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corresponding to a temperature difference over 5 cm
of 1.7'C. While the field of motion at the top was
somewhat irregular and not strictly cellular, some cells
of about 2-cm diameter were always visible in the
overstable range and at least two were observed to go
through two full cycles of reversal of the axial rotation
without moving away or deforming appreciably. The
period of oscillation of the cells ranged from 15.1 to

16.2 sec in a set-of several determinations. The theoreti-
cal data available at present are not strictly applicable
because the boundary conditions are slightly diferent
but the above values may roughly be compared with
theoretical values for the given P and T of R= 2.1&(10'
and oscillation period=13. 9 sec. Systematic experi-
ments along these lines are planned at this laboratory
and should be the subject of later reports.
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The matrices of elementary particles are generalized to general coordinates, and a new covariant displace-
ment operator is defined, in order to generalize the theory of elementary particles to general relativity,
and obtain general commutation rules. The elementary particle is considered as a singularity, with spin-
structure of a gravitational field which gives Riemannian structure to the space-time. It is shown that the
transformation properties of the space-time are determined not only by the aKne structure due to the
gravitational field but also by the spin-structure of the particle singularity.

INTRODUCTION

&~IRAC'S equation has been generalized by Bhabha'
to describe elementary particles of any integral or

half-integral spin. However, in his theory of elementary
particles' Bhabha assumes that his theory is valid in
the framework of special relativity only.

Since a particle and its gravitational field are in-
separable, it is desirable to extend the theory of ele-

mentary particles to general relativity by making it
covariant for general continuous groups of transforma-
tion of Riemannian space-time. Even though, for par-
ticles of integral spin, tensor formalism is easier to
handle, the spinor form will be retained here in order
to keep the underlying unity of the theory for particles
of integral and half-integral spins always evident.
Pauli' has generalized Dirac's equation (for spin st) to
general coordinates; we shall show that 8habha's
equation can be generalized in a similar manner. To do
this we have to modify Einstein's idea of considering
a particle as a singularity in its gravitational field which

gives a Riemannian structure to space-time. The spin
structure will be described by the operation of a set of
spin matrices g" on the spin variables which are com-
ponents of a wave function P. It will be shown that the
I5& satisfy a certain commutation relation (dependent
upon the spin of the particle) which we shall for the
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moment write in the symbolic functional form:4

where g&"g„,=8&, g„„being the metric tensor of Rieman-
nian space-time.

y'o= go+ @LE;,+ r.,oy.1=ye+ego. , (2)

where g&, ,=8)&/Bx', e' is an infinitesimal parameter,
and I1&,, defines the covariant derivative of p".

Under a local infinitesimal spin-space rotation

$=1+e'0„
po transforms as

I1' =5 'I1"5=g"+e't(1")Q,g,
4 G is a rational integral function of I1" and g"".

SPIN AFFINE TRANSFORMATIONS

In Eq. (1) we assume that the matrices p& are con-
travariant components of a vector point function whose.
operation on f is determined by g„„at each point of
space-time. The eGect of the gravitational field is to
make this operation nonintegrable, i.e., dependent
upon the path chosen. Hence, under a parallel displace-
ment along a path, the increment in $o is

bgo= —F.„og dx",

where I' „f' is the alone connection constructed from the
gravitational potentials g„„.

Under an infinitesimal affine transformation, the g&

transform as
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where the usual commutator notation is used, as in

t gN, Q,$=g Q,—Q, P.
On varying g„„, we assume g" to vary as

~5"=-'Pg"" t'5. =25"~g" (4)

gives

gpaa' $5:v5
Lpav pvB j= 2LgavyvB+gvByav

~gV5 ~gas
+ga5 b'av+ gvv (/ a6]

This variation is also nonintegrable in general.

De6nition A

Commutation rules G(ga, g",g', ,g~",g", ) =0 will

be called consistent under the operation of variation (4),
lf

where the matrices 8&" represent a transformation

T= 1+a„,S""

(e„„=—e„„are infinitesimal parameters) and form an
in6nitesimal algebra, de6ned over underlying Rieman-
nian space-time, as follows:

that is if

1 BG " 1 BG
$gaa+ y ggav+. . .

2 BP",I 2 8$"
gP ~ ~ ~

ggPV

tv yvv gvvyaa+gpv yvv+gvaypv

L5" ~'"j=g"'F—g""F
gPV /VS

(Here square brackets mean that 8$& must replace the
differentiated P& without change of order. )

It can be shown easily that the following theorem
always holds:

Theorem I:The commutation relation,

G(g" g" g"")=0

remains invariant (i) under any local infinitesimal spin
space rotation, (ii) under any infinitesimal affine trans-
formation, provided it is consistent in the sense of
definition A.

This theorem. at once tells us that there always exists
a spin-space rotation S which annuls the change in g&

due to the affine transformation (2). Hence, equating
the coefficients of c' in (2) and (3), we get

5"I,= 5;,+r .,5 + LQ. , 5"j=O (3)

Thus we have defined a new derivative which we may
call the coeKcient of covariant displacement (abbre-
viated as c.c.d.). Hence the c.c.d. of the fundamental
matrix g&I, =O determines the spin-space structure Q„
just as the covariant derivative of the metric tensor
g&",=0 determines the afFine structure of Riemannian
space. Therefore, g„„and g" both have fundamental
signi6cance in our combined spinor-tensor formalism.

The c.c.d. of the covariant P„ is

Hence the variation of spin-space structure is linearly
connected with that of afFine structure.

That the matrices 8&' are fundamental, i.e., 0&"~,=0
can be seen by taking the c.c.d. of (8), which gives

S"I,=y",+r., ~-+r., e -+tQ„~"j=o.

GENERALIZED WAVE FUNCTION Q

Since the components of f are spinors, f transforms
under a spin-space rotation as P'=S "P. We assume
that there exists a Hermitian matrix D de6ned by
g=gtD, where Qt=Hermitian conjugate of f and

Pauli conjugate of f It can be v. erified that

g»=DP~D', gt'~=D'g~-D'

D'=S 'DS P'=fS (10)

imply the invariance of (~) and ggQ) under spin-
space rotation. But under an affine transformation

/gal transforms as a contravariant vector, hence its
c.c.d. gives

O'I. =k.+QA,
|t'I =O'. O'Q

Taking variations of (5) and (6) and using (8), one
obtains

0 X~g y~vgl

The c.c.d. of P' gives
t6&

Q,'=S 'Q,S+S 'S, ,Theorem I also tells us that there exists an infini-
tesimal sPin-sPace transformation, S=1+5 8g, , such Hence for the invsriance o~f

Q we have S PQ
that it makes the variation 8P„ integrable, i.e.,

O'I
I

O'I ~
P +I +QA'I (12)

where dg& is a total differential. Hence the integrability
condition, Hence, fI, is a covariant spinor-tensor of rank one.

$2)a $2Pa Equations (5) and (10) show that

~ga~gVS ~gVS~gar D),——D„—aa, —n&D=0, (13)
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i.e., the matrix D is fundamental. If we define a matrix
A„so that P A„ transforms like a vector, ' then

LAGRANGIAN FORMULATION

Postulate

A„),—A„, F„, A~+0,A.

From (12) and (15) one obtains

(~», » fl», » [II», Q»])f

0= g'i»

= {F'~» „—F'»„,»+F'„„F"~»—F'„»F"»„)g

+ [(o„,,—n, ,„—[n„,n,]),y ].

(15)

(16)

Laws of physics are covariant under any general spin-
aKne transformations of the space-time.

Taking this as our fundamental postulate, and as-
suming that a wave function P contains the maximum
knowledge of the system, we observe that the wave
equation must be linear in the derivatives of P and that
an irreducible wave equation represents an elementary
particle. We set up an invariant Lagrangian density as
follows:

The quantity in curly brackets is just the curvature
tensor R'„„.Hence,

0'1»~ 0't~» 2+»»«I Vr

g= G-'c'( —g)ig»"[F .F»„„—F „,F»„.]
167r

+sc(—g)V(5"8."+x)4, (20)

i.e.,
AlP (c)&82 8 822)lP 2R»y«8 1P

Hence the total increment AP of a wave function P in
an elementary circuital displacement depends linearly
on the curvature and the matrices 8&" of the infini-
tesimal algebra generated locally in that region.

We shall therefore interpret ih times the c.c.d. as a
displacement operator, covariant under any spin-a%ne
transformations of Riemannian space-time in the
presence of the gravitational field, and shall define 8„by

8A'= &O'I».

8 will be seen to satisfy the following covariant com-
mutation rules in general relativistic quantum me-
chanics:

[x„,8„]=ill„.,

[x„,x,]=0,

[8»~8.1— 2~ +»~«s

[s,8,]=.7r ~„

where 8»'& is the symmetrized covariant displacement
operator, i.e., 8."=

2 (8»+8»")
also where

i8."= 2&ii =—88, —
and G is the universal gravitational constant.

Variation of g with respect to f, f, and g»„gives the
Euler-Lagrange equation

5"8A+N=0, 8»it 5'—xtt =o, (21)
and

(—g)'(&"—la"~)
4mG

(—g) y(8."y.+yB, )y, (22)
C

from which by putting

&"= (—g)'*c(45%),
and

o"=
2 (—a) '*~4(8."5.+5A.")4

one obtains
8»S»= 0, i e., 8»(»=0,

which may be compared with the noncommutation of
the electromagnetic field displacement operator II„,'

sji (r)p» cl(pv1
[11.,11 ]=f"=—el

c (ax" ax»)

This can be interpreted as follows: In general the
matter and its field produce a topological deformation
of the space-time by modifying its local properties so
as to introduce nonintegrability. General relativity
tells us that in the case of a gravitational field this
topology can be metrized so that nonintegrability
becomes related with the curvature.

In case of spin 0 and 1, A, is just the generalization of Harish-
Chandra's g„matrix which is useful in going from the particle to
the wave aspect of mesons and photons LHarish-Chandra, Proc.
Roy. Soc. (London) 186, 503 (1946)g.' W. Pauli and M. Fierz, Proc. Roy. Soc. (London) 173, 230
(1939).

(82 rr 282) (Q2 cr2282). . . —0

or, of odd degree:

8(82 & 282)(Q2 & 282). . . —0.
i.e.,

(g g"—crt'g ")(g'(P —as'g") =0,

(24)

(25)

' This equation can also be written as

( g)&(R»„22g»„R)= (82 G/—C4) O~»P+—Xg—»r 2

where X=Einstein's cosmological constant. The conservation
equation of O„„remains unaffected,

8 0~»"=0 i.e., 0""" =0 (23)

These are the conservation equations of the charge
current vector S& and the conservation equations of the
symmetric stress energy tensor O~»„of an elementary
particle in its gravitational field.

Introducing the operators 8=P»8» and 82=8»8»,
one sees that they satisfy the characteristic equation
of even degree:
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which gives for even and odd degrees, respectively:

&(0"F—~ 'g"")(0 F—~ 'g")
(26)

Jps(FF & sgvr). . . —0

These are the general relativistic commutation rela-
tions previously written symbolically as G in (1) and
in their irreducible form their degree represents the
spin of the elementary particle as given by (8).' It may
be noted that they are consistent according to definition
A and hence satisfy theorem I. From (21) and (25) one
gets,

(~2 rr 2/2) (~2 rrs $ ) ' ' '

Hence 7f'/n', the eigenvalues of $', are squares of masses
of elementary particles.

The matrices 8&" defined by (8) reduce to the nucleus
of the representation of Lorentz transformation in a
locally Cartesian frame; hence we can define an in-
finitesimal transformation V whose representation
transforms as f'=TP=[1+ise„„d&"Q, where T is a

For degrees two and three, these commutation rules reduce
to the generalizations of Dirac's and Kemmer's commutation
relations:

Il"F+0"5"= 2g""
for spin ~~, and

5"FF+F5 5"=r" 5"+a'"0"
for spins 0 and 1.

representation matrix of 9" which may be called a local
I orentz transformation, and 8„„ the nucleus of repre-
sentation of K T forms a local group embedded in the
general transformation group S and (9) shows us that S
can be built up by successive variation of F,& if we
know the infinitesimal algebra of 8&" and P& defined by
(8) and (26). In the particular case of spin
0&"=4i[g&, F], and for spin 0 and 1, 8&"=[(P,F].

In the case of spin 2, f in (20), (21), (22) represents
the wave function of gravitons (gravitational quanta).
Now the metrical structure of physical space has been
considered to be due to gravitation. One may ask how
to reconcile this representation of gravitation with the
one in terms of gravitational quanta. The apparent
contradiction is resolved by considering matter with
its field as causing a (topological) deformation of
physical space-time and having the duality of metricity
and discreteness, as observed by experiments which also
deform space-time. We can observe metrical properties
only on the macroscopic level, where approximate rigid
bodies and local frames of reference exist, but in the
case of the microscopic world where there exist no
rigid rods to define distance (since the uncertainty
principle applies) the other aspect of duality (discrete-
ness) becomes apparent.
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Calculations of the electron distribution function are presented for some simple examples of a stationary
discharge in a dc space charge field. The treatment is valid when the predominant mechanism of energy
exchange arises from motion in the dc space charge field. The computations indicate that the effect of dc
space charge is, for a given external Geld strength, to increase the proportion of high energy electrons over
that computed neglecting space charge. This results in a larger specific ionization rate, but the e6ect is not
so great as to account for the low maintenance potentials observed in positive columns and in microwave
discharges in inert gases.

I. INTRODUCTION
'
QAST theoretical analyses' of the energy distribution

of electrons in gases have generally ignored the
presence of space charge fields. In the microwave dis-
charge, for example, the electric field is usually assumed
to be of external origin; in positive columns of dc dis-
charges, the relevant field is taken to be the longitudinal
gradient. Now, in both these examples, the removal of
charged particles takes place via the mechanism of
ambipolar diffusion. This process requires the presence
of a space charge field su%ciently strong to retard the

*Present address: Forrestal Research Center, Princeton, New
Jersey.

' Morse, Allis, and Lamar, Phys. Rev. 48, 412 (1935); J. A.
Smit, Physica 3, 543 (1936); T. Holstein, Phys. Rev. 70, 367
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motion of electrons, and to accelerate that of the
positive ions to the boundary. Such fields are often
comparable to or even larger than the external fields.

In order to obtain some idea of the effect of a space
charge field (of the type prevalent. in ambipolar dif-
fusion) on electron energy distributions and associated
quantities, such an average ionization rates, it has been
deemed of interest to investigate the situation in which
the space charge field is much larger than the applied
field. This case represents the opposite extreme to that
already treated, namely, space charge field very much
less than external field. By this procedure one may hope
to achieve an understanding of the generally en-
countered intermediate case by interpolation between
the two extremes.


