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which gives for even and odd degrees, respectively:

&(0"F—~ 'g"")(0 F—~ 'g")
(26)

Jps(FF & sgvr). . . —0

These are the general relativistic commutation rela-
tions previously written symbolically as G in (1) and
in their irreducible form their degree represents the
spin of the elementary particle as given by (8).' It may
be noted that they are consistent according to definition
A and hence satisfy theorem I. From (21) and (25) one
gets,

(~2 rr 2/2) (~2 rrs $ ) ' ' '

Hence 7f'/n', the eigenvalues of $', are squares of masses
of elementary particles.

The matrices 8&" defined by (8) reduce to the nucleus
of the representation of Lorentz transformation in a
locally Cartesian frame; hence we can define an in-
finitesimal transformation V whose representation
transforms as f'=TP=[1+ise„„d&"Q, where T is a

For degrees two and three, these commutation rules reduce
to the generalizations of Dirac's and Kemmer's commutation
relations:

Il"F+0"5"= 2g""
for spin ~~, and

5"FF+F5 5"=r" 5"+a'"0"
for spins 0 and 1.

representation matrix of 9" which may be called a local
I orentz transformation, and 8„„ the nucleus of repre-
sentation of K T forms a local group embedded in the
general transformation group S and (9) shows us that S
can be built up by successive variation of F,& if we
know the infinitesimal algebra of 8&" and P& defined by
(8) and (26). In the particular case of spin
0&"=4i[g&, F], and for spin 0 and 1, 8&"=[(P,F].

In the case of spin 2, f in (20), (21), (22) represents
the wave function of gravitons (gravitational quanta).
Now the metrical structure of physical space has been
considered to be due to gravitation. One may ask how
to reconcile this representation of gravitation with the
one in terms of gravitational quanta. The apparent
contradiction is resolved by considering matter with
its field as causing a (topological) deformation of
physical space-time and having the duality of metricity
and discreteness, as observed by experiments which also
deform space-time. We can observe metrical properties
only on the macroscopic level, where approximate rigid
bodies and local frames of reference exist, but in the
case of the microscopic world where there exist no
rigid rods to define distance (since the uncertainty
principle applies) the other aspect of duality (discrete-
ness) becomes apparent.
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Electron Energy Distributions in Stationary Discharges
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Calculations of the electron distribution function are presented for some simple examples of a stationary
discharge in a dc space charge field. The treatment is valid when the predominant mechanism of energy
exchange arises from motion in the dc space charge field. The computations indicate that the effect of dc
space charge is, for a given external Geld strength, to increase the proportion of high energy electrons over
that computed neglecting space charge. This results in a larger specific ionization rate, but the e6ect is not
so great as to account for the low maintenance potentials observed in positive columns and in microwave
discharges in inert gases.

I. INTRODUCTION
'
QAST theoretical analyses' of the energy distribution

of electrons in gases have generally ignored the
presence of space charge fields. In the microwave dis-
charge, for example, the electric field is usually assumed
to be of external origin; in positive columns of dc dis-
charges, the relevant field is taken to be the longitudinal
gradient. Now, in both these examples, the removal of
charged particles takes place via the mechanism of
ambipolar diffusion. This process requires the presence
of a space charge field su%ciently strong to retard the

*Present address: Forrestal Research Center, Princeton, New
Jersey.

' Morse, Allis, and Lamar, Phys. Rev. 48, 412 (1935); J. A.
Smit, Physica 3, 543 (1936); T. Holstein, Phys. Rev. 70, 367
(1946), to be referred to hereafter as I.

motion of electrons, and to accelerate that of the
positive ions to the boundary. Such fields are often
comparable to or even larger than the external fields.

In order to obtain some idea of the effect of a space
charge field (of the type prevalent. in ambipolar dif-
fusion) on electron energy distributions and associated
quantities, such an average ionization rates, it has been
deemed of interest to investigate the situation in which
the space charge field is much larger than the applied
field. This case represents the opposite extreme to that
already treated, namely, space charge field very much
less than external field. By this procedure one may hope
to achieve an understanding of the generally en-
countered intermediate case by interpolation between
the two extremes.
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A special feature of interest arises in connection with
the question of low maintenance voltages in positive
columns and microwave discharges. ' In these discharges
the essential problem is to account for the extraordinary
ionization efficiency. A possible contributing mechanism
might involve just the phenomenon under discussion.
This possibility has in fact been investigated by
Davydov' who comes to the conclusion that an ambi-

-polar field large compared to the longitudinal gradient
"Maxwellianizes" the energy distribution, thereby
providing a relatively large number of "tail" (i.e., high-
energy) electrons capable of direct ionization. In this
paper the analysis of Davydov will be shown to be
incorrect; furthermore, it will turn out that the effect
of space charge fields upon average ionization rates,
while not negligible, is completely unable to account
for the observed low maintenance voltages.

IL BASIC ENERGY DISTRIBUTION EQUATION

The rigorous starting point of any energy distribution
treatment is, of course, the Soltzmann transport
equation, f(r,v, t) =fo(r, v, t)+v fr(r, v, t), (3)

In Eq. (2), Ã is the density of normal gas atoms;
v, 8, and p are polar coordinates in velocity space (the
integrals being carried out over the total solid angle 0
in this space, i.e., over-all values of 8' and 9 '); q, ~(lt, v) is
the differential cross section for elastic scattering
through an angle f of an electron of velocity tY; and
qo(lt, v) the corresponding inelastic differential cross sec-
tion involving excitation of the h th atomic level. The
first term gives the change in f due to elastic scattering
with neglect of recoil loss. The second term takes this
loss into account. The third term describes the eGect of
excitation collisions. In it the summation is extended
over all discretely excited levels. Finally, Bf/Bt);,„

. denotes the change in f due to ionizing collisions. This
term will be written down explicitly later.

A second assumption which characterizes the existing
theoretical treatments of electron energy distributions
is that the distribution is essentially isotropic in velocity
space, with only small anisotropies arising from the
actions of external fields and diffusion gradients. One
thus has

8 Bfi—= —v. grad, f—a grad, f=—
~

8$ Bt),»
where fp(r, v, t) and fr(r, e,t) are scalar and vector func-

(1) tions of r, t and the magnitude of v, and where it is to
be presumed that

Here, f=f(r,v, t) gives the distribution of electrons in
position and velocity space, a= —e8/m, where the
electric held, 8, is in general a function of position r
and time t. The first two terms on the right-hand side
represent the change in f arising from the velocities of
the electrons and from the action of the electric field.
The last term represents the change in f due to col-
lisions.

At this point it is to be remarked that, apart from the
consideration of the space-charge field, the present
analysis will be based on essentially the same assump-
tions as the previous treatments. This implies, first of
all, that collisions other than those between electrons
and normal atoms will be ignored. In this event Bf/Bt
has the form4

fo(r, e,t)»~ fr(r, ~, t) ~. (4)

Upon substituting (3) into (2), multiplying the result
by 1/4r or by 3v/4s-, integrating over the velocity
angles (as is done in I, pp. 371—372), and transforming
the velocity variable from v itself to I=a', one obtains
the following equations' for Bfp/Bt and Bft/Bt.

ulBfp/Bt= (u/3) divrft (2a/3) (B/Bu) (uft)

+ (2m/3II) (B/Bu) (u'fo/) .)
+g{(u+u„)f ( o+uuro)/)~o(u+up)

ufo(u, r)/Xo—(u))+uiB fo/Bt);. , (5)

ulBfr/Bt= —u grad, fo 2auBf—p/Bu ufr/&. —, (6)

Bf/Bt)„»=+e) d Dpo(8', &'A t) r—f(8,oo,e,rt)fq, &(ip,e) w ere

+P'/. )(m/m)(B/Bv)
and

&& ~~ du'f (8', to', e, r, t) (1—cosiP) q,~(tP,e)e

1/X, (u) = 2prN~I df sing (1—cosf)q„g,u), (7)

1/)to(u) = 2xlV~~ de sinfqq(p, u).
0

+P t d '{f(8', „', Les+ad.sjl, r, t)
h &g

X (1+co'/o')qI, (f, fe'+no'j')

f(8,p, v, r, t)qo(P, e))+—8f/Bt);,„. (2)'-See, for example, Krasik, Alpert, and McCoubrey, Phys. Rev.
76, 722 (1949), especially p. 730 and Fig. 12.

o B. Davydov, Physik Z. Sowjetunion 12, 269 (1937).' See, for example, I, Eqs. (10), (11),and (13).

g, (u) and Xo(u) are, respectively, the mean free paths
for elastic scattering and for excitation of the h'th
atomic level.

Equations (5) and (6) will be applied to the positive
column of a dc discharge. For the sake of simplicity the
usual cylindrical geometry will be replaced by plane

' These equations are vector generalizations of (21) and (22)
of I, the only further change being the use of N=e' rather than v
itself as the velocity variable.
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u&afo/Bt);, = du'u'fp(u')/y;(u', u)
e++ s

(V—Qi) /2

—f() " de'/li;(u, u'), (13)

where u, is the ionization potential, and where 1/li;(u, u )
is the "differential" probability per cm for ionization
in which one of the two resultant electrons has an
energy between e' and e'+de' (the energy of the other
being necessarily contained between N —N; —N' and
u —u, —u' —du'). As is the case in the standard treat-
ments, u'*Bfp/Bt);, plays a negligible role in determining
the energy distribution, and will henceforth be neg-
lected. It is to be noted that u&fpdudx is proportional
to the fraction of electrons at x with kinetic energy N.

The development of (11) from (5) and (6), which
has been given in the preceding paragraphs for the case
of the positive column, can also be applied under certain
conditions to the microwave discharge. The geometry of
the discharge, as before, will be assumed plane-parallel.
However, both the ambipolar space charge field 8~, and
the applied microwave field ho cobol, are in the x direc-
tion, perpendicular to the walls. Just as in I, it will be
assumed that the microwave frequency co is high enough
so that fp does not change appreciably in a cycle of field

parallel geometry, i.e., the boundary will be assumed to
consist of two parallel walls separated by a distance 2d.
The vector acceleration a consists of a longitudinal
component ag parallel to the walls, and a transverse
component u~ perpendicular to the walls, arising from
the ambipolar space charge field. %hereas a~ is constant,
up must be considered a function of x (the x axis being
directed perpendicular to the walls). In addition, the
positive column is assumed homogeneous in directions
parallel to the walls, i.e., the dependence of fp and fi
on r is limited to the x coordinate, Under these condi-
tions (6) reduces to

0= u'Bfi&/Bt= —2apuafo/Bu ufip/&—~ uafo/—ax, (9)

o= usaf„/Bt= 2a—puaf p/Be uf—,p/X„ (10)

where fip and fii are the transverse and longitudinal
components of fi. These equations may be used im-
mediately to eliminate fi from (5), whence one obtains

o= u'*afo/at = ', (a/ax+2—a,a/au) (uX,)
X (B/Bx+2apa/Bu)fo(x, u, t)+L{fp(x, u, t)}, (11)

where

L{fo(x,u, t)}= (4/3)Pip (a/ae) (u& Bfo/Be)

+ (2m/M) (B/Bu) (u fo/lt )

+Qp{(e+up)fp(x)u+ug)t)/Xg(u+uo)

ufo(x, u, t)/—hp, (u) }+u&afp/Bt);,„. (12)

For the sake of reference the explicit form of
u'*Bfp/Bt);, „given in I, Eq. (32), will be recorded here.
It is

IIL METHOD OF SOLUTION OF BASIC EQUATION

An integral feature of the method for solving (11),
to be given here, is the transformation from N to a new
variable

where
w=u+q (x), (15)

po(x) = —2, dxa, (x).
40

(16)

Physically (apart from the factor iom), po(x) is the
potential energy associated with the space charge field.
Thus m represents the sum of kinetic energy and space
charge potential energy. In what follows, m will be
referred to as "total energy. "

From (15) and (16) one readily derives the relation-
ships

(17)

(18)

B/Bu). = B/Bw). ,

a/ax)„= a/ax)„2a, a/a—w)„
the combination of which yields

B/Bx)„=B/Bx)„+2a,a/Bu), (19)

With the use of these relations, Eq. (12) assumes the
form

o= —' (ap/B )t x( wppp)X, af/Bxj+L{f(w, x)}, (20)

where f is now to be considered a function of x and w,
and where

L{f(w x)}= (4/3)+p'(a/aw)L(w o)7.af/Bwj-
+ (2m/M) (B/Bw) t (w — )'f/l

+Q p, {(w —op+ up)f(w+ up„x)/l~o (w —
op+ up)

—(w —po)f (w, x)/Xo(w —
po) } (21)

with X, a function of (w —q).
This result is also given in I.

oscillation: For the steady state, (6) then yields

f,= ~,—{Bfo/ax+2a, afo/Bu}
—2apX, {(cos&ut+ooA, e-& sinopt)/

(1+op'X,ou ') }Bfp/Be .(14)

Substituting (14) into Eq. (5) and time-averaging over
a cycle of field oscillation (in which fp is still to be con-
sidered time-independent), one obtains, with the further
assumption that opoli, ou '((1 (many elastic collisions per
oscillation), an equation of precisely the same form as
(11).The sole difference is that aP is to be replaced by
2'u02, i.e., the longitudinal field of the dc positive column
is equivalent to the root-mean-square field of the micro-
wave discharge. '

Equation (11) constitutes the basic equation for the
electron energy distribution in the presence of an ex-
ternal and an ambipolar space charge field; its approxi-
mate solution for the case of external field very much
less than ambipolar field will be developed in the next
section. Henceforth the subscript o will be suppressed.
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Equations (20) and (21) describe a type of diffusion-
drift motion in zv, x space. In fact, by defining two dif-
fusion coeKcients

D.=-', (w —q)X, (w —q), (22)

D„= (4/3) a P (w —p)X, (w —y), (23)

one may write (20) and (21) in the form

o= (Bl»)5&.(Bf/»)3+ (BlBw) [&-(BflBw)j
+ (2m/M) (B/Bw) [(w p—)'f/X, ]
+Qg((w —p+sls)f(w+Ng, x)/Xs(w —q+Ns)

—(w —~)f(w, *)/». (w —
i )}, (24)

in which it is seen that the first term describes a dif-
fusion in x, the second a diGusion in zv, and the remain-
ing terms a degradation in total energy m, which is con-
tinuous for the recoil term and takes place in jumps of
Nq in the case of the inelastic collision term.

The diGusion coefFicients, D, and D„are of course
functions of the coordinates. In particular, as illustrated
in Fig. 1, they vanish on the curve of zero kinetic energy
w=y(x) which, since electrons must have positive
kinetic energies, constitutes one of the boundaries of
the available region of zv, x space.

In an analogous fashion, curves of p(x), uniformly
displaced upwards by amounts eI„define the lower
boundaries of regions of inelastic collisions of various
types. Finally, the curve

w= p(x)+Qj&&n

t where I;, = (2/m) ionization potential) gives the
lower boundary of the ionization region.

To complete the description in m, x space, it is to be
considered that ir (x), as pictured in Fig. 1, is symmet-
rically disposed with respect to the enclosure geometry—an assumption which will be employed in all that
follows —and attains a finite value q on the enclosure

ZQ

gi

tat
glQ

W- (X)

Fro. 1.Diagram of total energy m versus position x showing regions
of the various classes of collisions.

avails. For w) io„,~t the boundary is no longer w= p(x),
but the walls themselves. If the latter are assumed ab-
sorbing, as is usually the case, the boundary condition

f(w, ad)=0, (26)

(d= s wall spacing) appropriate to diffusion theory, is
to be employed. '

It turns out that the inclusion of wall eGects leads to
special difficulties in the analysis of Eq. (24:). The
treatment will therefore be limited to situations in
which the significant range of m lies below y, ii, this
restriction is equivalent to assuming an infinite "space
charge well. "

With the transformation from the n, x to the w, x
system of variables, the stage has been reached where
one may profitably make use of the basic assumption,
discussed in the introduction of this paper, that the
ambipolar 6eld S~ is much larger than the "applied"
longitudinal field 8&. As a preliminary step, it will be
helpful to consider the extreme case in which it is
imagined that there is a longitudinal field and no col-
lision-induced energy losses, i.e., the electrons move in
a space charge field of the type illustrated in Fig. 1,
undergoing elastic collisions with infinitely massive
atoms. In this case (20) reduces to

0=-:(B/B )L( —.».Bf/B &.

A first integration yields

Bf/Bx= C(w)/(w ir)X, (w —q—).

(27)

I.et it be supposed that X,(0) is finite. Then the re-
quirement of regularity of f (and Bf/Bx) at w= ir(x)
leads to the conclusion that C(w) is zero. Thus Bf/Bx= 0
and

(29)

where F(w) is an arbitrary function of w.
The arbitrariness of P(w) arises from the circum-

stance that, with neglect of the longitudinal field and
collision losses, the sole mechanism for changing kinetic
energy is the motion in the ambipolar field. Obviously,
a constant of this motion is the total energy, m. Thus,
in the approximation represented by Eq. (27), transi-
tions between diGerent m levels do not take place with
the consequence that an arbitrary distribution in m of
electrons is stationary.

It has been remarked above that the consideration
of (27) as an approximation to (20) is in line with the
basic point of view of this paper, which regards the
eGect of the space charge field in determining the elec-
tron energy distribution as "dominant. " The results
just obtained demonstrate that this dominance is neces-
sarily incomplete in the sense that the space charge
Geld cannot determine the distribution in m. It is
therefore necessary to proceed to a higher stage of

' In contrast to the situation at the physical boundary x= ~d,
only regularity of f(x,m) is required at w= p(x).
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approximation. This is done by considering the terms
designated in (21) by the notation L{f(w, x)}as a small
but nevertheless nonvanishing perturbation. The intro-
duction of these terms will correspond physically to
permitting transitions to take place between the dif-
ferent m levels; these transitions will then determine
the form of F(w).

Considering, then, L{f(w,x)} in (20) as a perturba-
tion, one attempts a solution of the form

where

p(w) —= C*(w—f )&.(w —
~ ),

—&0

q(w) =— ch(w —q)'x, (w —
pp),

(35)

(36)

f(w, x) =F(w)+G(w, x), (30)

where G(w, x) is to be presumed small. Inserting (30)
into (20), one has, approximately,

0=-', (8/Bx) [(w—ip)X,BG/Bx7+ L{F(w)}, (31)

io(xp)= p (—ho)=w (32)

the first term of (31) drops out, and one is left with

where the higher-order term L{G(w,x)} has been

dropped. Upon integration of (31) from —xp to +xp,
xo being defined by the relation'

It is to be noticed that the form of (34) is quite similar
to that of the corresponding equation for the case of no
space charge field [see I, (54')7. Hence, the general
technique developed in I for solving that equation will
also be applicable here. In the following section (34)
will be solved for a number of speci6c examples and
the results compared with those obtained in I for the
case of no space charge field.

Dt'. ILLUSTRATIVE EXAMPLES

I. Elastic Co11ision Case

The erst example to be considered is that in which
the electron energies are low enough so that inelastic
collisions may be neglected. Equation (34) then reduces
to

0= chL{F(w) } (4/3) '(c/c )[p( )cF/c 7
+ (2m/M) (C/Cw) [q(w)F7=0. (38)

as the basic equation" for the determination of F(w).
Equation (33) may be written more explicitly as

o= (4/3)aP(C/Cw)[P(w)CF/Cw7

+ (2m/M) (C/Cw) [q(w) F7
+Ps{r„(w+Ns)F(w+I„)—rs(w)F(w)}, (34)

In the language of perturbation theory the situation may be
described as follows. The solutions of the equation (1/3)(B/Bx)
X P(o&—vi)X,Bf/Bxg= Pf which belong —to the "eigenvalue" P= 0
are degenerate. A complete set of the eigenstates, for example, is
given in terms of the Dirac delta function, namely fwi(w, x)
=S(w—wi). The general solution, equivalent to (29) is then,
f(w, x)= j'dwiF(wi) fwi(w, x). According to the general methods of
perturbation theory, the degeneracy is to be removed by a secular
perturbation procedure which considers L(f(w, x)) as the per-
turbation. In such a procedure, one will expect to have to evaluate
integrals of the type J'dxdzufioi(w, x)L(f(w, x)). This in fact is
just what is done in the text below. (See also reference 10.)' It has already been assumed that s (x) is an even function of x,
with the plane x=0 chosen to lie midway between the two walls.

"With reference to the remarks of footnote 8, the above pro-
cedure is fully equivalent to that followed in secular perturbation
theory. Namely, one constructs the solution as a linear super-
position of degenerate unperturbed functions, i.e., f(m, x)=fdwiF(wi)fmi(w, x)=F(w) Lsince fui(w, x)=B(w—wi)j in ac-
cordance with footnote g, and substitutes into the basic Eq. (20),
thereby obtaining o=L(F(w)l. Then, upon multiplying with one
of the "eigenfunctions" and integrating with respect to x and mr,

one obtains

o=f dwf dxb(w' w)I&F(w)} fdxL=(F—(w')l,

as is given by (33) of the text.

A first integration yields

C inF/Cw = —(3m/2Mais) [q( )/wP (w) 7, (39)

the constant of integration being eliminated by the
requirement of regularity of F and CF/Cw at the origin.
A second integ'ration gives

F=C exp —(3m/2aP)~ Cwq(w)/P(w) . (40)
0

In order to proceed further, it is necessary to make
some assumptions concerning both the energy depend-
ence of the mean free path, X„and the spatial depend-
ence of the space charge potential p. In what follows,
it shall be assumed that (a) )~.=constant, and (b) io

varies parabolically with distance, " i.e.,

p=QX ~ (41)
"It is felt that the actual functional form of the space charge

potential is contained between two extremes, one of which is
represented by (41); the other extreme is a step-like potential
given by op=0 for ~x( &d, followed by a discontinuous jump at
x=~d to,the value q = q„„~},. In particular, it is readily shown
that a 6eld of the type occurring in the conventional theory of
ambipolar diAusion is contained between these two extremes
(apart from a small region in the neighborhood of the wall in
which ambipolar theory is not applicable anyway). Now, the
"step" field, when applied to Eq. (34), is essentially equivalent
to no space charge field. Hence (41) should give an extreme indi-
cation of the effect of space charge 6elds on the electron energy
distribution and related statistical quantities.
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With these assumptions, (35) and (36) are readily
evaluated and yield

p(w) = (4/3)X,w&/n&,

q (w) = (16/15)w'l'/)t ~'",

which, when substituted into (40), give

(42)

(43)

F=C exp[ —(3ns/5M) (w'/aP), ')). (44)

(44) is to be compared to the so-called "Druyvesteyn"
distribution obtained for the elastic collision case in the
absence of the space charge 6eld. This distribution is"

FD =CD exp[ —(3m/4M) (u'/ai9, .') 5 (45)

The comparison of (44) with (45) demonstrates a char-
acteristic eR'ect of the space charge field on electron
energy distributions, namely, a relative enhancement of
the tail. This feature will, in particular, be again en-
countered in the next example to be treated, in which
inelastic collisions are taken into account.

2. Inelastic Collisions

p (w) = 2n '~"[2r/(2r+1) )w'+'"") (47)

The extension of the electron energy distribution into
the inelastic collision region will now be considered. The
specific example to be treated is that for which: (a)
X,=constant (as in the previous example); (b) there
exists only one excitation level, u&=—N„with the cor™
responding free path, X~ =—X, independent of electron
energy;" (c) the energy loss due to recoil collisions is
negligible; (d) the space charge well is of the form"

ic(x) =nx'"; r=1, 2,

It should be pointed out that (a), (b), and (c) char-
acterize the first example treated in I, Sec. 7. The
results of the present treatment will therefore be
directly comparable to those of I.

Utilizing these assumptions in the evaluation of the
integrals in (35) and (37), one obtains

f =w/u. „
y'= -', (u,./a(X, )'(X,/X„),

(50)

(51)

Eq. (49) may be written as

a= (d/df) [f'+'""dF(f)/df)
+~V""(&++ / ) (f+ ), f. , (5)

&= (d/df) [V+'""dF(f')/@7
—ys(i —1)'~ "(i+1/2r)F(g), f')~1. (53)

The region f )~1 will be considered first. Introducing
the substitution

GO.) =~: '""F(f),
one may write (53) as

G"0)=8'(l-l/l. )'""(1+1/2 f)
(2r+—1)/1«f'jG(f') (55.)

Here primes indicate differentiation with respect to f'.
A considerable simplification of (55) may be achieved

if the last term in the square bracket is neglected, a step
which is permissible for sufTiciently large y (low field).
Actually in the present paper, the range of field for
which specific calculations is such that"

&»o. (56)

For the range defined by (56) the second term in the
bracket of (55) is quite small and will be dropped forth-
with. Equation (55) then becomes

G"(i-) &'0)G—(f) =0,

term, one has

0= (4/3)X,X„aP(d/dw) (w'+'""dF/dw)
+( (w+u, ./2r+ u,.)w'~"F (w+u„)—(w+u„/2r) (w —u,g)' '"F(w)S(w —u.g) ) . (49)

As in the treatment of I, (49) is first solved for the
excitation region m) I„.Here, for fields which are not
too strong, the distribution function falls oG suSciently
rapidly with increasing energy so that the "production"
term, proportional to F(w+u, ), may be neglected. In
this case, and with the introduction of the dimensionless
quantities

wherer„(w) =ri(w) =2n '~'"[2r/(2r+1) j(w+u„/2r)
X (w —u, )iS(w —«„), (48)

(58)k (f') =y (1—1/|')'""(1+1/2r f) *'.

Equation (57) will be solved by an approximate
method based on the circumstance that, because of
(56), GQ') attains its asymptotic form, as given by the
W.K.B. method" for l —1((1, which solution is then
readily joined to one which is specially valid for the

where S(x) is the conventional step function. Substi-
tuting (47) and (48) into (34) and dropping the recoil

r' In a typical case such as argon, X,/h„~50, 4p (1/60) cm
mm (where p is the gas pressure in mm Hg), and the excitation
potential, V, 15 volts. With these numbers, and with 8=longi-
tudinal field in volts/cm, the limitation expressed by (56) is
equivalent to 8/P ~&23. This limit is considerably higher than
the values of 8/p commonly encountered in maintenance dis-
charges (see Fig. 12 of reference (2)).' H. F. Jerries and B. S. Jeffries, Methods of Mathematicat
Pkysr'cs (Cambridge University Press, Cambridge, 1950), second
edition p. 522.

'~ Equation (45) is readily obtained by taking p=0 in (35) and
(36) (the procedure being equivalent to assuming the "step field"
of reference 10j.

"This assumption corresponds to a "step function" cross sec-
tion, the step occurring at e=N„. An energy dependence of this
type is actually not unreasonable, In particular, the excitation
cross sections of metastable levels (which is a number of gases
are the lowest excited levels) often exhibit a rather sharp initial
rise, followed by a plateau, or even by a diminishing characteristic.' It will be noticed that the previously employed parabolic
space charge potential q =ox' is a special case of (46) with r 1. =
Higher values of r represent cases intermediate between the
parabolic potential and the square well potential of footnote 10;
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immediate neighborhood of 1 = 1. Thus, the asymptotic
solution of (57), as given by the W.K.B. method, " is T ~IQ

20

40 ~ ~ ~ ~ ~ ted+

G(1)=Ajt(t) '"exp— df'~(f') . (59)

On the other hand, in the immediate neighborhood of
)=1, (57) may be approximated by

"(f)-(1+ / h'(f- )'"G(f)=0, (0)
the appropriate solution of which is

G(g) = (f'—1)hEzy/(4r+i)((1+ 1/2r) &

X (1+1/4r) 'v(f —1)'+'"'3, (61)

where E„(z) denotes the modified Bessel function of the
second kind. '~

Comparison of (60) with the asymptotic form of (61)
in the neighborhood of t = 1 then gives

A = (ir/2) &(1+1/4r) l.

Equations (54), (59), (61), and (62) give F(f) in
the region f'~&1. For f &~1, the combination of (52) and
(53) yields

f'+'""F'8') =F'(1)—(f+1)'+'""F'0'+1), (63)

from which
1

F (C) =F (1)—" Cf-"+'""'F'(1)
J, —(f+1)'+'"'F'(t'+ 1) (64)

l,Qrn
CL
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C
.& 0.5--
O
O

0 I I i i . I

0 0.2 0,4 0.6 0.8 1.0 Ot

Total energy in units —'
mal2

2. Normalized distribution in total energy tV(ut) eerszts io
&» various values of 8/p. The space charge well has been assumed
to be parabolic.

Now that the distribution function has been deter-
mined, it is of interest to calculate the specific ionization
rate P. For this computation, it is assumed that the
ionization cross section is a linear function of the elec-
tron kinetic energy, an assumption that is quite good
near threshold. Thus

1/)~;.„=(E;.„/)i,)L(u—u;.„)/u;,„)S(u—u;.„). (66)

P is then given by

where F(1) and F'(1) are obtained's from the solution
in (61).Thus, F(1') is given for the whole energy region.
Specific calculations are carried out by numerical
evaluation of (64).

The fraction of electrons with energy between w and
w+dw is given by

f ~ ion

dw dx(w —to)f(w, x)/)~;.
+ion ~—xion

00 ~xz
dw dx(w —g) if (w, x)J,

where x;,„is defined by the relation

(67)

E(w) = fSP

dx(w —ito)&f(w, x)

psp

dx(w nx') &F( )w—
XP

= 2[7(1+1/2r)/F (&+1/2r) jw & t "a

Xtrwi+'ts"F (w). (65)

Curves of X(w), normalized to unity, are given in Fig. 2
for the case of r= 1 (parabolic space charge field), and
for various values for y (corresponding to various values
of the applied longitudinal field).

'p(xion) =uion. (68)
Taking f(x,w) =F(w) and using (46), one obtains, after
some manipulation, the expression

where
+lonllon

(69)

dV'(f)(8" (0 u lu )"—'"'
&ion/&ex

+2r(4r+1) (u;,„/u„) (u u;,„/u„)'+'tz"), (69—a)
and

dt t'+'tz "F(f'), (69b)

which may be evaluated numerically.

J= 2 2r+1 4r+1 F 1+1 2r 1' as+1 2r"G. N. Watson, A Treatise on the Theory of Bessel Fttnott'ons
(Cambridge University Press, Cambridge, 1948), second edition, Ott

p. 78. The solution involving the modi6ed Bessel function of the
first kind, I„(z), is excluded because it would represent an energy
distribution which increases exponentially with increasing g. 0

' This is done conveniently with the aid of the series represen-
tation of X,(z).
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The results of the computation are presented in Fig. 3.
The principal feature to be noted is that, for a given
external 6eld, i.e., a given value of y, the specific ioniza-
tion increases as the parameter r is varied from cc—the
case of a square-well potential, equivalent to no space
charge field—to unity, the parabolic case, representing
the extreme manifestation of a space charge 6eld. How-
ever, and this quali6cation is of particular significance
with regard to the low-voltage problem mentioned in
the introduction of this paper, the "space charge"
reduction of the longitudinal 6eld required to achieve a
given rate of ionization, is rather limited. Specifically,
inspection of Fig. 3 indicates that this reduction is at
most of the order of thirty percent. With reference to
Fig. 12 of the paper of Krasik, Alpert, and McCoubrey, '
it is immediately obvious that the eGect is much too
small to explain the discrepancy between theory and
experiment. It is therefore necessary to invoke some
other mechanism, such as cumulative or secondary
ionization.

V. VALIDITY OF GENERAL METHOD

At this point some remarks on the validity of the
general method are in order. It will be recalled that the
basis of this method is contained in the assumption
that, for a given total energy m, the distribution func-
tion is, to a sufficiently good approximation, independent
of the spatial coordinate, x, i.e.,

f(w, x) =Il (w). (70)

It was implied in the text that (70) is a suitable
approximation provided that the space charge 6eld is
large compared to the applied 6eld. When this situation

FIG. 3. Speci6c ionization rate P eersls external 6eld parameter
y 0:P/8. The space charge well has been assumed to be of the
form q (x)=nx" The cu.rve for r= ~ corresponds to the case of
vanishing space charge 6eld, that for r 0 a square potential well.

prevails, one may infer that the rate of energy change
due to motion in the space charge field is large compared
to that arising from the applied 6eld. Now, as is exem-
plified in Sec. IV, it is necessary (for equilibrium) that
the energy gain associated with motion in the applied
field be compensated by loss due to collisions. Hence,
one would expect (70) to be valid provided that the
rate of energy change due to motion in the space charge
field is large compared to the rate of energy loss due to
collisions.

In the case of inelastic collisions, in which most of
the energy is lost in one encounter, this condition is
equivalent to the requirement that the time for ao
electron to disuse throughout the accessible region of
the space charge well (ttt &~p) be small compared to the
mean time between inelastic collisions, X„/v.

In the case of recoil loss, an electron loses, on the
average, a fraction 2m/M of its energy per collision.
Hence, the requirement would be that the electron
diffuses throughout the well in a time small compared to
(M'/2m) (X,/t).

These intuitive expectations have been con6rmed by
a detailed analysis presented in a Westinghouse Re-
search Report. "

VI. SUMMARY

In this paper the theoretical treatment of electron
energy distributions has been extended to include the
case in which —in addition to a spatially homogeneous
applied field—there exists a dc space charge field of the
type associated with ambipolar diffusion. The method
is valid in the limiting case that the dominant mecha-
nism for changing the energy of an electron is its motion
in the space charge 6eld. The equation determining the
energy distribution [Eq. (34)) is then found to be of a
form similar to that prevalent in the absence of the
space charge field [Eq. (54'), If. Illustrative calcula-
tions (Sec. V) demonstrate that the principal efFect of
the space charge 6eld is an enhancement of the tail of
the distribution function, with a consequent increase in
specific ionization. The magnitude of the latter eGect,
however, is found to be much too small to account for
the large ionization rates required in steady state dis-
charges, such as the positive column of a noble gas dc
discharge.

The treatment presented above applies both to the
positive column and to low-frequency microwave dis-
charges. The sole difference is that in the latter case one
uses the rms microwave 6eld in place of the dc longi-
tudinal 6eld of the positive column.

"T. Holstein, Westinghouse Research Report, R-94411-9-0,
Higher-Order Approximations to Electron Energy Distributions
in D. C. Space Charge Fields; reprints available upon written
request.


