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Reaction Concept in Electromagnetic Theory
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A physical observable called the reaction is de6ned to simplify the formulation of boundary value prob-

lems in electromagnetic theory. To illustrate its value it is used to obtain formulas for scattering coefficients,

transmission coefficients, and aperture impedances. An approximate solution to problems of this type. is

obtained by replacing the correct source {of the scattered field for example) with an approximate source

which is adjusted so that its reaction with certain "test" sources is correct. This insures that the approximate
source "looks" the same as the correct source according to the physical tests which are inherent in the

problem. The formulas so obtained have a stationary character {for the cases considered) and thus the
results could also be obtained from a variational approach. However the physical approach has two im-

portant advantages. It is general whereas the variational technique has to be worked out for each problem.

It is conceptually simple and leads directly to results which might not be uncovered by the variational
- approach because of the complexity of the mathematical formulation. The problem of scattering by a

dielectric body is used to illustrate this latter point.

INTRODUCTION

HE classical analysis of electromagnetic waves is
based on the theory of fields which satisfy

Maxwell s equations. It is interesting to examine this
concept from the point of view of an experimenter
whose objective is to use the theory to correlate his
measurements. Suppose that we attempt to measure
the field radiated by some source of electromagnetic
energy by observing the signal received at the terminals
of an antenna placed at the point of observation. By
moving the antenna around we can obtain a consider-
able amount of information about the given field, but
it is very difficult to relate this information to the
classical field parameters, e.g., the electric field. Indeed
from a literal point of view the postulate of electric
field might be questioned on the grounds that any
experiment designed to measure the electric field at a
point must necessarily consist of measuring the effect
of the field over a small but finite region, and therefore
the postulate is incompatible with the process of per-
forming an observation. This suggests that it is desirable
to introduce into the theory a fundamental observable
which represents measurements which can actually be
performed.

DEFINITIONS AND PROPERTIES OF REACTION

call the source u for simplicity. Similarly for some other
source b, which generates a field at the same frequency
and in the same environment. Define a complex number

[the usual exp(&mt) time convention is employed],
denoted by (a,b) as follows:

(a,b)= I I LE(b) dJ(u) —H(b) dK(a)j, (1)
HAJJ,

where the volume V contains the source a.
The reciprocity theorem' states that

(a,b) = (b,a),

provided that all media are isotropic and that u and b

can be contained in a finite volume.
The scalar (a,b) is a measure of the reaction (or

coupling) between the sources a and b We thin. k of
"reaction" as a physical observable like mass, length,
charge, etc. : Eq. (1) is to be understood as a formula
for the measure of reaction. For example, in electro-
static theory, let the source a consist of the volume
distribution of charge dq(a): similarly for the source b.

Then we could define the static reaction (a,b) by the
relation

(a,b) =
~

E(b)dq(a),

We introduce a quantity, called the "reaction, "
which is defined as follows. I.et the source of a mono- which is analogous to Eq. (1). In this case the P ysica

chromatic electromagnetic field consist of the volume b rv h' h (~'b) P

distributions of electric and magnetic current dJ and
dK (i.e., the electric dipole m ment contained in a a consist of a unit current generator connected to the

volume y is equal to the vector JJ'J'&dJ). (The word terminals of some antenna. Then it follows from Eq.

source is used in the sense that everywhere in the given
~ ~ ~i~ that (ub& is equal to the open circuit voltage

region there is no field when the s urce is absent. Thus genera ed a he an erma ermina s yenerated at the antenna terminals b the source b.

Again for static fields the electric field is equal to (N, a)
currents which may be induced in various parts of the

the reaction between the given source a and an infini-
region are not counted as sources because they vanish

tesimal unit charge u placed at the point of observation.~ ~ ~

when the true source is turned off. I.et E a and H g)
represent the electric and magnetic fields generated by & hi.

'
h.

'

c
"" 'N "& &~"&9'43& "'47pTh ",

the source distributions dJ(a) and dK(a), which we appiies here with a minor extension.
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For oscillating fields the component of electric field in
a particular direction is equal to (tt,a), the reaction
between the given source u and an infinitesimal electric
dipole I,, of unit moment, placed parallel to this
direction at the point of observation.

The complex number (a,b) consists of the sum of
products of the forin V(u)I(b) where V(a) represents
the voltage generated by a across the terminals of a
current generator of strength I(b). If

V(a) =
~
U(G)

~
exp(iu), I(b) = ~I(b)

~
exp(t'P),

then the superposition of the incident and scattered
fields). We postulate that if J(c) were known the
scattered field E(c) could be calculated. It is known
that the tangential component of E(c) on S is equal to
minus the tangential component of the incident electric
field, because the scatterer is a perfect conductor.
Thus, although J(c) is unknown it is possible to calcu-
late the reaction between the source J(c) and some
known current distribution, J(a), on the surface S, for

then the corresponding explicit time functions which
these complex numbers represent are

(u,c)= J(a) E(c)dS (6)

U(u, t) =
i V(a)

i
cos(~t+a), I(b,t) = iI(b) i cos(&A+P),

and the complex number,

V(~)I(f) =
I V(~)I(&)

l
expLt(~+p) j,

represents the explicit time function,

~
V(a)I(b)

~
cos(2&ot+n+P)

=
~
V(a)I(b) i [2 cos(cot+n) cos(&A+P) —cos(n —P)].

The erst term in the square brackets is the instan-
taneous rate at which b works against a, and the second
term is the average rate per cycle at which b works
against u. Thus, (a,b) represents the instantaneous
minus the average rate at which b expends energy on a.
Note that if (u,b)=0, then no energy is transferred
from u to b at any time.

Observe that
(,(b+»=(,~)+(, ), (4)

where a, b, and c represent any three sources radiating
at the same frequency in the same region. Note also
that if 2 represents any scalar and Au represents the
source a increased in strength by the factor 3, then

(Aa, b) =A(a, b).

Before proceeding any further with the formal
development let us now discuss how the concept of
reaction can be used, in order to see what further
developments are needed.

APPLICATIONS OF THE REACTION CONCEPT

Consider the problem of scattering by a perfectly
conducting body, of surface 5, which is irradiated by
the source g (see Fig. 1).Let J(c) represent the surface
distribution of electric current which is induced on the
scatterer by g. The scattered field, E(c), is defined as
the field that would be generated by J(c) (acting as a
source) if the scatterer were absent (the total field is

and the tangential component of E(c) on S is known.
Suppose that we wish to calculate the "echo," i.e.,

the signal at g due to the scattered Geld. If we think of
g as a unit current generator connected to the terminals
of some antenna, the open circuit voltage at these
terminals generated by the scattered field is equal to
(g,c). Thus the problem is to calculate (g,c). Let J(a)
represent an assumed distribution of electric current
on 5 which we propose to adjust so that it approximates
J(c). We would like to adjust J(a) so that

(g,~)= (g,~), (7)

for then the echo obtained by substituting J(a) for
J(c) would be correct. Obviously this is too much to
expect: indeed we find that Kq. (7) cannot be enforced
because we cannot calculate (g,c). We can interpret
Eq. (7) as the condition that the approximate source u

(i.e., J(a)) should "look" the same as the correct source c
(i.e., J(c)) to the source g, in the sense that a and c
produce the same signal at g. Thus we can think of g as
a "test" source which is used to test for any difference
between u and c. This suggests that we regard Eq. (7)
as a special case of the more general restriction

$)Q = $)C )

which expresses the condition that a and c should
"look" the same to an arbitrary test source x. The
problem is now a matter of trying to enforce Eq. (8)
for every "available" test source, i.e., every x for which
(x,a) and (x,c) can be calculated. The only sources in
the problem are g, c and u. We have seen that g is not
"available" because (g,c) cannot be calculated and we
find that c is not available because (c,c) cannot be
calculated. Thus a is the only "available" test source.
We therefore adjust the approximation c to satisfy the
condition

C)Q = G)C

and use the value of a so obtained in place of the
correct source c.

To carry out the calculation of the echo we assuage
some current distribution J(a) whose level can be
adjusted, i.e., let

FIG. 1. A hypothetical surface 5 in the presence of a source g. J(a) = UJ(N), or u= UN, (10)



REACTION CONCEPT IN ELECTROMAGNETIC THEORY

—(,g)=~" J() E()dS
S

= (C)c)—(a)a) = U (14&Q)= (N)c) /(Q, N)

f
g J,J(u) E(c)dS

J(N) E(N)dS. (12)

In Eq. (12) J (u) represents the assumed current
distribution, E(N) represents the electric field generated
by J(N) (in the absence of the scatterer), and E(c)
represents the tangential component at 5 of the incident
electric field.

The approximation can be iniproved by starting from
an assumed distribution J(a) which contains a number
of adjustable constants. Thus, let

u= Ll+Mm+ (13)

where I-, M, . „represent adjustable constants and,
l, m, ~ represent fixed source distributions which are
assumed. The problem is to find the linear combination
of /, nz, , denoted by u, which best approximates the
correct source J(c), denoted by c. Here we can enforce
the conditions:

(a,l) = (c,l),
u,m = c,ns,

(14)

which ensure that u and c "look" the same to l, m,
If the assumed set of source distributions l, m,
constitute a complete orthogonal set, the equations
(14) represent the condition that a and c are identical
in every respect. Substituting for a from (13) in (14)
gives the following equations for the constants:

L(l, l)+M(m, l)+ = (c l)

L(l,m)+M(m, m)+ = (c,m),
0 (15)

In terms of a matrix notation, the constants I, 3E,
are given explicitly by

L (l,l) (l,m) . —' '
(l,c)

M (m, l) (m, m) (m, c)
(16)

L

where J(u) is fixed and U is an adjustable constant.
Substituting for a in Eq. (9) gives

U = (u, c)/(N, e).
Now the echo —(c,g), where

By substituting for L, M, in (13), the approximate
value of the echo is given by (see Eq. (12)):

(a,a) = (a,c)= ((l,c)(m, c) )
(l,l) (l,m) ' (l,c)

(m, l) (m, m) (m, c)
X (17)

These results can also be obtained by means of the
variational technique. For example, let ba represent a
slight change of the source distribution represented by
a. If both a and a+8a satisfy Eq. (9), then 2(a,ba)
= (a,ha)+(ba, a) = (ba, c) to the first order. If 8a represents
a slight change about the correct distribution c, we can
substitute c for a in this equation and thus obtain
(ba,c)=0. Hence, the expressions (a,a) and (a,c) are
stationary for variations of u about c, if u satis6es Eq.
(9), i.e., if a=e(N, c)/(e, N) Lsee Eqs. (10) and (11)$.
Thus the expression x= (a,c)=(a,a)= (N, c)'/(l, l) is sta-
tionary for variations of the assumed distribution J(e)
about the correct distribution J(c), and Eqs. (14) and
(15) can be obtained by setting Bx/BL=O, Bx/8M=0,
etc. However, the fact that an expression is stationary
for variations of an assumed distribution about the
correct distribution does not justify the assumption
that it will yield the "best" approximation when the
assumed distribution is completely arbitrary. The reac-
tion approach does show that the approximation is the
best in a physical sense, i.e., in the sense that the
approximate source "looks" the same as the correct
source to any source in the problem which can be used
for such an observation. More precisely, the reaction
between the approximate source and every available
test source is correct, it being understood that a test
source is "available" if its reaction with the correct
source can be calculated. Note that this comparison of
the variational method with the reaction method is, so
far, based on the specific problem of scattering by a
perfect conductor. There are other problems (some of
which we consider later) where a number of diferent
approximations can be obtained from the variational
method, and there is no way of deciding which approxi-
mation is best. In the reaction approach such problems
yield an excessive number of test sources, i.e., the
number of independent test sources exceeds the number
of adjustments which can be made in the approximation,
so that it is not possible to make the reaction with
every test source correct. In this case it is necessary to
decide what selection of the available test sources is
most likely to yield the best approximation. From the
physical point of view the answer is clearly that selection
which most nearly represents the actual physical obser-
vation which we are trying to approximate. The
physical approach has the added'advantages of being
general (whereas the stationary formulation has to be
established for each specific problem), and of providing
a simple understanding of the type of approximation
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which is being used. In short, the fundamental advan-
tage of the reaction method is its conceptual simplicity
which leads directly to results which might not be
uncovered by the variational approach because of the
complexity of the mathematical formulation. These
points are illustrated by the examples which follow.

I

I (g
l

)0
(
~

loSl'
l ~

FIG. 3. A source g radiating
through a waveguic1e.

TRANSMISSION CALCULATIONS

The problem of scattering by a perfect conductor
can be used to illustrate the formulation of trans-
mission problems. We are now interested in the signal
received at an arbitrary point whereas in the echo
problem the point of reception was at the given source

g. As before the total field is represented as the sum of
contributions from g and c (the induced electric current
distribution on S) radiating as if the scatterer were
absent. The contribution from g can be calculated easily
since g is given. We therefore put up a source h at the
point of observation (see Fig. 2) and the problem is to
calculate the reaction (c,h) evaluated in the absence of
the scatterer. Let the notation be as follows: c generates
the same field as g inside of S (as before), d generates
the same 6eld as h inside of 5, a is the approximation for
c (as before), b is tlie approximation for d. The sources

a, b, c, and d are all distributions of electric current
on S, and all sources radiate as if the scatterer were
absent. We therefore adjust the approximations a and
b to satisfy the conditions:

choose x= b and y= a which is therefore the best choice.
. An explicit formula for (c,d) is obtained by setting

(21)u= UN and b= Vv,

where U and V are adjustable constants. Proceeding
as before [see Eq. (10)],we obtain

(c,d) =(c,z)(d, e)/(e, n), (22)

where n and v represent assumed electric current distri-
butions. In terms of integrals over S, Eq. (22) becomes

t

(1S)
(c d) — ~ E(g) ' J(v)dS i E(h) J(m)dS

(u,x)= (c,x),

(&a)= (da),
and

(19)
E(N) J(v)dS, (23)

Swhere x and y represent any test sources inside of S.
The available test sources are represented by x= a,
x=5, y=u and y=b Since Eq. .(18) cannot be satisfied
for both values of x, we have to decide which value is
likely to give the better approximation: similar remarks
apply to Eq. (19). Now the quantity which we are
trying to approximate is (c,h) where

IMPEDANCE CALCULATIONS

Suppose that the given source g radiates into space
through a length of uniform wave guide as shown in
I ig. 3. This represents a type of problem which has
been treated successfully by means of the variational
approach. '

We postulate that it is impractical to calculate the
field which is radiated through the aperture (the
aperture is shown as the line of dots in Fig. 3), but
that it is practical to calculate the field (in the wave-
guide) that would be obtained if the aperture were
covered with a conducting plate.

Let J(c) represent the electric current distribution
that would be induced by g on a conducting plate
covering the aperture. Let E(g, 1) represent the field
generated by g with the plate in position, E(g,2)
represent the field generated by g with the plate
removed, and E(c,2) the field that would be generated

' Waoegnide Handbook, edited by N. Marcuvitz (McGraw-Hill
Book Company, Inc. , New York, 1951).

(c,h)= t t J(c) E(h)dS

J(c) E(d)dS=(c,d). (20)
~s

To approximate (c,d) we replace c by its approximation
a, or d by b, or both. Thus there are three possible
approximations which are represented by (u,d), (c,b)
and (u, b). We see that these are all the same if we

FIG. 2. Two sources g and h in the presence of a conductor.

where J(N) and J(~) are the current distributions which
we assume to approximate the current distributions
induced on the scatterer by g and h, respectively.
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by J(c) (acting as a source) with the plate removed.
Then,

E(g, 1)= E(g,2)+E(c,2), (24)

far points in the wave-guide region (inside of the dashed
curve 5 shown in Fig. 3). If g consists of a unit current
generator connected to a pair of terminals, then it
follows from (24) that,

FIG. 5. A source g inside of
a closed surface S. I

g

FIG. 4. A biconical horn.
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Z, = Vi ——Vs+(c,g) =Z,+(c,g), (25)

where V» and V2 are. the voltages at these terminals
with and without the plate respectively, Z» and Z2 are
the corresponding impedances, and (c,g) is evaluated
with the plate removed. The problem is to calculate
an approximation for Z2, assuming that Z» is known.
For example, suppose that the wave-guide structure
consists of a biconical horn as illustrated in Fig. 4.
The source g consists of a unit current generator
connected to the input. Then

Zi= —i1ile—4 ' log (cote/2) tan&vlii'*e &,

J(c) = L2wl cos~lp4'* sino] '0,

where l and 0 are given in Fig. 4, co represents the
frequency, p, and ~ represent the permeability and
inductive capacity of the medium inside of S, and 8
represents a unit vector in the spherical coordinate
system shown in Fig. 4.

The specific example which we have chosen to illus-
trate impedance calculations is representative of the
general problem in which g is inside of as illustrated in
Fig. 5. It is essentially the same as the scattering
problem in which g is outside of S. Here, as in the
scattering problem, —J(c) generates the same field as

g on the source-free side of S. Here, (g,c) cannot be
calculated because tangential E(g) at 5 is unknown,
whereas (g, c) cannot; be calculated in the scattering
problem because J(c) is unknown. In this problem we
therefore assume some approximation for E(c), the
tangential component of electric field in the aperture
(or over 5 in the more general terminology). We
postulate that it is possible to calculate E(u), the field
which fits this assumed distribution of tangential E(c)
on both sides of S. By definition the tangential compo-
nent of E(u) at S is continuous but the tangential
component of H(u) obviously is not continuous. In
short, the field E(u) is generated by a certain distri-

bution of electric currents J(u) on 5 which can be
calculated from the assumed distribution of tangential
electric field. If this assumed distribution were correct,
then J(u) would turn out to be identical to J(c). We
can see now that the impedance problem is formally
identical to the scattering problem, with the modifica-
tion that the approximate source a is now required to
look the same as the correct source c to a test source x
which is.outside of S. Thus Eq. (9) applies again:

(u,u)= (u,c) (9)

Instead of Eq. (10), we now put

E (u) = UE (u), (10a)

where E(N) represents the assumed distribution of
tangential E(c) over S and U is an adjustable constant.
Equation (10a) is equivalent to Eq. (10) because it
implies that

(10)

as before. The approximation for (c,g) given by (12)
also applies except that we express (u,c) in the form

JJ'sE(N) J(c)dS. Thus, the approximation for the
impedance obtained from Eq. (25) (replacing c by u) is

Zs ——Zi —(e,c)'/(m, u). (26)

The problem of transmission through the aperture
can be treated by placing a test source h at the point
of observation outside of S and proceeding as in Eqs.
(18)-(23).

SCATTERING BY A DIELECTRIC

The problem of scattering by a dielectric brings out
some interesting features which have not been encoun-
tered up to this point. I et the given source g radiate in
the presence of a dielectric scatterer of surface S, as in
Fig. 1. The scattered field is again defined as the
difference between the fields generated by g with and
without the scatterer. The problem is to find a source,
c, which generates a field outside of S which is approxi-
mately equal to the scattered Geld (and such that it is
possible to calculate the Geld generated by u).

Let E(g, i) represent the Geld generated by g in the
presence of the 'scatterer, and

J(c)=nXH(g, 1), K(c) = E(g, i) Xn, (27)

where n represents a unit vector normal to S pointing
inwards. The' surface distributions of electric and mag-
netic current J(c) and K(c), are the equivalent currents
of Schelkunoff. ' Let the combination of J(c) and K(c)

' S. A. Schelkunoil, Phys. Rev. 56, 308 (1939).
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choice appears to be x= c and y=u. A further point in
support of this choice is the fact that the echo=(g, 2,c)
=(c,2,c) is approximated by (c,2,a) or (a,2,a) and the
choice x=u makes these two results the same. The
choice y= a is also supported by the fact that if c were
correct (i.e., if y= c), its radiation would be confined to
the region occupied by the source under test (which is
also a), thus producing, in a sense, the maximum
irradiation of the source under test.

Substituting x= a in Eq. (28) and y= a in Eq. (29)
gives the following equations for the constants I.and M:

L(g,2,l)+M(g, 2,m) =L'(l, 2,l)+LM((l), 2,m)

+LM(l, 2, (m))+M'(m, 2,m), (31)

0=L'(l,3,l)+LM((l), 3,m)

+LM(l, 3, (m))+M'(m, 3,m), (32)

where the notation (l) in ((l),2,m) indicates that l is
just inside of m (see Fig. 8), e.g. ,

((l),2,m) = J(l) E(m, 2,internal)dS,»s (33)

(28) where(g,2,x)= (a,2,x).

be represented by the symbol c. Then the combination
of g and —c generates a field which is zero everywhere
inside of S. Therefore we can remove the scatterer
without affecting the field generated by (g—c). It
follows that the scattered field is equal to the field
which c generates outside of S, in the absence of the
scatterer. Thus the problem is to find an approximation
for c. Observe that c generates the same field as g
inside of S, regardless of the medium inside of S. Thus
we require that the approximation for c, represented
by a, should look the same as g to a test source x
inside of S, and for the purpose of simplifying calcu-
lations we can perform this test in "free space" (see
Fig. 6).

At this point it is desirable to extend the notation
[introduced in Eq. (24)7 in which a number represents
the environment, as follows. Let (p, l,q), (p,2,q), and

(p,3,q) represent the reaction between sources p and q
in the presence of the scatterer, in free-space, and in an
infinite homogeneous dielectric medium, respectively.
Thus the test illustrated by Fig. 6 is represented by
the equation

Observe that c generates zero field outside of S, in
the presence of the scatterer. The region outside of S
can therefore be filled with the same material as the
inside of S without aGecting the result. We therefore
require u to satisfy the requirement,

(a,3,y) =0, (29)

a=Ll+Mm, (30)

where l and m represent the assumed distributions of
electric and magnetic current on S respectively, and I
and M are adjustable constants. Then the possible
choices of x and y are represented by x = l, x= m, x= a,
y=l, y=m, and y=a (only four of which are inde-
pendent). Observe that if we set x=/ in the expression
(a,2,x), we must interpret this as the limit obtained as
l approaches a from the inside of S as illustrated in
Fig. 8. Similarly, the substitute for y must be taken
just outside of S. An expression of the form (a,2,a) is
evaluated by imagining two sources u slightly displaced
from each other in the manner of Fig. 8. Considering
the symmetry of Eqs. (28) and (29), the obvious

where y represents any test source outside of S (see
Fig. 7).

The coarsest approximation is obtained by repre-
senting a in the form

n X[E(m, 2,internal) —E (m, 2,external) 7= K (m)

[see Eq. (27)]. (34)

The approximation for the echo is then given by
substituting a for c in (g,2,c).

It can be shown that the formula for the echo
obtained in this way is stationary for variations of the
assumed distribution of electric current J(l) and mag-
netic current K(m) about the correct distribution. The
interesting point is that a number of stationary formulas
for the echo can be derived, all of which are based on
assumed distributions J(l) and K(m) and involve the
same "free space" calculations, but diGer in the way
that the calculations are combined. Here is a case where
the physical approach through the reaction concept
leads to a result which probably would not have been
uncovered by the variational technique, although, once
the result has been established, it is possible to see how
it could have been obtained by means of a variational
approach.

Another approach is to set down the equations for
continuity of tangential K and II which are:

nX E(g,2) —nX E(c,2,external)
=n XE(c,3,internal),

(35)
n XH (g,2) —n XH (c,2,external)

=n XH (c,3,internal) .

We multiply these equations by tangential H and E,
respectively, and integrate over S. This is represented
by the equation

(g 2 s)—((a),2p) =(a,3, (s)), (36)

Fr@. 6. A test source x set up to detect the difference
between sources a and g.

where s represents a test source distributed over S and
the correct source c has been replaced by the approxi-
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mate source u. Here it is necessary to use every available
test source, i.e., z=l and z=m in order to evaluate I
and M. We then obtain two equations which are
essentially the same as those used by. Crowley' for a
certain class of impedance calculations. The formula
for the echo obtained from Eq. (36) is stationary but
it is diGerent from that given by Eqs. (28) and (29).
An important point of difference is that the approxi-
mation given by Eq. (36) does not give the same value
for the two possible approximations for the echo

(g,2,u& and (u, 2,a&.

There is a simple connection between Eqs. (28), (29),
and (36). It is obtained from the relation

((~)»»&—(~» (f)&=((~) 3»)—(~ 3 (f)» (3&)

which we shall establish Lsee Eq. (47)g. In Eq. (3'I);
a and b represent any two sources, and 2 and 3 represent
any two environments. Thus, Eq. (36) can be written
in the form

(a,2,z&=(&» (z)&+((&) 3 z&.

Bearing in mind that in Eqs. (28) and (29) x is inside
of 8 and y is outside of 5, we see that Eq. (36) is
satisfied if Eq. (28) is satisfied for x=z and Eq. (29)

FIG. 7. A test source y set up to detect the external field from a.

for y=z. In this sense, Eqs. (28) and (29) embody the
information contained in Eq. (36). We obtain different
formulas for the echo because we choose to enforce
Eq. (36) for two different values of z, z=l and z=rrs,
whereas we enforce Eqs. (28) and (29) for x=a and
y=a, To put it another way, if x=y=z=a then the
same value of a is obtained from any two of the three
equations (28), (29), and (36). It is interesting to note
that the value of (g,2,a& (the echo) obtained from (36)
is stationary provided Eq. (36) is enforced for the single
value of z, z=a. On the' other hand, if (28) and (29)
are enforced for x= a and y= a, then all three quantities

(g,2,u&, (a,2,a& and (u,3,u& are stationary.
To give a speci6c comparison between these two

approaches, the echo from an in6nite plane dielectric
slab for a plane wave at normal incidence, has been
computed from Eqs. (28) and (29) with @=a and y=a,
and from Eq. (36) with z= t and z=m. We note at the

FIG. 8. The source l just
inside of the source c.

outset that the results of this comparison must be
regarded as suggestive rather than conclusive for not
only is the example specific, as opposed to general, but
the assumed distribution is also specific. Note also that
the assumed distribution, which is usually a function of
position, in this case consists of four discrete values
corresponding to the front and the back faces of the
slab. Thus, if our approximation contains four inde-
pendent adjustable constants, any set of tests which
determines them uniquely is bound to yield the correct
solution.

The two methods were compared on the basis of the
type of approximation represented by Eq. (30), which
contains two adjustable constants. A crude approxi-
mation is obtained by assuming equal and opposite
electric and magnetic currents on the front and back
faces, e.g., the distributions l and m can be represented
by the pair of values (+1, —1). For thin slabs and low
dielectric constants both methods give an echo which
is four times the correct value, and for low dielectric
constants, the maximum echo, as a function of slab
thickness, is about twice the correct value. The situation
here is that the differences between the two methods
are overshadowed by the crudeness of the assumed
distribution, which emphasizes the overriding impor-
tance of starting from an assumed distribution which
is nearly correct. A better approximation is obtained
by assuming that L and m are represented by the
distribution (+1, —expit) where t represents the elec-
trical thickness, i.e., t=cop, &e&d, where d=thickness of
slab and p, and e are the constants of the dielectric.
This is the type of assumption used in physical optics
and neglects reQection from the back face. For an
incident 6eld of one volt per meter the following
formulas are obtained. The correct solution is

2Kl 1—exp2it
l

poli —K' exp2itl
(39)

The approximation given by Eqs. (28) and (29) is

2K
l
1—exp(it/1+K) l'

l(g, 2,~&l =— (40)
ris l

1—2 exp(2it/1+K)+exp2it
l

The approximation given by Eq. (36) is

2K
l

1—expit/1+K l

'
l
1—exp2it

l

(41)
iisl 1—2 exp(2it/1+K)+exp(4it/1+K) —K exp(4it)+2K e pt 2xit(2+K)/1+K J Kexp(4it/1+K—) l

' T. H. Crowley, "Variational Impedance Calculations, " Antenna Laboratory Report 478—5, Ohio State University (unpublished).
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CORRECT
x xx EQ, 40
~ ~ ~ EQ. 4l

b are slightly separated. If u is imagined to be just
outside of b, we have

Log
i Echol

Reflection Coefficient = 0.5
„+Relative Dielectric Constant= 3.0

x
0

Ref l ection Coef fi ci en 1 =0.95
Relative Dielectric Constant=39. 0

L~
.i

A Reflection Coefficient = 0,8
i

Relative Dielectric Constant = 9.0

X
x'

(u, (b))= ' t J(u) E(b,external)

—K(u) H(b, external)]dS; (43)

and for b just outside of u, we have

&(u),b)= I
~t LJ(u) E(b, internal)

8 —K(u) H(b, internal)]dS. (44)

It can be shown' that

&u, (b)& = ((b),u&, (45)

00l 002 005 0'I 0 2—t~0 5
n )i~

I.O 2.0 vr 5,0 2tr.

under the same conditions as are required for the usual
reciprocity theorem )see Eq. (2)]. It follows that

FIG. 9. The echo from a dielectric slab verses thickness. &(u) b&
—(u (b)&

In Eqs. (39), (40), and (41), E represents the reflection
coefBcient for t= cc; i.e.„

E= (e„—1)/(e„+1), (42)
Thus

LJ(u)X K(b) —J(b) X K(u)] ndS. (46)
J J,

&(u),1,b&
—

&u, 1,(b)&=((u)» b&
—(u 2 (b)» (4t)

where e„=relative dielectric constant of the dielectric.
These results are plotted in Fig. 9. It can be seen

that the error in Eq. (40) is insignilicant for t&~1 but
becomes progressively worse for larger values of t until
there is practically no correlation with the correct
result. Equation (41) is in error for small values of t

by the factor (X+1),but, unlike Eq. (40), it is correct
in the vicinity of t=+, although otherwise it shows
practically no correlation with the correct result for
large values of t. The behavior at t=m is interesting
because the assumed distribution is correct at this
value of t, and therefore both (40) and (41) might be
expected to reduce to the correct result at t=m. The
failure of Eq. (40) at t=rr is due to the fact that the
external Geld generated by / or m in a homogeneous
dielectric is zero. Thus, while Eq. (29) is certainly
satisfied it does not yield any information about the
constants I. and 3E, i.e., for t=x the test represented
by Eq. (29) turns out to be trivial for the particular
assumed distribution under consideration. This sug-
gests that instead we should put the test source y
inside of S, but then we find that in order to arrive at
an enforceable condition we are brought back to
Eq. (36).

FURTHER PROPERTIES OF THE REACTION

The foregoing example of scattering by a dielectric
shows the need for a more elaborate formulation to
handle cases where Eq. (1) is inadequate. When u and
b Lsee Eq. (1)]consist of surface distributions over the
same surface S the Geld at a due to b is discontinuous
and consequently the integral in Eq. (1) is not defined.
In this case there are two possible values for the
reaction which are obtained by imagining that a and

where 1 and 2 represent any two environments.
The formula (1) is also inadequate if u or b cannot be

contained in a finite volume. For example the reaction
between infinite traveling wave line sources can be
defined as follows. I et the source distribution be repre-
sented by J(x,y) expels and K(x,y) expels, where the
constant y is such as to represent waves which'are
attenuated as they travel along the s axis, and the
medium is independent of s but is otherwise hetero-
geneous. Then

(u,b)= I P(u&x&y)oE(bp, y)J J,
+K(u, x,y)oH(b, x,y)]dxdy, . (48)

where r represents the matrix

0 0
o= 0 1 0

0 0 —1

and the surface Z contains all sources. ' This formula
differs from Eq. (1) but can be applied in the same way:
it represents the same physical observable. Modifica-
tions similar to Eqs. (43) and (44) apply if u and b are
at the same place

Returning to the case where a and b are at diGerent
places, let S represent any-surface which separates u
and b (e.g., all parts of u are inside of S and all parts
of b are outside of S). Then

(u,b)= " LH(u)XE(b) —H(b)XE(u)] ndS, (49)" "s
' T. H. Crowley, J. AppL Phys. 25, 119 (1954).' V. H. Rumsey, J. Appl. Phys. 24, 1358 (1953).
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where n points away from a towards b. This illustrates
another aspect of the reaction concept, for Eq. (49)
states that the Aux of the vector in brackets is conserved
(provided S separates a and b), and (a,b) represents the
conserved property. This principle of conservation is
self-evident from a physical point of view, for Eq. (42)
can be interpreted as stating that the reaction between
c and b is the-same as the reaction between a and the
equivalent sources nXE(b) = K(b) and H(b) Xn= J(b)
which generate the same field as b at u. It is apparent
that the reaction between a and b is the same as the
reaction between u and any source which produces the
same 6eld as b at u.

The reaction concept can be extended to anisotropic
media by using a more general form of the reciprocity
theorem (which was brought to the author's attention
by M. H. Cohen). Let [E(a),H(a)] represent the field

generated by the source distribution [dJ(a),dK(a)] as
before. Let [8(a),3'.(a)] be the Geld generated by the

same source when all media are replaced by the corre-
sponding media whose macroscopic constants tt (per-
meability), e (dielectric constant), and o (conductivity),
are the transposes of the original constants. [If
represents the transpose of e, and A and B represent
any two vectors, then the scalar product A (eB)
=—B (eA)]. Then the formula for the reaction is

(a,b)=) [E(b).dJ(a) —H(b) dK(a)], (50)

subject to the same conditions as Eq. (1) except that
the media need not be isotropic.
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Analytical expressions are derived for the particle Aux from a point source which emits particles with
an angular distribution (1/ntt) expL —e'/Pg. The emission is into an in6nite medium characterized by a
strongly forward differential scattering cross section which can be approximated by a Gaussian
Z(8) = (Z/nn) expL —ss/aj, and in which all cross sections are energy independent. In particular, an asymp-
totic expression is obtained for large Zr, vis.

exp[ —(z g
—z)rg g2

4 (r,s), exp"'(0+l~ ) 0+l~ )
INTRODUCTION

A DIFFERENTIAL scattering cross section which
has a strong forward scattering peak can in some

cases be approximated by a Gaussian, a(8) =[a/(srn)]
Xexp[—0'/n]. This approximation is physically real-
ized in several diferent cases, among which are the
differential Compton scattering cross section for p rays
and the differential scattering cross section of high Z
materials for very high-energy neutrons (E)100 Mev).

It is the purpose of this paper to show that under the
small-angle approximation, 8'&(1, for the energy-inde-
pendent case an expression can be derived for the
particle Qux at x, y, s, from a point source emitting par-
ticles with an angular distribution [1/srP] exp[ —8'/P]
into an infinite medium which is characterized by a
total cross section, Z~, and a differential scattering
cross section, &(0)=[&/(urn)] exp[ —8'/n]. It will fur-
ther be shown that an analytic expression for the
distribution function at a distance s from an in6nite
plane source can be derived.

SMALL-ANGLE APPROXIMATION

The differential elastic scattering cross section of
several materials has been measured for 83-Mev neu-
trons' and for 300-Mev neutrons. ' The experimental
results can be easily fitted by a Gaussian [o/sru]
Xexp[ —0'/a]. The Gaussian character of the scattering
is also displayed by the "opaque" theory of scattering.
The "opaque" model gives an angular dependence
[Ji(ERO)/8]' which upon expansion in a power series
gives, neglecting terms in 04 and higher powers,

[-',KR]s[1—rs (ER8)s] [rsER]' exP[—rs(KR0)'].

The total cross section for neutrons of &200 Mev
seems to be roughly geometric and therefore inde-
pendent of energy. Thus, considering the total cross
section to be constant and the differential scattering

'Bratenahl, Fernbach, Hildebrand, Leith, and Moyer, Phys.
Rev. 77, 597 (1950).

W. P. Ball, University of California Radiation Laboratory
Report 1938 (unpublished).


