must exist across the interface. In the
present paper we shall attempt to do this, and shall
show that available evidence about the behavior of
ions in the dielectric and the structure of the interface
leads one to expect the appearance of electrical effects
during phase changes. The treatment is still approxi-
mate, applying only to “good” dielectrics such as were
examined by Costa Ribeiro, in which the conductivity
of the solid phase can be disregarded. The theory does
not consider in detail the process of fusion or solidifi-
cation, but is exclusively a ‘“‘conductance” theory.

The basic mechanism is explained as follows. A
contact potential difference—whether for ions or elec-
trons makes no material difference—exists between the
solid and the liquid. This contact PD results in the
formation of a double layer at the interface under static
conditions. If the interface moves, as in solidification or
melting, the double layer would have to move with it.
However, owing to the low conductivity of the solid
site, the solid component of the charge cannot dissipate
fast enough to keep up with the interface; hence, as
the interface advances, it leaves behind a trail of space
charge in the solid which builds up a potential difference
between the region deep in the solid and the liquid
(electrolyte) which can be many orders of magnitude
larger than the contact PD. Thus the interface behaves
like a selectively permeable membrane, allowing one

9 See B. Gross and L. F. Denard, Phys. Rev. 67, 253 (1945).
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kind of charge carrier to pass through more easily than
the other, and ‘“pushing along” with it a surface charge
consisting of the excess charge left in the liquid. The
combined fields of space and surface charges result in a
counter emf at the interface which gradually neutralizes
the contact PD, so that the trail of space charge
decreases as the interface advances, and a limiting
interface field is reached. The fraction of the double-
layer charge which is actually left behind as space
charge depends upon the velocity of advance of the
interface and the rate at which charge is dissipated
across the interface by back-diffusion. Mathematical
formulation of these assumptions would lead directly
to an expression for the conduction current across the
interface corresponding to Eq. (15) and could be made
the starting point for the theory.

In the present paper, however, a molecular model is
introduced and the concept of a contact PD interpreted
in terms of potential barriers and transition proba-
bilities ; rate theory is applied for obtaining the expres-
sion of the current through the interface. In this model
the contact PD is shown to contain a term proportional
to the speed of the phase change. This explains the
experimentally found proportionality between equi-
librium external current and speed of solidification or
melting. But it must be emphasized that the simple
analysis in terms of a contact PD, as outlined above,
does not depend on such an explicit model ; the mathe-
matical restrictions introduced in the discussion for the
sake of getting simple expressions are more severe than
necessary for carrying out the calculations.

I. MODEL OF INTERFACE

A condenser with plane plates contains a dielectric
that is partly in the solid, partly in the liquid state.
The phase boundary is assumed to run parallel to the
surfaces of the electrodes. The conductance of the solid
is supposed to be negligible, that of the liquid finite.
The dielectric contains positive and negative ions, the
relative concentration of which in the neutral state is
the same. Thus no net charge exists under normal
conditions. In the solid phase, as a consequence of the
previously made assumptions of zero conductance, the
ions are unable to move. In the liquid they can move
more or less freely, having mobilities that depend on
temperature and viscosity of the liquid. Thus conduc-
tion in the liquid can be described by the introduction
of a specific conductance o. In the interface the con-
ductance changes from ¢ to 0. It is just this zone that
is of decisive importance.

Frohlich? has applied rate theory to the problem of
the movement of ions in solid dielectrics. He considers
the existence of potential barriers which oppose the
movement of ions within the dielectric. The probability
of transition is given by a Boltzmann factor. Applying

10 I;I Frohlich, Theory of Didlectrics (Clarendon Press, Oxford,
1949).
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this picture to the present case, we see that the po-
tential barriers in the solid will have to be high to give
sufficiently low conductance. In the liquid the barriers
are practically absent. Then the phase boundary is
characterized as a zone of finite extension where the
height of the barriers decreases from its very high value
inside the solid to its very low value inside the liquid.
Within the interface the movement of the ions may be
described in the way shown by Frohlich.

The detailed picture of the interface is of no impor-
tance. It is sufficient to represent it schematically by a
single potential barrier of finite height and the intro-
duction of two potential minima on either side of the
interface, one in the solid and the other in the liquid.
The difference in the behavior of positive and negative
ions in conducting dielectrics obliges one to assume
that the height of the barrier and the energy difference
between the minima are different for positive and
negative ions. Thus one obtains Fig. 1 which gives the
model of the interface used here. The height of the
barrier at level I is Ut for positive and U~ for negative
ions, and at level II it is, respectively, U,* and U,
The differences U;— U, give the work functions. The
levels running parallel to the phase boundary have an
area 4 and are separated by a distance 2d,. The surface
densities of the ions in the levels are, respectively,
Nit/A, Ni/A and Nst/A, Ny/A. Probabilities of
transitions from I to II and from II to I are, respec-
tively, wist, wis~ and wert, wei~. The temperatures are
Ty and T,.

The assumption of zero conductance in the solid
makes it unnecessary to consider any transfer of ions to
level I from the side of the solid. Thus the number of
ions in I changes only by transport through the inter-
face. It decreases by jumps from I to IT and increases
by jumps from II to I. Applying the equations of rate
theory, one obtains

dN1t/dt= —wistN it+watNst, (1a)
le_/dt= ~—'‘w12—]\7‘1_'—l‘74’)21'_-]V2—- (lb)

If e is the charge of the ions, then the conduction
current across the interface is given by

d
i=e—(N1F—Ny). @
dt

The transition probabilities are given by
w=wg exp(—U/kT), 3)

where U is the height of the potential barrier. In
general, one has to consider the existence of an electrical
field E* set up by the surface and space charges that
build up in the system in consequence of the transport
of ions through the interface. The presence of the field
E* changes the height of a potential barrier from
its value U(0) without field to U(0)zedoE*, the sign
depending on the polarities of the ions and the di-
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F16. 1. Model of interface.

rection of the jumps. Therefore,
U=U(0)ed E*. 4)

Finally, we expand Eq. (3) into a series and consider
the first two terms only. This means linearization of
the theory and therefore represents a considerable
simplification for all following developments. We believe
that within the framework of the present still semi-
empirical theory this procedure is justified. (It could
be made more rigorous by introducing the differences
between the values U+ and U~ and expanding only the
part containing them, but the final result would not
differ significantly from the following.) Substituting
(4) into (3) and designating the energy values without
field by U+, Uy, Ust, Us™ gives, finally

wist=w 1— (Ut —edoE*)/ kT ], (5a)
w1 =wo[1— (UredoE¥) /RT+], (5b)
wort=w[ 1— (Us++edoE*) /T, (5¢)
wor=wo 1— (Us —edoE*)/kT5]. (5d)

Substituting (5) and (1) into (2) gives for the con-
duction current across the interface, the expression

i=ewo {(Nst—Ny)— (Nt =Ny}
+{ (N1+U1 —NI_UI—)/le
— (N2+U2+—N2~U2~)/kT2}
—"edoE*{ (N1++N1_)/kT1+ (N2++N2—)/kT2}] (6)

We now make the following two assumptions:

(a) The temperature gradient across the interface is
very low, so that one can introduce the mean temper-
ature

T=(T++T9/2, (7a)

(b) The difference in the number of positive and
negative ions in each level is small compared with the
total number of ions of each species. This is equivalent
to saying that one has a rather small effect in a medium
where under normal conditions the concentration of
ions is relatively large. Under these conditions the
values of NV, and N, can be replaced by a mean value
N, except in the first term of Eq. (6) which otherwise
would cancel out. Introducing, furthermore, the

Tv=T—AT, T.=T+AT;
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coefficients
4H= (Ut—Us")— (U —Uy),
W= (UF+UsH)— (U +Us),
one obtains
i= 6‘11)[){ (N2+_N2—) - (N1+_Arl_)}
462w01V0d0 AT
—f—————l (H—I—W~——) /edo—E*}. 9)
kT T

II. THE CONDUCTION CURRENT ACROSS
THE INTERFACE

(8a)
(8b)

a. The Electromotive Force

The primary cause of the current flow through the
interface is the spontaneous jumping of the ions over
the potential barrier. This mechanism is described by
the term containing H and W. It represents an electro-
chemical force. In Maxwell’s theory one takes such
forces into account by the introduction of an intrinsic
electric field E,. Applying this concept to the present
case, one has

The constant factor multiplying E, is an equivalent
conductance of the interface. Thus,

g0= 4e2dowo]\70/A RT. (1 1)

The expression for the intrinsic field can be correlated
with the speed of the phase change. Considering solidi-
fication, the experiment is conducted in such a way
that one electrode is cooled while the other is kept at
constant temperature. The heat exchange with the
surroundings will be disregarded. Then heat is removed
from the liquid across the interface only. The quantity
of heat removed from the liquid per unit time is
—ANAT/2dy, where X is the coefficient of thermal
conduction of the liquid and AT/2d, is the temperature
gradient. In consequence of the cooling, the mass of the

Fic. 2. Charges and field in dielectric.
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liquid decreases per unit time by the amount — cdm/dt,
where ¢ is the latent heat. Equalizing both quantities
allows one to express the temperature gradient in terms
of the amount of solidified material, giving

AT= (2doc/ AN)dm/ dt (12)

and, therefore,
Eo=[H~+W (2doc/ ANT)dm/dt]/edo. (13)

The speed of the phase change v is proportional to
dm/dt. Therefore, E, consists of two components ; one is
constant and exists already under equilibrium condi-
tions, the other appears only during phase changes and
is directly proportional to the speed of the phase
change. One can, therefore, write Ey= c1-}cov.

The current J, that in a shorted condition flows in
the external circuit, will be proportional to Eo. Costa
Ribeiro® has measured J for various (constant) ve-
locities of melting and solidification. He found that J
reaches an equilibrium value some time after the phase
change has attained constant speed and that this
equilibrium value is very nearly proportional to dm/dt.
This suggests that the coefficient ¢; must be much
smaller than c¢,. Therefore a constant PD, independent
of the temperature gradient, would not suffice to explain
this result. The bulk of the intrinsic electromotive
force must be due to the appearance of a temperature
gradient across the interface. The introduction of the
corresponding term in Eq. (10) was therefore relevant.

b. The Surface Charge

The term e(N s+ —N57)/ A4 is the density of the surface
charge on level IT and e(N+—N;")/4 the same for
level 1. Existence of a surface charge means discontin-
uity of the displacement field. Let E(s) be the field in
the solid adjacent to the interface, E, the field in the
liquid, and E* the field in the interface (Fig. 2). Then

[ (]\7'2+_ Nz_) =Ae (Ez'— E*),
e(Nit—N1)=Ad E*— E(s)],
and
e (Nst—Ny)— (Ni+—N1)]
=Ad E;—2E*+E(s)], (14)
where e is the dielectric constant of the system which

for the sake of simplicity is taken to be the same for
solid and liquid.

c. The Current
Substituting (10), (11), and (14) into (9) gives
1=Aao(Ey— E*)— Awo 2E*— E,— E(s)].  (15)

This equation has a direct physical significance. Con-
sider again the distribution of fields and charges as
shown in Fig. 2, the thickness of the solid deposit
being s, electrode I being in contact with the solid, and
electrode II being in contact with the liquid. The
electric fields at the surfaces of the electrodes are,
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respectively, E; and E,. According to previous assump-
tions, no space charge forms in the liquid; therefore,
inside the liquid the field is constant and given every-
where by E,. In the solid, space charge will exist.
Therefore here the field is not in general constant, but
varies from its boundary value E; at electrode I to the
value E(s) at a point close to the interface. Both sides
of the interface carry surface charges of opposite sign.
Therefore discontinuities of the field do appear. Inside
the boundary layer, the field consists of the intrinsic
field E, and the surface and space charge field E*, the
total field being E,— E*.

The mechanism of the interface current can now be
described in the following way. Originally there exists
an intrinsic field Eo. Starting from a neutral condition,
this gives rise to an ionic current ooEo. In consequence,
surface charges are set up at both sides of the interface
and, eventually, space charges in the solid. The com-
bined field of these charges is superposed on the intrinsic
field and reduces the acting field in the interface from
E, to Eq—E*. The current produced falls off from its
initial value ooE, to oo(Eo—E¥*). Introducing the
electromotive force Vo=2doE, the process can be
thought of as a polarization phenomenon, with polar-
ization voltage V ,=2doE*. However, the accumulation
of surface charge at both sides of the interface has still
another consequence. This is the appearance of a back-
current directly proportional to the differences in
concentration of ions in the solid and the liquid, as
given by the second term in Eq. (15). Like a diffusion
current, it tends to equalize the ionic concentrations
across the interface. Of course all terms are already
implicitly contained in the fundamental equations.
The electromotive force is associated with the existence
of finite potential barriers and the thermal movement
of the ions, the polarization with changes in the height
of the potential barriers by the field, and the diffusion
current with the proportionality between the number
of jumps and concentration of ions in each potential
minimum. The linearity of the expression follows from
the series expansion of the Boltzmann factor. The fields
E; and E, are functions of time, and the field E(s) is a
function of time and distance. Therefore, ¢ is a function
of ¢ and s and has to be written i(i,s).

Equation (15) contains both the field E* inside the
boundary layer and the field E(s,?) in the solid adjacent
to the interface. In the present case one can, however,
neglect the difference between both fields. During
solidification a continuous flow of current ¢ goes through
the interface. After the interface has advanced a certain
distance, say @, an excess charge g, is found in the
solid and an excess charge of the same amount, but
contrary polarity, is found in the liquid. However,
while in the solid the charge is distributed over the
distance ¢ in the form of a space charge, in the liquid
it constitutes a surface charge adhering to the interface.
It becomes therefore understandable, that the value of
the surface charge at the solid site can be disregarded.
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With this assumption, the discontinuity of the field at
the solid site disappears and E(s,) becomes identical
with E*. Of course, this consideration is valid only for
processes involving phase changes.

Putting, therefore, E*=E(s,f), Eq. (15) transforms

into
i=Ac Eo— E(s5,0) ]— Awoe E(s,t)— E2(£)].  (16)

d. The Space Charge

The total amount of charge carried across the inter-
face in time dt is dg=1idt. With the interface in a fixed
position, the result of the charge transfer would be only
the formation of an electric double layer. Here, however,
we are interested in phase transitions where the inter-
face advances with velocity v=ds/df. To cover the
distance ds, the interface needs the time df=ds/v. The
charge transferred through the interface while the latter
has advanced by ds, is, therefore,

dg=1ds/v. 17

This charge, however, does not any longer constitute a
surface charge, but is distributed over ds and constitutes
a space charge. The assumption of zero conduction for
the solid makes consideration of charge decay unneces-
sary. The density of space charge is

1 dg
p=—— 18a
A ds (182)
or :
o=1/Av, (18b)

with ¢ given by (16). Poisson’s equation for the field in
the solid at a point close to the interface then is

€dE(s,0)/ds=1(s,t)/ Av(t). (19)

III. THE SPACE-CHARGE FIELD

The value of the current in (19) must now be replaced
by its explicit expression (16). We assume that the
phase change proceeds with constant speed v= constant.
Then, making the substitutions, one gets finally

AE(s,8) 1 E(s,) 3 Ev+EE,(2)

os So So(1+ k)
with
I/So—‘—" (1+k)0’o/6'1), (218,)
and
k= ewo/a0. (21b)

This equation must be integrated with the initial
condition
s=0: E0,)=E(). (22)
The solution is given by
Eo+EkE,(2) E0+ kE,(t)

1+-% 14+-%

E(st)= Ev(t) }e—s/so. (23)
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Integrating once more between 0 and x, one obtains
the space-charge potential V(x,f) at time ¢ and the
point x, where the interface is found at that time; that
is,

x= 1. (24)
This gives
Eot+EEs ()
V(xt)=0——
14+-%
Eo+-EE, ()
—so ) ) =), 29)
1+% ‘
or, substituting x from (24),
Eot+kE2(2)
V) =vt——
Eyt+EE(t
—vto(—i—i(-)——El(t))(l— i), (26)
1+%
where

lfo= 6/00(1+k)

IV. THE DIFFERENTIAL EQUATIONS FOR
CURRENT AND VOLTAGE

@7

We are now in a position to establish the equations
for thefobservable quantities, i.e., currents and voltages
in the_external circuit, under different conditions of
the experiment. Let U (#) be the total potential differ-
ence between the plates, D the distance between the
plates, and J(f) the external current.

The total current must be the same in the solid and
the liquid. In the latter it contains a conduction and a

CHARGES

FIELD

POTENTIAL

Fi16. 3. Open-circuit behavior.
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displacement component, in the former it is purely
displacement current. Writing the equations for the
surfaces of both electrodes gives

J ()= AedE:(2)/dt, (28a)
J ()= AedE,(§)/dt+AcE.(t), (28b)

and, therefore,
edE()/dt= edE5(f)/dt+cEq(2). (29)

This is the differential equation connecting the field
values at the two electrodes.

The total voltage drop across the plates is constituted
by the space charge potential in the solid, the potential
drop across the interface, and the voltage loss in the
liquid. Disregarding the voltage drop across the inter-
face, this gives

U=V (5)+ (D—x)E:(?). (30)

Equations (26), (29), and (30) together constitute a
system that permits determination of E,, E,, and J.
Different experiments are characterized by different
boundary conditions. For the measurement of the short
circuit current one has U(f)=0; for the measurement
of the open circuit voltage one has J()=0.

V. OPEN-CIRCUIT VOLTAGE

We shall give here only the calculation of the open-
circuit voltage as it would be measured by an electrom-
eter of negligible capacitance. From the condition

J@®=0 (31)

it follows that both E;(f) and E,(#) are equal to 0. The
absence of a voltage drop in the liquid makes the
measured potential difference equal to the space charge
potential. From (26) one gets

U(t)=w—ﬂ){f—to(1— OIS (32)
1+k&
Expanding for small and large values of #/f, gives
Ukt UO=—2 oy, G3)
2(1+-k)
t/to>1: U(t)=vEe/(1-+E). (33b)

The voltage increases at first quadratically, later
linearly. The maximum voltage reached when the
entire system has solidified is approximately equal to
DEo/(1+k). The ratio of the maximum open-circuit
voltage to the interfacial potential is therefore
D/2d,(14-k). This shows that the external voltage can
exceed the electromotive force by a great amount,
provided % is not exceedingly high. The space charge
mechanism then represents a voltage amplification
system. Supposing for dimensional reasons-that % is of
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the order of 1, and taking the thickness of the interface
as equal to 10~® cm, gives for a 1-cm cell a total voltage
of about 50 v, as corresponding to an electromotive
force E, equal to 15 of a millivolt. A comparison with
the measurements of Workman and Reynolds is unfor-
tunately not possible because in their case the assump-
tion of zero conduction for the solid does not hold.
However, it is gratifying to see that a mechanism of
the type considered here can cause the appearance of
the potential differences, and generally of the effects of
the kind found by the observers.

In the present case (open circuit) the total amount
of surface charge in the liquid adhering to the interface
is equal to the total amount of space charge, the entire
system remaining neutral. The space charge distribution
in the solid is exponential (see Fig. 3). According to
(23), the field is given by

E(s)=Eo(1—e/*)/(1+k), s<x (34)

and
o(s)= 6E06_3/80/30(1+k),

The voltage is at any time proportional to vE,.
Since we found Eo= ¢+ ¢, one has

U= (crv+ca?) f (D).

s<x. (35)

(36)
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Thus voltage curves obtained with different speeds of
phase change differ only by a factor lying roughly
between v and 2%

VI. CONCLUSIONS

The foregoing exposition shows that a relatively
simple theory based on existing evidence about interface
potentials and behavior of ions in dielectrics can account
for charge separation, and the production of voltages
and currents during phase changes. The theory leads
to expressions for the space-charge distribution in the
solid and the voltage-time curves in open circuit that
eventually may be compared with experimental data.
The differential equation for the short-circuit current
can be obtained in a straightforward manner; it is
omitted here because it is not easily integrated. In the
present form the theory is still incomplete. Among the
factors it does not take into account are (a) the conduc-
tivity of the solid that affects the reversibility of the
effect and the form of the voltage-time curves in
aqueous solutions, and (b) the diffusion of ions in the
liquid that may also play a réle when a solid dielectric
is dissolved in a solvent. However, we believe that the
theory describes correctly the principal mechanism of
interface conduction and presents already the basis for
a more precise and complete treatment.
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Thin copper foils, cooled to liquid nitrogen temperature, were subjected to bombardment by 12-Mev
deuterons. The stored energy released due to annealing of the radiation damage was measured as the foils
warmed to room temperature. Below —40°C the stored energy released per °C was approximately uniform
and is presumed to result from annihilation of closely spaced interstitial-vacancy pairs produced by the
bombardment. A prominent maximum in the annealing spectrum occured at —15°C and is interpreted as
binary recombination of interstitial atoms and vacancies by means of interstitial diffusion. Changes in
residual electrical resistivity were also measured. The stored energy to resistivity ratio was found to be
1.740.2 cal/gram per micro-ohm-cm, both for the low-temperature processes and the —15°C annealing
peak. If the energy of formation of an interstitial-vacancy pair is 5 ev, a value of 11 micro-ohm-cm for
the resistivity of one atomic percent of pairs is obtained. The atomic concentration of interstitial atoms
and vacancies produced by an irradiation of 107 deuterons/cm? at liquid nitrogen temperature is, accord-

ingly, 5X1075.

I. INTRODUCTION

HANGES in the physical properties of a metal
resulting from irradiation with fast particles are
difficult to interpret because the types and numbers
of imperfections produced by the bombardment are
unknown. Interstitial atoms and vacant lattice sites
are expected! to be the predominant types produced,

* Present address: Department of Physics, Cornell University,
Ithaca, New York.
1 F. Seitz, Discussions Faraday Soc. 5, 271 (1949).

and this view is supported by the observed annealing
properties? of the damage. The resulting decrease in
electrical resistivity upon anneal has received the
greatest amount of experimental study, but the inherent
difficulties of corresponding theoretical calculations
have prevented a determination of the number of
interstitial-vacancy pairs that occur.

The measurement of a fundamental quantity, such
as energy, should provide a more reliable method of

2 A. W. Overhauser, Phys: Rev. 90, 393 (1953).



