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The field equations for the gravitational field of a perfect compressible fluid and the equations of motion
of the fluid in its own gravitational field are derived from a single variational principle in which the varia-
tions of the various field quantities are restricted so that mass is conserved.

1. INTRODUCTION

N general relativity, the gravitational field due to
matter is determined by the field equations.

KT s, (1.1)

where the tensor T',, describes the stress energy tensor
of the matter. If the matter is a perfect fluid (i.e., one
with no viscosity or heat conductivity), the stress
energy tensor is

T/.w= pO)\Mnuv_Pg/w,

1 —
Ry—3guwR=—

(1.2)

where #* are the components of the four-dimensional

velocity vector,
' 1.3)

(1.4)

A=c+etp/o,
gwutu=1,

p° is the rest density of the fluid (i.e., the number of
particles per unit volume as measured by an observer
moving with the mean velocity of these particles) p the
pressure, and e is the specific internal energy of the fluid
as measured by an observer at rest with respect to the
fluid. The equations of motion of the fluid are

Tw,,=0, (1.5)

where the semicolon denotes covariant differentiation.

Equations (1.5) are a consequence of (1.1). However,
if the g,, are known, Egs. (1.5) together with the equa-
tion of conservation of mass, namely,

(o°u?);,=0, (1.6)

serve to determine the kinematical variables #° and
two thermodynamic variables p° and p (or any function
of these two) which describe the motion of the fluid in
the gravitational field given by the g,,.

It is the purpose of this paper to give a variational
principle which uses a Lagrangean which is a function
of the hydrodynamic variables %, p% and 77, the rest
temperature of the fluid, and the gravitational field
variables g,,. We shall consider variations of all of these
field quantities such that (1.4) and (1.6) are satisfied,
and shall show that Egs. (1.1) and (1.2) are the Euler
equations due to the variation of g,,, and that Egs.
(1.5) with T»” given by (1.2) are the Euler equations
due to the variation of the hydrodynamical field vari-
ables, namely p% 77, and the world lines of elements of
the fluid. Thus, from a single variational principle, we
shall obtain both the field equations for the gravita-

tional field created by the fluid and the equations of
motion of the fluid in this gravitational field.

2. THE LAGRANGEAN

- Consider the integral
I= [ [R=20 (4 B -buguner) 1 (— ), (2.1

where R is the scalar curvature formed from the metric
tensor gu,, « is the Einstein gravitational constant, u is
a Lagrange multiplier which must be chosen so that
Eq. (1.4) is satisfied, and H° is the Helmholtz free
energy defined as

0= ¢— 7050, (2.2)

where S° is the entropy as measured by an observer at
rest with respect to the fluid. The integration in Eq.
(2.1) is over a volume in space-time swept out by the
world lines of an arbitrary member of “particles” of
the fluid.

When we consider p® and 7° as the independent
thermodynamic variables, we have

e a.5° Jde aS8°
OH"= (—— TO———-)BpO-{— (————SO—— T°—~—>6T°.
dp? dp° aT° aT°

However, from the equation defining entropy, namely

T°dS°=de'+pd(1/p), (2.3)
it follows that
SH= (p/p"?)8p°— S%6T°. (2.4)

The world lines which are to be varied may be
written as

(2.5)

a*=x"(u,2,0,s),

where u, v, w are variables labelling a particular world
line and s is the proper time along this world line. It
follows from (2.5) that

ut=0x*/ds,

and hence the variation in the velocity vector du* pro-

duced by a variation dx* in the world lines is
dut=9dx*/9s. (2.6)

When we consider Egs. (2.5) as a transformation in
space time from the coordinates x* to the coordinates
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u, v, w, s, we may evaluate all the quantities in the
integrand of (2.1) as functions of the latter variables
and write

I= f[R*__ 2609 (> H*+ g, *ur*u*) ]

XA/ (—g¥)dudvdwds, (2.7)

where the starred quantities in the brackets are ob-
tained from the unstarred ones by use of the scalar
transformation law:

) =1 (@),

and the tensor transformation laws. Further, we know
that R* is the same function of the g,,* as R is of the g,,.
In addition, it is a consequence of the transformation
laws that
dxk 9x” 9x° Ix”

[—g*(w) = [—g(x)]%e,w.,,? , (2.8)

% 0v dw 0s

where €., is the numerical tensor density which van-
ishes unless all its indices are different. If this is so it
has the value plus one if the indices are an even permu-
tation of 1, 2, 3, 4 and minus one, if the indices are an
odd permutation of these numbers.

3. THE CONSERVATION OF MASS

Equation (1.6), the equation which states that mass
is conserved may be written as

3
V/ (—g*) dx~*

where x¥*=u, x¥*=9, s¥*=w, s*=s. Multiplying this
equation by 4/ (—g*)dudvdwds and integrating over a
region of space-time swept out by world lines of the
particles, we obtain

W/ (—=g")p"u*)=0,

0
f W/ (—g*)p"*u*)dudvdwds=0.
axa*

This equation is equivalent to the statement that the
three-dimensional integral,

dx> dx* 9x”
fpouf[g(x (1/») )]%5)\;”’11_— - —dudvd'w,
ou o

? Ow

is independent of s. That is, the requirement of con-
servation of mass for arbitrary amounts of fluid may
be written as the condition
. 0« Oxk 9x” 9x7
pO*[_g* (“)]%=Po[_g(x)]’€)\mf—— —_——
du dv dw ds
=M (up,w), (3.1)

where M is not a function of s.
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The variation in proper density 8p° may be deter-
mined in terms of the variation in the metric field and
the variation in the particle paths by the requirement
that mass be conserved. Thus, from the requirement
that 6M =0, it follows from (3.1) that

80° L 1 a
—+ 28" 08w+ -
° v/ (—g) dx°

The derivation of (3.2) follows from (3.1), and the fact
that the quantity,

W/ (—gdx7)=0. (3.2)

9x» 9x+ dx” OxT
E\ppr—— —— ———,

ou dv ow 9s

is the Jacobian of the transformation (2.5). Equation
(3.2) may also be written in the #, v, w, s coordinate
system as

80"/ p™ 4 3g#"*oguy -+ (837%);,=0, (3.3)
where
dx7* = 57 (9a*7/ 97, 3.4
and
9x° Ix7
6g“v*=5g” . (35)
Jx+* Jxv*

It should be observed that 6g,* is the variation in
the metric tensor in the starred coordinate system.
There is a variation in g,,* due to a variation of the
particle paths which may be computed from the defini-
tion of g,,*, namely

dx° dx”

gur = gor— ,
dx+* Jxr*

to be

Ouguy™ = (82,); 4 (62,%); 4, (3.6)

where the covariant derivatives are computed in the
starred coordinate system and éx,* are the covariant
components of sx#*,

For the purposes of the next section we shall need
to evaluate

8z (gu u*u™) = 8, (guu*u”)
= (8g s/ %) P 1+ 28, u* (85%7/9s)
= (0gu,/0x°)dxPuru’+ 28,1 1P (96x7/0xP)
= 2guu* (37); ;4
=280 ur* (807%); ™.

4. THE EULER EQUATIONS

In order to compute the variation of I subject to the
restrictions (1.4) and (1.6), we use the form of I given
by Eq. (2.7). From this equation and the fact that
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oM =0, it follows that
or= f { (—R*#r+4-3g#*R)[8g,*+ (62,*), 5+ (8,%);4]
b4
— 2Kp0*[ (——5p°*—S°*8T°*) L ur*sg,,
%2
+ uguFurtue* (2%), ,,] ] V/ (— g*)dudvdwds.

On using Eq. (3.3) to eliminate §p%* from this expres-
sion, we have

—of= [ (R =Yg Re i) [ogu 2057,
— 2kp™*SHFTO*}/ (— g¥)dudvdwds, (4.1)

Gur¥ = pO¥ypunyr* — panr, (4.2)

where

If we now introduce a new variable by the equation
8T°= (6a*), ;u** = dda/ Js,

where the comma denotes the ordinary derivative, Eq.
(4.1) may be written after integration by parts as

—oI= f [ (R#*— L gn7* R4-kf%)3g ., * — k7%, 5, *

+ 2k (0"*S*u*), da* W/ (— g¥)dudvdwds  (4.3)

for variations which vanish on the three-dimensional
hypersurface bounding the region of integration.

The Euler equations for /=0 for variations which
vanish on the bounding hypersurface are then

Rwr— g R+-k94 =0,
647, =0,
(POSO'“”);«Y= 0,

(4.4)
(4.5)
(4.6)

where we have written the unstarred quantities since
the equations are tensor equations. The last of these
equations may be written as

p°S% u7=0, 4.6")
in view of Eq. (1.6).
Equation (4.5) may be written as
P (uut), »= p, 18*’, 4.7)

as a consequence of (4.2) and (1.6). The quantity p
entering into this equation must be determined so that
(1.4) is satisfied. Multiplying Eq. (4.7) by #, and sum-
ming, we obtain

20%ud (gumtn”) = dp— p°gut*u’dp, (4.8)
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where df=f ;u°.
It follows from Eq. (2.3) that

ap/p’=de+d(p/p")—T°dS".
Hence,

2p°ud (guutw’) = p’Lde+d (p/p°) 1— p'gusttu’du,

where we have used (4.6"). Hence, (1.4) will be satisfied
if

du=de+d(p/o).

p=c+e+p/p",

where the constant of integration has been chosen to
be ¢? in order that the stress-energy tensor be correctly
given when p=0. If this is done, then Eqgs. (4.4), (4.2),
and (4.5) become (1.1), (1.2), and (1.5), respectively.
Equation (4.6") is then a consequence of Egs. (1.2) to
(1.6), which may be seen as follows: Eq. (4.7) with u
given by (1.3) follows from Egs. (1.2), (1.5), and (1.6).
Multiplying (4.7) by u,, summing, and using (1.4),
we obtain

That is,

pldu=dp, 4.9)

de'+-d(1/p°) =0;

but in view of Eq. (2.3) this may be written as (4.6).
If Eq. (4.9) is substituted into (4.7), the latter
equation may be written as

that is,

oouwut = p,,(g*—uru). (4.10)

Equations (1.6), (4.10), and (4.6) are a set of five
linearly independent equations equivalent to the five
equations (1.5) and (1.6).

Thus we have shown that the variational principle
6I=0, where the field variables p% 779, g,, and the par-
ticle paths are varied so that (1.6) is always satisfied and
the Lagrange multiplier is chosen so that (1.4) is satisfied,
has as Euler equations the field equations for the gravi-
tational field created by the fluid and the equations of
motion of the fluid. This variational principle is an
extension of a nonrelativistic one previously given! for
compressible fluids alone. In the previous work it was
shown that the Rankine-Hugoniot equations could be
derived from considerations involving the existence. of
singular surfaces in the fluid and the variations of these
surfaces. A derivation of the relativistic Rankine-
Hugoniot equations should follow from the variational
principle given above.
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