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General Relativistic Variational Principle for Perfect Fluids
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The field equations for the gravitational field of a perfect compressible Quid and the equations of motion
of the Quid in its own gravitational field are derived from a single variational principle in which the varia-
tions of the various 6eld quantities are restricted so that mass is conserved.

To"=p9uou" pgo", — (1.2)

where u& are the components of the four-dimensional
velocity vector,

X =os+ e+p/po

gpyn"I"= ~)

(1.3)

(1 4)

p' is the rest density of the Quid (i.e., the number of
particles per unit volume as measured by an observer
moving with the mean velocity of these particles) p the
pressure, and c is the specific internal energy of the Quid
as measured by an observer at rest with respect to the
Quid. The equations of motion of the Quid are

T~y =0 (1.5)

where the semicolon denotes covariant differentiation.
Equations (1.5) are a consequence of (1.1).However,

if the g„„are known, Eqs. (1.5) together with the equa-
tion of conservation of mass, namely,

(p'u"), ,=0, (1.6)

serve to determine the kinematical variables I and
two thermodynamic variables p' and p (or any function
of these two) which describe the motion of the Quid in
the gravitational field given by the g„,.

It is the purpose of this paper to give a variational
principle which uses a L'agrangean which is a. function
of the hydrodynamic variables u, p', and T', the rest
temperature of the Quid, and the gravitational field
variables g„y. YVe shall consider variations of all of these
Qeid quantities such that (1.4) and (1.6) are satisfied,
and shall show that Eqs. (1.1) and (1.2) are the Euler
equations due to the variation of g„y, and that Eqs.
(1.5) with T&" given by (1.2) are the Euler equations
due to the variation of the hydrodynamical field vari-
ables, namely p', T', and the world lines of elements of
the Quid. Thus, from a single variational principle, we
shall obtain both the field equations for the gravita-

I

1. INTRODUCTION

''N general relativity, the gravitational field due to
~ ~ matter is determined by the field equations.

Its.py 2gII, yR — KTII,y)

where the tensor T„, describes the stress energy tensor
of the matter. If the matter is a perfect fluid (i.e., one
with no viscosity or heat conductivity), the stress
energy tensor is

tional field created by the Quid and the equations of
motion of the Quid in this gravitational field.

2. THE LAGRANGEAN

- Consider the integral

t1

p'("+&'+st g" "u")3v'( g)d'x, —( )

where R is the scalar curvature formed from the metric
tensor g„y, ~ is the Einstein gravitational constant, p is
a Lagrange multiplier which must be chosen so that
Eq. (1.4) is satisQed, and Ho is the Helmholtz free
energy defined as

Ho= e —T'S', (2.2)

where S' is the entropy as measured by an observer at
rest with respect to the Quid. The integration in Eq.
(2.1) is over a volume in space-time swept out by the
world lines of an arbitrary member of "particles" of
the Quid.

When we consider p' and T' as the independent
thermodynamic variables, we have

t
Be' BS') ( Be BS'q

— l&po+
l

&Bp' Bp'j &BT' BT'j
However, from the equation defining entropy, namely

T dS =de +pd(1/p ), (2.3)
it follows that

BHo = (p/p") Bpo —S'BTo. (2.4)

The world lines which are to be varied may be
written as

x"=x"(u, s, ,u,s), (2 5)

where u, ~, zo are variables labelling a particular world
line and s is the proper time along this world line. It
follows from (2.5) that

u"=Bx"/Bs,

and hence the variation in the velocity vector 8N& pro-
duced by a variation Bx& in the world lines is

Buo =Mxo/Bs. (2 6)

When we consider Eqs. (2.5) as a transformation in
space time from the coordinates x& to the coordinates
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I= ~' $R* 2~p—'*(c'+IIO*+ 'pg *-u'*u"*)]

N, e, m, s, we may evaluate all the quantities in the The variation in proper density hp may be deter-
integrand of (2.1) as functions of the latter variables mined in terms of the variation in the metric field and
and write the variation in the particle paths by the requirement

that mass be conserved. Thus, from the requirement
that 5M=0, it follows from (3.1) that

XQ(—g*)dudvdwds, (2.7)

where the starred quantities in the brackets are ob-
tained from the unstarred ones by use of the scalar
transformation law:

f*(u) =f (x(u)),

hp' 1 8

, +—2g""~g"+ -(v'( —g)» ) =O (3 2)
v'( —g)»

The derivation of (3.2) follows from (3.1), and the fact
that the quantity,

Bs Bx Bx 8$
&) yves )

BR 88 Bxo 8$

and the tensor transformation laws. Further, we know
that R* is the same function of the g„„-*as R is of the g„„.

In addition, it is a consequence of the transformation
laws that

Bx~ 8$" Bx' 8$'
L
—g*(u)3'= L

—g (x)1'"-.
BN Bv Bzv 8$

is the Jacobian of the transformation (2.5). Equation
(2.g) (3.2) may also be written in the u, s, ut, s coordinate

system as

where e„„„is the numerical tensor density which van-
ishes unless all its indices are diGerent. If this is so it
has the value plus one if the indices are an even permu-
tation of 1, 2, 3, 4 and minus one, if the indices are an
odd permutation of these numbers.

3. THE CONSERVATION OF MASS

where

0+/ 0++ 1 ppQ$ Q+ (J 0+) O

» *=» (ax*./ax. )

Bs Bx
hg„,*=hg„

8$ 8$

(3.3)

(3 &)

(3.5)

Equation (1.6), the equation which states that mass
is conserved may be written as

-(V'(—g*)p'*u'*) =o,
v'( —g*)»'*

It should be observed that hg„,* is the variation in
the metric tensor in the starred coordinate system.
There is a variation in g„„due to a variation of the
particle paths which may be computed from the de6ni-
tion of g„„*,namely

where x'*=N, x'*=a, x'~=a, x'*=$. Multiplying this
equation by g(—g*)dudvdzvds and integrating over a
region of space-time swept out by world lines of the
particles, we obtain to be

gPv go'T
8s"*Bx"*

8
(Q(—g*)p'*u *)dudvdwds=O.

~ 8x*

This equation is equivalent to the statement that the
three-dimensional integral,

8$~ 8$~ 8$"
p u fg(x (u))j tgpygg dul&dw~

BQ 88 Bw

is independent of s. That is, the requirement of con-
servation of mass for arbitrary amounts of Quid may
be written as the condition

Bx'" Bx~ Bx"8$'
p'*L—g*(u)3'= p'E —g(*)1""-

BN Bv 8& 8$

where M is not a function of s.

B,g„,*=(»), ,+ (»„*),„, (3.6)

8 (g *u *u"*)=5 (g u u")
= (Bg„„/Bx&)»&u&u"+2g„„u&(Mx "/Bs)

= (Bg„,/Bx')»~u~u"+2g u~u'(Mx"/Bx~)

=2g~„u"(»");pu~

=2gq„u" (»" ) u

4. THE EULER EQUATIONS

In order to compute the variation of I subject to the
restrictions (1.4) and (1.6), we use the form of I given

by Eq. (2.7). From this equation and the fact that

where the covariant derivatives are computed in the
starred coordinate system and hx„~ are the covariant
components of he~*.

For the purposes of the next section we shall need
to evaluate
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bM=O, it follows that

BI ( Repv+ igi veR))hg„„*+(8x~s) + (bx„*),„]
( p S0*—BT0* [+ 'yu-&*u"*Bg

042

+jig„„*u&*u&*(5x"*),, Q( g*—)dud0diods

where df= f, .u'.

It follows from Eq. (2.3) that

dp/p0= d 00+d (p/p0) T—0d$0.

Hence,

21'I d(g"u"u") = I 'L~"+d(p/I ')5 A"—u"u "d~

where we have used (4.6'). Hence, (1.4) will be satisfied
lf

On usmg Eq. (3.3) to eliminate bp0* from this expres-
sion, we have That is,

d~= d"+d(p/~')

12 = C'+ 0 +P/P'r

—8I= I ((R "*—-'g""*R*+ 8""*)L8..*+2(8,*);.j
where

2ap0*—S0*fiT0~)Q( g*)du—diidwds, (4.1)

8itv2 —p0&pu/i2 uvre pgpvA (4.2)

8I= $(R—»* 'g~"*R+~—8~-"*)bg„„* «8~"*. 8x *—

If we now introduce a new variable by the equation

8T0= (ha*)0u'*=, 88m/Bs,

where the comma denotes the ordinary derivative, Eq.
(4.1) may be written after integration by parts as

that is,
p dp=dp)

d 00+ d(1/P0) =0;

(4.9)

where the constant of integration has been chosen to
be c' in order that the stress-energy tensor be correctly
given when p=0. If this is done, then Eqs. (4.4), (4.2),
and (4.5) become (1.1), (1.2), and (1.5), respectively.
Equation (4.6') is then a consequence of Eqs. (1.2) to
(1.6), which may be seen as follows: Eq. (4.7) with p
given by (1.3) follows from Eqs. (1.2), (1.5), and (1.6).
Multiplying (4.7) by u„, summing, and using (1.4),
we obtain

+2~ (p0*S0*u *),.8u*jg (—g*)dud iid2iids (4.3)

but in view of Eq. (2.3) this may be written as (4.6).
If Eq. (4.9) is substituted into (4.7), the latter

equation may be written as

for variations which vanish on the three-dimensional
hypersurface bounding the region of integration.

The Euler equations for BI=0 for variations which
vanish on the bounding hypersurface are then

R»" 'g ~"R+~8~"—=-0

8~" =0)

(p S u'), .=0,

(4 4)

(4 5)

(4.6)

p'S', .e =0,
in view of Eq. (1.6).

Equation (4.5) may be written as

p0u" (itiu");, =p, „g"",

(4.6')

(4.7)

as a consequence of (4.2) and (1.6). The quantity p
entering into this equation must be determined so that
(1.4) is satisled. Multiplying Eq. (4.7) by u„and sum-

ming, we obtain

2p'pd(g„, u u") =dp p'g„„u~u"—dp, (4.8)

where we have written the unstarred quantities since
the equations are tensor equations. The last of these
equations may be written as

p0I2u"u", „=p, , (g""—u'u"). (4.10)

Equations (1.6), (4.10), and (4.6) are a set of five
linearly independent equations equivalent to the 6ve
equations (1.5) and (1.6).

Thus we have shown that the variational principle
bI=0, where the field variables p', P', g„„and the par-
ticle paths are varied so that (1.6) is always satisfied and
the Lagrange multiplier is chosen so that (1.4) is satis6ed,
has as Euler equations the field equations for the gravi-
tational field created by the Quid and the equations of
motion of the Quid. This variational principle is an
extension of a nonrelativistic one previously given' for
compressible Quids alone. In the previous work it was
shown that the Rankine-Hugoniot equations could be
derived from considerations involving the existence. of
singular surfaces in the Quid and the variations of these
surfaces. A derivation of the relativistic Rankine-
Hugoniot equations should follow from the variational
principle given above.
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