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Variational Principles for the Acoustic Field*
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Variational principles are presented for the scattering amplitude in the general acoustic scattering prob-
lem, and, for spherically symmetric scatterers, for the phase shifts. Integral equations for the acoustic field
are also given and the properties of the scattering matrix are developed. The entire formulation remains
valid in the presence of discontinuities of density and/or velocity in the medium.

I. INTRODUCTION

' N recent years variational expressions have been
~ ~ developed for the total cross section and for the
phase shifts of the partial waves, in a variety of scatter-
ing problems. ' In many instances these variational ex-
pressions have led to accurate estimates of the scattering
cross section. ' To our knowledge, however, the scatter-
ing problems for which explicit variational formulations
have been developed are confined to those in which the
wave function and its normal derivative are both con-
tinuous across a surface of discontinuity. Consequently,
these formulations are not applicable in acoustic
scattering problems, where„using the customary de6ni-
tions, the acoustic potential is discontinuous across a
surface bounding two media of diGering constant
density.

It seemed worth while, therefore, to derive
Schwinger-type variational principles for acoustic scat-
tering problems. Ke present a variational principle for
the total scattering amplitude and, for spherically
symmetric scatterers, variational principles for the
phase shifts; the derivations of these variational prin-
ciples are not trivial, as will be seen. Ke present also
a general integral equation formulation of the acoustic
scattering problem and determine explicitly the ele-
ments of the scattering matrix. These results do not

*The preparation of this paper was sponsored (in part) by the
U. S. Once of Naval Research.

t Present address, University of California, Los Angeles,
California.

' B.A. Lippman and Julian Schwinger, Phys. Rev. 79, 469 and
481 {1950),and references therein.

seem to have been previously given and are required
for proofs of the variational principles and of the cross-
section theorem, Eq. (34), in the following.

Applications of these variational principles are not
reported here, but are being considered. It seems likely
that techniques similar to those we have used will lead
to variational principles applicable to nonabsorptive
electromagnetic scattering problems involving arbi-
trary variations of dielectric constant and magnetic
permeability.

II. THE ACOUSTIC FIELD

We start from the equations

pitv/at = —gradp,

p divv= —(1/c') BP/Bl

Equation (1) describes the sound pressure p and the
sound velocity v at all points of space which are free
of acoustic sources. The equilibrium density at any
point r is p(r) and c(r) is the local velocity of sound.
Equation (1) is valid for an ideal fluid, with p and v
small time-dependent increments about ps and zero,
respectively, where ps is time independent. ' The bound-
ary conditions, that p and v, the normal component
of v, remain continuous as p and/or c approach func-
tions discontinuous across a surface, are implied by
Eq. (1). The rate of flow of acoustic energy across the

' In the presence of body forces, Fq. (1) is correct only at sufB-
ciently high frequencies. In particular, in the gravitational field
of the earth, we must have co)&g/c, which is satished above a tenth
of a cycle in air or water. See P. G. Bergmann, J.Acoust. Soc. Am.
17, 829 (1946).
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p(r, t)=p(r)e ' '+p*(r)e' ',

v(r, t) =v(r)e "'"'+v*(r)e' ',
(

+step grad ——curl~ grad —Xpv ~&

pc' E p )

surface element ds—=dSn is pv ndS. It is presumed that purpose, we first derive from Eq. (3),
p and v are real.

When the fields are harmonic, we write in Eq. (1) ~P+ P (»P+'"v'gra P~

Av+ k'v= k'(1 p')—v

the asterisk denoting complex conjugate. Then where
p= cp/c.

gradp i&o—pv =0,

(i'/c') p pd—ivv =0. Then as shown in Appendix A, using the outgoing free-
space Green's function

In Eq. (3) p=—p(r) and v=—v(r) of Eq. (2). The average
rate of radiation across the surface element dSn is
(p*v+pv*) nd5. If p and c are everywhere constant,

which satisfiesp= p, and c=cs, Eq. (3) yields upon elimination of v
(6+k')G(r, r') =b(r —r'), (10)

where

Ap+ k'p =0,
v= (1/iMps) gradp,

(4) we obtain, whether or not there are surfaces of discon-
tinuity of p and/or c,

Equation (4) is entirely equivalent to the customary
formulation in terms of the acoustic potential:

p(r) =pe+k') dr'G(r, r') (1—rr'ti")p(r')

+sro div dr'G(r, r') (p' —ps) v(r'),

together with

v= —grady,

p = —
za&polo,

(5)
v(r) =vs+k'~ dr'G(r, r')

~

1——~v(r')
1q
a'

Ap+k'lp= 0. (6)

p= pp+p =exp(fkn, r)+p„
no

v= v,+v.=—exp(ikns. r)+v. ,
poco

where p, and v, are outgoing at infinity and represent
the scattered wave, while ps and vs represent a plane
wave incident along ne and are solutions of Eq. (4).
The quantities po and co are the values of p and c at
infinity. Of course, p and the normal component of v
are continuous across any surface of discontinuity of p
and/or c.

We now seek to replace Eq. (3) by a pair of integral
equations incorporating the conditions (7). For this

Equation (5) continues to be useful if c varies, but no
longer solves the first of Eq. (3) when p is not constant.
Nor does replacing the first of Eq. (5) by pv= —ps grad+
yield any particular simplification. Moreover, Eq. (5)
simply makes io proportional to p. It is apparent there-
fore that for our purposes, developing generally ap-
plicable variational principles, there is no advantage
to introducing an acoustic potential. Consequently, our
results are given in terms of the directly observable
quantities p and v.

The typical acoustic scattering problem is to 6nd a
solution of Eq. (3) of the form

grad I dr'G(r, r') (1 rr'ti") p—(r')
p,C,'

where

, (—curl curl, dr'G(r, r')
(

1——[v(r'),
n'I

~=po/p.

In Eq. (11) we have introduced the convention, which
we shall use consistently, that functional dependence
on r' is indicated by a prime. Thus ti'=ca/c(r') and
n'= ps/p(r'). As written, Eq. (11) is to be regarded as
a pair of simultaneous integral equations for the un-
known functions p and v, which functions, as verified in
Appendix A, properly satisfy Eq. (3). An apparent
simpli6cation is readily obtained if v is eliminated from
the first of Eq. (11) using the first of Eq. (3) since in
this case one need consider only a single integral equa-
tion for the scalar function p. However, this equation
explicitly involves gradp and it turns out that in de-
riving the variational principles we seek, it would still
be necessary to construct an expression for gradp
equivalent to the second of Eq. (11). Thus no real
simplification is attained.

We prove' in Appendix 8 that the solutions to Eq.
3 In Eq. (11) and in subsequent equations we assume that p, c,

p, and v remain 6nite, and that p and c are different from zero, to
keep o. and p finite. If these assumptions are not made, the question
of the existence of the integrals in Eq. (11), and therefore of the
existence of a, solution to Eq. (11},has to be examined. In any
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(11) satisfy the requirements of continuity of p and v„.
To establish the behavior of p and v at infinity, we
note that to terms of higher order

1 es
lim G(rn, r') = —— exp( —ikn. r'),
7—+oo 4x r

whence Eq. (11) yields

P2 eider

lim p(rn) = po —— dr' exp( —ikn r')

III. THE SCATTERING AMPLITUDE. RECIPROCITY

We define A(n, no) as the pressure amplitude at
infinity of the outgoing spherical wave proceeding along
n, which results from an incident plane wave of unit
amplitude along n, . From Eq, (13),

k'
A(n, no)= ——' dr'exp( —ikn. r') (1—a'p, ")p(r',no)

4

( 1q
+poco( 1——in v(r', no), (14)a')

X (1—a'p")P'+poco' 1——in v',
a')

esI

lim v(rn) = vo —— — n ~dr' exp( —ikn. r')
4~ poco r

(13)

E(n)dQ=

where p(r, no) and v(r, no) represent the fields resulting
from an incident unit plane wave along no. The average
rate of Row of acoustic energy across the surface element
dSn=rsdQn at infinity is, from Eqs. (13) and (14) and
the definition following Kq. (3),

2
i A (n, no) i'

dQ.
1q

X (1—a'p")P'+poco( 1——in v' .
a')

By comparison with Eq. (8), Eq. (13) demonstrates
that the solutions p(r), v(r) of Eq. (11) are such that
p, and v, are everywhere outgoing at infinity. This,
together with Appendices A and B, proves that Eq. (11)
is equivalent to Eq. (3) plus the boundary conditions

p and v„continuous and p, and v, outgoing at infinity.
Incidentally Eq. (13) shows that the scattered field
is longitudinal, v, parallel to n at infinity, and that
the acoustic impedance for the scattered 6eld is poco,

i v. i
=P./poco at infinity.

actual problem p and c are bounded and different from zero. Thus,
since in the scattering problems which we treat there are no
sources at a finite distance from the origin, it is most reasonable
on physical grounds to expect that p(r) and v(r) are finite every-
where, although a general proof may be dificult to construct. For
the proof of Appendix 3 it is necessary to assume that various
derivatives of p, c, p, v, Of, and

hatt
remain finite as a surface of

discontinuity; is approached from either side of the surface. In
other words, except right at the discontinuity, the field variables
p and v, and the medium itself, are well behaved. Again these
assumptions are reasonable for any actual problem and are made
to simplify the argument in Appendix 8, which is already compli-
cated enough. If finiteness of the derivatives is not assumed Eq.
(11)may remain valid in various circumstances, but another proof
that the boundary conditions are satisfied will have to be devised.
We stress that we are not assuming the derivatives exist at the
discontinuity; this would be an unreasonable assumption. To
illustrate, as the everywhere continuous p(r) becomes in the limit
discontinuous with a finite jump across a surface, gradp becomes
infinite at the surface, although it remains finite on either side.
Because the integrands in Eq. (11) do not involve derivatives
the integrals may be and are extended over all space. If deriva-
tives or other expressions which cannot be assumed finite at the
discontinuity are included in the integrand, the volume of inte-
gration must omit thin strips on either side of the surfaces of
discontinuity, generally with the consequent complication of
adding compensating surface integrals to the integral equation,
as in Eqs. (1B) and (7B). It should be added that in the event
that p and/or c are idealized to be zero in an extended region, as
for example in the scattering of sound from a bubble in water,
then p and v are zero within this region, and a reformulation in
terms of surface integrals is necessary.

poco

The incident intensity is 2/poco, so the differential cross
section is o (n) =

i
A (n, no) i

'.
Replacing n and no in Eq. (14) by —no and —n,

respectively, we obtain an expression for A (—no, —n)
in terms of p(r, —n) and v(r, —n), where p(r, —n),
the pressure resulting from an incident wave along —n,
satisfies, according to Kq. (11),

p(r, —n) =exp( —ikn r)

1

+k'j' dr'G(r, r')(1 pa")—p(r', n)—

—~po div dr G(r,r)i 1——iv(r, —n). (16)
1q

)
Multiplying Eq. (16) by (1—ap') p(r, no), and the corre-
sponding equation for v(r, —n) by poco(1 —a ')v(r, no),
adding and integrating, we get, by virtue of Eq. (14),
another expression for A (n, no), namely,

—1
A (n, no) = I dr[pp(no) p(—n) —o&popv(no) .v(—n) j

Z

fdrPP (no) div) "dr'Gy'v'( —n)
4m ~

Z

+— dryv(no) grad dr'GP'P'( n)—
1

+— dryv(no) curl curl t dr'Cry'v'( —n)
4 J
1

+— drdr' P(no)PGP'P'( —n)
4m ~

—k'pe'v(no) v'( —n), (17)
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Since Fs(n) may be chosen arbitrarily, Eq. (21) implieswhere we have used G=—G(r, r') and

P(r) = k'(1—np, '),
dQS (n,n')S*(n,n")= 5 (n' —n"). (24)

(18)
v(r)=col 1—— I.

E n)'

From Eq. (17) and the corresponding expression for
A (—np, —n) follows the principle of reciprocity,

A (n,np) =A(—Ilp —n).

Next we observe that Eq. (3) is invariant when its
complex conjugate is taken and v is simultaneously
replaced by —v. That is, if p and v are any solutions
of Eq. (3), then so are p* and —v*. Thus from Eq. (20)

(19) we infer the behavior of p* at infinity, namely,

The proof is given in Appendix C.

IV. THE SCATTERING MATRIX
lim p*(rn) =Fs*(n) — +Fi*(n)— (23)

In Eq. (11) Pp and vp need not be a plane wave but
may be any solution of the homogeneous equations,
namely Eq. (3) with p= pp and c=cp. Presumably the
solution to Eq. (11) remains unique for any such choice
of pp and vp. It follows therefore from Eq. (11) that the
amplitudes at infinity of the outgoing spherical waves
are wholly determined by the incoming waves. In fact,
since vp ——(gradpp)/ip&pp, p, and v, at infinity are solely
determined by the incoming spherical waves in pp.
Consequently, since the solutions are linear, we infer4

the existence of a scattering matrix S(n,n') defined as
follows. At infinity pp is composed of incoming and
outgoing spherical waves. Hence, by Eq. (13), neg
ing terms of order 1/r'

whence, from the definition (21) of the scattering
matrix,

Fs~(n) = —
~

dQ'S(n, n')Fi*(—n'). (26)

Substitution of the conjugate of Eq. (26) into Eq.
(21) then yields, after rearrangement of the dummy
variables,

~
dQS( —n', —n)S*(n,n") =8(n' —n"). (27)

g
—ikr

lim p(rn) =F,(n) +F,(n)
r r

where

lect-
Comparison of Eqs. (24) and (27) implies, as can be

shown by multiplying Eq. (27) by S*(—n', —n'"), and

(20) integrating over n', that

S(—n', —n) =S(n,n'), (28)

F, (n) = — dQ'S(n, n')Fs( —n'). a result which can be regarded as an extension of the
reciprocity relation (19).Equations (27) and (28) yield

dSn (p*v+pv*) =0, (22)

where the integration extends over the sphere at in-
finity. Recalling that v= (gradp)/iprpp at infinity, sub-
stitution of Eq. (20) in Eq. (22) yields

n' is the unit vector along the element of solid angle
dQ'. As will be seen this definition, Eq. (21), of the
scattering matrix has the virtue that S(n,n') reduces to
the unit matrix when there is no scattering.

We now derive some general properties of the scatter-
ing matrix. Since energy conservation is a ready conse-
quence of Eq. (3), as it must be, we have, for any
solution of that equation

"dQS (n', n) S*(n",n) = 8 (n' —n"), (29)

27ri
- gikr

which, together with Eq. (24), expresses the fact that
S is unitary. '

Finally, we relate the scattering amplitude A (n,np),
which is defined only for plane wave excitation, to the
general scattering matrix. For plane wave excitation,
the field at infinity has the form

lim p(rn) = exp(iknp rn)+A (n, np)
T~oo r

27ri ~
—ikr

Q (—1)'I'i (np)I'i *(n)
l, m r

2
,

dQI IFi(n)I' —IFs(n)l'/=0.
PpCp ~

(23)
+ &(n,np) — —Q I'i"(np)vi *(n) —, (30)

t, m r

4 Although the assertion that the outgoing waves are determined
by the incoming waves is intuitively obvious, a satisfactory
proof is not easily obtained. This question is discussed by
I'riedrichs, Marcuvitz, and John in Sec. III of "Recent de-
veloprnents in the theory of wave propagation, " lecture notes,
New York University Institute for Mathematics and Mechanics,
1949-1950 (unpubhshedl.

where the Yi are normalized spherical harmonics.
Since these form a complete orthonormal set, we thus

5 As in reference 1, for a spherically symmetric scatter S is
expressible in terms of the usual phase shifts and is diagonal in
a representation in which the spherical harmonics are the basis
vectors.
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27ri ~
—ikr

lim p= 8(np+n)—
phoo r

2%i
- ~ikr

+ A (n, np) — 8(np —n) — . (31)
r

If we regard Eq. (31) as that special case of Eq. (20)
for which

Fi(n) =A (n,np) —(2pri/k)5(np —n),
(32)

Fs(n) = (2iri/k)8(np+n),

Equation (21) yields at once

A (n,np) = (2iri/k)B(np —n) —(2iri/k)S(n, np), (33)

which is the desired relation. ' Equation (33) and the
unitary character of 5 lead directly to the cross-section
theorem'

4x
~= t dniA(n, np)i =—1~(n„n,).

k

V. VARIATIONAL PRINCIPLE FOR A(n, ro)

Suppose Ai, A2, and A3 are three functions of pressure
and velocity which are exactly equal for correctly chosen
pressure and velocity, but are not necessarily equal
when the pressure and velocity are varied about their
correct values. Then for correct p, v

Ai=As=As=B=ArAs/As,

"oB= (Ai/A s)BA s+ (A s/A s) BA i—(A res/A P)gA,

=h'As+BA i—Ws. (36)

From Eq. (14) introduce
1

—k'
A(—np, —n)= I dr

Xexp(iknp r) (1—np')p(r, —n)

A4 ——A(—np, —n) of Eq. (17) then by symmetry the
expressions

B=AiAs/A4,
B'=At+A s A4, — (38)

are stationary for arbitrary variations bp(r, np), 8v(r, np),
bp(r, —n), bv(r, —n).

Since 8 and 8' are stationary for arbitrary variations
they are stationary for the special choice

Bv(r,np) = (1/ioip) grad8p(r, np),

bv(r, —n) = (1/ippp) gradbp(r, —n).
(39)

Hence, comparing with Eq. (3), the above expressions
for B and B' are stationary for arbitrary 8p(r, np) and
8p(r, —n) when, in B and B', v is everywhere replaced
by (gradp)/irpp. Similarly the expressions are stationary
for arbitrary 5v(r, np) and bv(r, —n) when p is every-
where replaced by (pc' di vv) /i tp

where E is a given operator, z is known, and x is un-
known. Suppose further that we are interested in
determining

A =z'~Lx, (41)

where L is a given operator and z' is known. If E and
I are matrices, then x and z' are single column matrices,
and z'~, the transpose of z', is a single row matrix. If
now we can determine operators E' and L' such that

E'L= L'E, (42)

and for which there exists a solution y, not necessarily
known, to the equation

VI. ABSTRACT FORMULATION OF THE
VARIATIONAL PRINCIPLE

The difhculties involved in obtaining a variational
principle for A (n, np) are more readily recognized when
the problem is given a more general abstract formula-
tion, ' with a condensed notation. Suppose

yg~/ z/g (43)
1i

»ppi 1 inp. v(r n) (37) then it is easily verified, by virtue of Eqs. (40)—(43),
that

Denote A(n, np) from Eq. (14) by Ai, A(—np, —n) from
Eq. (37) by A&, and A(n, n,) from Eq. (17) byAp. Then,
as shown in Appendix D, H defined by Eq. (35) is
stationary for arbitrary variations Bp(r, np), Bv(r, np),
8p (r, —n), 8v (r, n) We —men. tion specifically that
these variations need not satisfy the boundary condi-
tions, although of course they must be so chosen that
the integrals converge.

Since the right side of Eq. (35) is stationary, Eq. (36)
shows B'=At+As As is also stationary. If w—e define

A=y~E'Lx=y L'Ex=y L'z,

and moreover that either of the expressions

B'=y ~L's+ s' rLx y~K'Lx, —
B'=yrL's+s'~Lx y~L'Kx, —

(44)

(45)

is stationary for arbitrary bx and by~. %e note that
Eqs. (40), (43), and (44) alone, without Eq. (42), are
not sufFicient to prove B' of Eq. (45) stationary. It is
sufFicient to replace Eq. (42) by the requirements

'With Eq. (19), Eq. (33) provides an alternative proof of
Eq. (28).

r'L~=L'X~,

y ~L'E =y ~E'L. (46)
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where x and r' index, respectively, the rows and columns
of the continuous matrix G(r,r'), 1—=8(x—r') is the unit
matrix, and from Eq. (11),M is the diagonal matrix

M(r, r') = k'(1 —p')b(r —r'), (48)

if we remember that we are presently assuming 0.=1.
We then identify A (n,n,) with A of Eq. (41). Because
of Eq. (12) and the way in which A (n,np) is defined,
we see that s' of Eq. (41) must be identified with

pp( —n), and I.= M/4p—r. The only equation involving

pp( —n) which is immediately at hand is, again by
Eq. (11),

(1—GM) p (—n) = pp (—n).

Hence, in Eq. (43),

(49)

E'= (1—GM) x=1—MrGr=1 —MG, (50)

since M and G are both symmetric. Consequently
I.'= I.= —M/4pr satisfies Eq. (42). The resultant varia-
tional principle, corresponding to Eq. (45), is the
usual one. '

We observe that when derivatives of the Green's
function do not appear in the integral equation, i.e.,
when p and (gradp) are continuous, the variational
principle is a necessary and natural consequence of the
simple relationship between the form of E, Eq. (47), and
the expression for A(n, n,), which makes I.= —M/4pr.
This simple relationship no longer obtains in the more
general case when p is not constant. In the first place
there are now four independent quantities in Eq. (11),
p(r) and the three components of v(x), corresponding
to the elements x, , i = 1 to 4, in Eq. (40). Consequently,
IC in Eq. (40) is a superrnatrix of continuous sub-
matrices K,, (r,r ), i,, j= 1 to 4. Further, since derivative
terms enter, oA diagonal elements of the continuous
submatrices enter in a complicated way. Moreover,
because of these derivative terms, alternative expres-
sions are possible, by virtue of partial integrations, for
K and for A (n,n,).However, the integral equations (11)
and Eq. (14) appear to give the only reasonably simply
obtained formulation of the problem in terms of volume
integrals which extend over all space and assuredly
remain well defined even when discontinuities of p
and/or c exist, thereby obviating any necessity for the
inclusion of surface integrals. Thus it is interesting to
note that this formulation is also the only one from
which we have been able to derive a variational prin-
ciple for A (n,np), even when surfaces of discontinuity
are in fact absent. For example, when all functions and

When p'=pp in Eq. (11) derivatives of the Green's
function do not appear in the integral equation for p (r),
and the problem reduces to the type which has been
treated previously. ' In this event in Eq. (40) we
identify x with p(r, np), s with pp(np). Also, in con-
formity with matrix notation,

(47)

their derivatives are well behaved, derivatives of G(r,x')

may be avoided by using Eqs. (1A) and (4A), yielding
the integral equation

p(r, np) —
) dr'G(r, r') Lk'(1 —ii")p'(np)

+pipv'(np) grad'(p' —pp) J= exp (pknp. r), (51)

for p(np), with corresponding equations for v(np),
p( —n), and v( —n) and, for A(n, np), the equation

A (n,np) = —— dr' exp( —ikn r') Lk'(1 —p")P'(np)
4x ~

+zppv'(np) grad'(p' —pp)], (52)

with a corresponding equation for A (—np, —n). How-
ever, Eqs. (51) and (52), which correspond to Eqs. (40)
and (41), do not lead to a variational principle for
A (n, np), as is readily verified. This does not mean that
a variational principle based on Eqs. (51) and (52)
does not exist, but demonstrates that the obvious equa-
tions involving exp( —ikn r), which corresponds to s'

of Eq. (41), do not satisfy Eq. (42) or Eq. (46). Similar
remarks pertain to the other combinations of integral
equations and expressions for A(n, np) which we have
tried, ' excepting of course the combination of Eqs. (11)
and (14). Evidently it would be most helpful to have a
deeper comprehension of the kinds of formulations of
the scattering problem which can yield variational
principles for A (n,np).

We add that the two distinct variational principles
obtained from Eqs. (35) and (38) correspond to the pair
of stationary expressions of Eq. (45), and that the
content of Appendix D is essentially the demonstration
of Eq. (42).

p(r) =pi Ri(r)Pi(cose), (53)

where I'& are the Legendre polynomials and 8 is the
angle between r and np. By Eqs. (3) and (8) Ri satisfies

1 d dR, l(l+1)
r' —R—i+—k—'R—i

r dr dr r

p dr dr

In Eq. (54) we have used p= p(r), c=c(r).
' Nor have we succeeded in 6nding any different variational

principles when the condition that the variations be unrestricted
is relaxed. More precisely, the restrictions on the variations turn
out to be complicated and dificult to interpret or achieve, at
least in the cases we have examined,

VII. SPHERICALLY SYMMETRIC SCATTERER

%hen p and c are spherically symmetric, the pressure

p of Eq. (8) can be written in the form
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In Appendix K we derive an integral equation for and we use the abbreviations
Ri(r), namely

Rt(r) =it(2t+1)ji(kr)
l(l+1) (1—n)

CT = —k'(1 —ntt')
r2

g I

—k'(1 —n't ") Rt' (1—n—')
r'

r"
+- dr'r'(1 —n') Bi' . (55)

As usual, " by virtue of Eqs. (8), (53), (57), and the
definition of A (n,ns),

A(n, ns) =k ' Pt (21+1)e'"sinhtPt(cos8)
=P t ( i) 'Xt—Pt(cos8). (60)

In Eq. (55) the dot signifies the derivative, the prime
continuing to denote functional dependence on r'. Thus
Bt dRt/dr——, Bt'=Bi(r'). Gt(r, r') is defined by

Gt(r, r') = ikrr' jt (kr) ht&" (kr') r &r',

Gt (r,r') = ikrr' jt (kr') ht&'& (kr), r'(r,
where j& and h&&" are spherical Bessel functions. "

Equation (55) is valid whether or not there are discon-
tinuities in p and/or c. As in Eq. (11), derivatives of
p(r) and c(r) have been eliminated in Eq. (55). As ex-
plained in Sec. II, p and v are presumed 6nite, so that
Eq. (53) and the first of Eq. (3) imply Bt is finite. The
integrals in Eq. (55) extend over all values of r' from
0 to ~, with the understanding that n', p, ', E~', and
8&' may be assigned arbitrary finite values at discon-
tinuities of p' and/or e'. The boundary conditions on Rt
are inferred from the boundary conditions on p and
v„,using Eqs. (3) and (8), and remembering that in
the present case the surfaces of discontinuity are spheres
centered at the origin. We conclude that Rt and Bt/p
are continuous at the discontinuities r = rd, and that
except for its incoming part, obtained from the expan™
sion of ps in Eq. (8), Rt is outgoing at infinity.

From Eqs. (55) and (65) and the asymptotic forms'
of jt(kr) and hto (kr) we find that for large r

R, (r)
St(r) =

it (2l+ 1)e'" costi
(61)

Then Eq. (57) shows that for large r,
e

sin(kr ——,'hr) cos(kr —ster)
Si(r) +tanht (62)

and, from Eqs. (58) and (61),

1 00

—taunt ——
~

drr' oSij t(kr)+r8t ji(kr) . (6—3)
k p dr

St(r) satisfies Eq. (54) and the same boundary condi-
tions at a discontinuity r=re as does Rt(r), since it is
merely proportional to Ri(r).

Define Gi(r, r ) by

Gi(r, r') = krrj't(kr)rtt(kr—'), r(r';
Gt(r, r') = —krr'jt(kr')rt t(kr), r'(r.

In order to eliminate the inconsequential imaginary
part of E~, we introduce

where

it (2l+ 1)e"'
R,(r)-

kr
sin( kr ——+St (,)'

st (2l+1)e" sinai
=X)—— dr'r"

Gi(r, r') satisfies the same differential Eq. (2E) as does

(57) Gt(r, r'), but behaves like Leos(kr —islw)]/kr as r ap-
proaches inlnity, i.e., like the second or scattering term
in Eq. (62). Consequently, just as in Appendix E,
St(r) can be shown to obey the integral equation,

d
X o'Rt'jt(kr')+r'Bt' —jt(kr'), (58)

dr'
' J. A. Stratton, Etectromagnett'c Theory (McGraw-Hill Book

Company, Inc. , New York, 1941), pp. 404-406.' Since in Appendix E Eq. (55) is shown to follow directly from
Eq. (54), we expect, and can prove without much diKculty, that
the solutions to Eq. (55) do in fact satisfy Eq. (54). A proof
directly from Eq. (55) that its solutions satisfy the boundary
conditions can be furnished along the lines of Appendix F. How-
ever neither of these proofs is necessary here in view of the
proportionality between Et(r) and the function St(r) which we
dehne immediately below, and for which we do give proofs.

St(r) = jt(kr)+ — " dr'r'Gt o'Si' r'—
y Jp

1 p" dt )

+— dr'r'r'St' . (65)
s dr'

Equation (65) also can be demonstrated directly from

Eq. (55).

"L. I. Schiff, QNantttm Mechattics (McGraw-Hill Book Com
pany, Inc. , New York, 1949), p. 105.
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Differentiating Eq. (65), we obtain

Si(r) =—ji(kr)
dr

1
dr'G, gr'o'S i' r—'8i']

obtain directly"

00

—tauri ——Api —— ' drr'(oSirSi+rSirSi)

d
+——

~

dr'Gi[r'o'S i' r'8~']-
r dr~0

dr'

1d
+—— dr'r'r'Si' . (66)

r dr "p

drro Si
~

dr'r'r'Si'

+ I drr8ir ~~ dr'Gi[r'o'Si' r'S—i']
Jp 0

~
00

drr rSi' dr—'G,[r'~'Si' r'S—i']
dr ~p

d
~ (r)=—S (r),

dr
(67)

dSi 2 . l(l+1) 1
+—Si— —Si+k'Si= kP(1 —p')Si+ —pSt. (68)

dr r r2 P

Equation (68) implies Si satisfies the original differen-
tial Eq. (54). Therefore Eqs. (65) and (66), with S&

and Si regarded as independent quantities, solve the
scattering problem for the /th partial wave. We may
therefore infer also that S&(r) of Eq. (65), with 8&

defined as the derivative of Si, satisfies Eq. (54) and
the boundary conditions, and similarly for R&(r) of
Eq. (55). Evidently Eqs. (65) and (66) are the ana-
logs, for the /th partial wave, of Eq. (11) which held
for the total fields p(r) and v(r).

We are now 6nally in a position to formulate the
variatiorial principle which we have been seeking.
Denote the right side of Eq. (63) by A». Define

A2&= drr' oS& j&(kr)+ r8& j i(kr), —(69)
0 dr

where S~~ and S~~ are independent functions whose
variations are independent of the variations of Sg and
Si, but such that the unvaried (correct) values of Sir
and Sir satisfy the same Eqs. (65) and (67) as do Si
and Si. In other words, for BSi——8Sir=bSi=88ir=0
S&=Si, Si——Si, Ail ——Api. From Eqs. (63), (65), and
(66), and the corresponding equations for S&r, 8&r, we

Fquations (65) and (66) may now be regarded as a pair
of coupled integral equations in the independent vari-
ables Si(r), Si(r). As is proved in Appendix F, the solu-
tions to Eqs. (65) and (66), with S&(r) and 8i(r) regarded
as independent, satisfy the requisite boundary condi-
tions and

drrSi dr'r'r'Si'

drrrS, 'dr'r'r'—8~' . (70)
0 dr j, dr'

Moreover the quantities

8 i —A iiA2i/A pi)

Bl Ail+Apl Apl
(71)

are stationary for arbitrary variations bS&, 8$&~, bS&,
88ir. These variations need not satisfy the boundary
conditions. By symmetry, S&, 8i and Sir, 8& can be
interchanged in Eq. (70), yielding in Eq. (71) the
second, though equivalent, variational principle we
have learned to expect from Eq. (45) and the discus-
sion in Sec. VI.

The proof that 8& in Eq. (71) is stationary is given
in Appendix G. Since it is stationary for arbitrary
variations it is stationary for 6$&=bS& and BS&=b8&~,
as well as for oSi= d(oS~)/dr. That Eqs. (65) and (66)
extend over the entire interval 0(r'( ~, without end-
point sums over r'=rd, , whether or not there are dis-
continuities, has already been remarked. As in the pre-
ceding section, we have not been able to construct
variational principles from various alternative equa-
tions [to Eqs. (63), (65), and (66) for tan8&, S& and/or
Si] which can be shown to hold even when discon-
tinuities are absent.

APPENDIX A

The simplest way to derive Eq. (11) is to assume first
that there are no discontinuities in p and/or c. Let
p= pp+p on the left side of Eq. (8) and, for conveni-
ence in the manipulations which follow, replace gradp

"We introduce this seemingly awkward distinction between S&
and S&~ merely to emphasize that in applications of the variational
principle it is legitimate to use different trial functions for Sg
and S~~', a procedure which might be useful in obtaining tractable
integrals.
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by grad(p —po) on the right side of Eq. (8). Then

p, (r) = dr'G (r,r')

X[0'(1—P")p'+is)v'. grad'(p' —po) ), (1A)

as may be verified by direct application of (6+4') to
p„byusing Eq. (10). In Eq. (1A)

G (r,r') v' grad'(p' —po) = div'G(r, r') (p' —po) v'

ZGO—(p' —po)v' grad'G(r, r') ——G(r,r') (1—n') p', (2A)

by use of Eq. (3). The integral of div'G(p' —pp)v'

vanishes since p' —po is zero at infinity. The other
terms yield

With the aid of Eq. (6A), and of course another integra-
tion by parts, Eq. (5A) becomes identical with Eq. (11)
for v(r).

The integrals in Eq. (11) do not involve derivatives
of p' and/or c'. Hence Eq. (11) remains valid as the
continuous functions p(r) and/or c(r) are permitted to
have sharper and sharper gradients, becoming, in the
limit, discontinuous with a finite jump across one or
more surfaces. Consequently Eq. (11) holds whether or
not such surfaces of discontinuity exist. Of course Eq.
(11) can be established directly, but also more awk-
wardly, without making the initial assumption that p
and/or c are everywhere continuous. Green's theorem
and Eqs. (8) and (10) imply that

j dSn [G(r,r') gradp. (r) —p, gradG(r, r')j

p, (r) = k' dr'G(r, r') (1—n'p, ")p (r')

—noj dr'(p' —po)v' grad'G(r, r'). (3A}

By noting grad'G= —gradG, Eq. (3A) and Eq. (7) are
seen to be identical with Eq. (11) for p(r).

Similarly, from Eq. (8)

v, (r) = I dr'G(r, r') k'(1 —p")v'

1 1
+~p' grad

(p c ppcp )
(1—curl' grad'~ ——

~
Xp'v' . (4A)

Lp' pj
The derivative terms in Eq. (4A) can be in eRect
integrated by parts by manipulations similar to those
of Eq. (2A), remembering always that, because the
surface integrals at infinity vanish, any integral of a
pure divergence, a pure curl, or a pure gradient, is zero.
Thus, using Eq. (3) to eliminate grad'P', Eq. (4A)
becomes

v, (r)=k'j dr'G(r, r')~ 1——~v'')

grad dr'G(r, r') (1—n'p, ")p'
P0~0'

1 1q—curljI dr'G(r, r') grad'~ ——
~
Xp'v'. (5A)

E p' po)

Because of Eq. (3), curlpv=0, so that, in Eq. (5A),

(1 1q (1 1)
g»d'( ——

) Xp'v'= curl'( ———
[
p'v'. (6A)

~P P~~ ~P Po~

drG(r, r') [k'(1—P') p(r)

+mv grad(p —po) j. (7A)

The volume integral in Eq. (7A) runs over the space
exterior to a small sphere about the point r=r', not
including an infinitesimal strip on either side of any
surface of discontinuity of p and/or c. The surface
integral in Eq. (7A) is over the sphere at infinity, the
sphere around r=r', and both sides of every strip; the
normal n points out of the volume of integration of the
right-hand side. The surface integral at infinity vanishes
because G and p, are both outgoing so that, shrinking
the radius p of the small sphere to zero,

p, (r')+ dSn (G(r,r')[gradp„—gradp„f

gradG(r, r') [p„—p„j}
drG(r, r') [k'(1—p') P+~v grad(p —po) ). (8A)

The surface integral in Eq. (8A) runs only over the
surfaces of discontinuity. These are assumed to be finite
closed surfaces, with n in Eq. (8A) directed out of the
surface, toward the exterior, and i and e referring
respectively to the interior and exterior sides. The
volume integral in Eq. (8A) is over all space excluding
infinitesimal strips on either side of the surfaces of
discontinuity. Since po and vo, Eq. (8), are everywhere
continuous, the subscript s may be dropped in Eq. (8A) .
Also, according to the boundary conditions, p and v„
are continuous across S. Hence, using Eq. (3), Eq. (8A)
becomes

p. (r') = drG(r, r') [k'(1—P')p+mv grad(p —po) )

—z~jJ dSn G(r, r')v(r) (p;—p,). (9A)
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By interchanging r and r', and employing Eq. (2A), the
volume integral in Eq. (9A) is integrated by parts just
as previously, except that the integral of div'G(p' —po) v'

gives a surface integral on either side of 5 which just
cancels the surface integral already in Eq. (9A). We
are left with Eq. (3A), integrated over all of space
exterior to the strips. In Eq. (3A) the integrands re-
main finite on S, since derivatives of p and c, and p
and v for that matter, do not appear. Consequently, in
Eq. (3A) the integral over an in6nitesimal strip sur-
rounding S is in6nitesimal, and Eq. (9A) is seen to yield
Eq. (11) for p(r). With much more labor Kq. (11) for
v(r) can be similarly deduced directly, without assuming

p and c everywhere continuous. However it is apparent
from a comparison of the above two derivations of p(r)
that our original simpler derivation of Eq. (11) was
quite legitimate.

From Kq. (11),using Eq. (7), Eq. (10), and curl curl
=—grad div —6,

gradp —io&pov= ioo(—po p) v—,
(10A)

(iso/Co') p po d—iVV= (ioo/Co2) (1 ctp2—)p

Equation (10A) is identical with Eq. (3), proving that.
the solutions p and v to Eq. (11) satisfy the original
differential relations Eq. (3).

APPENDIX 8

To prove P(r) of Kq. (11) is continuous across a sur-
face of discontinuity 5 we first eliminate the deriva-
tives of the Green s function in Eq. (11).Differentiating
under the integral sign, Kq. (11) for p(r) yields Eq.
(3A). The integrals in Eq. (3A) exist for all r. Conse-

quently for any point r not actually in 5, exclusion from
the region of integration in Eq. (3A) of an arbitrarily
thin strip on either side of S modifies p(r) by an arbi-
trarily small amount. Excluding such a region then, the
last integral in Eq. (3A) can be integrated by parts,
and we obtain

p(r) = po(r)+02 I dr'G(r, r') (1—n'p") p'

+~ ' «'G(r, r') div'(p' po)v'—

Eq. (8), is a continuous function of r. There is no diffi-
culty in demonstrating this inequality for the volume
integrals in Eq. (18), since the factors multiplying
G(r, r') in the integrands are assumed bounded. There
remains to be proved continuous only the surface
integral of Eq. (18).Draw a sphere of radius ao about
ro, n to be determined, which sphere, for small nt. ,
intersects S in some nearly circular closed curve. (We
assume of course that 5 possesses all the usual attributes
of a well-behaved surface, e.g. , a tangent plane. ) The
surface integral of Eq. (18), integrated over points r'
outside the sPhere for r= ro+z,n, can be made as nearly
equal as desired to the surface integral integrated over
the same r' for r=ro —s~n. This is accomplished by
choosing 8 suKciently small, since the integrand is
finite and continuous as 8—+0 for points r' outside the
sphere. We now prove that for suKciently small ne and
8 the contribution to the surface integral from points
on 5' within the sphere vanishes. The factors multiply-
ing G(r, r ) in the integrand are bounded, so that, within
the sphere,

dS'n' G[(p, ' —po) v, '—(p.' —po) v, '],

&P t dS'—,(28)
r—r

where P is some upper bound to
~

n' [(p —po) v, '
—(p.' —po)v, '$~ within the sphere. Write

r' —ro ——x't'+y'n, (38)

Since t' lies in the tangent plane, y'~x" for sufficiently
small ne. For sufficiently small o,e therefore

x" 2sx'2+2SQ
+

&2+22 xI2+z2 x~2+ z2

with t' a unit vector in the tangent plane. Then with
s=si ol s2

&2SQ

x"+z' .

—~)"dS'n'. G[(p'' —po)v'' —(p' p) o3v(18—)

In Eq. (18) n', the normal to dS', and the subscripts i
and e are de6ned as in Eq. (8A). The volume integrals
in Eq. (18) are over all space except for a thin strip
on either side of S. However these volume integrals
may be extended over all space by assigning an arbi-
trary 6nite value to div'(p' —po)v' on S'.

Let ro lie in 5. We wish to show that given any e it
is possible to choose 8 sufficiently small that

~
p(ro+zin)

—p(ro —zon)
~
&o whenever 0&zi&8 and 0&z2&8. po(r),

—,+,, (38)
1+z2/x~2 1+z2/x~2

Jr—r'(

x
=22rP „dx'—

(x"+z')&

=22rP[(z2+noo2) & zj (68)— .

which can be made arbitrarily small by choosing ae
and 8 sufficiently small, for any x' within the circle of
radius ne in the tangent plane, and for all 0&s&8. In
Eq. (28), therefore, we may write
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The right side of Eq. (68) can be made & pby choosing
8 arbitrarily small and n& 1/2'. We conclude that p(r)
is continuous across S.

Equation (11) for v(r) yields, corresponding to Eq.
(18),

before, drawing a sphere of radius O.e about r0, we ob-
serve that the contribution to the grad'1/

I
r—r'

I
surface

integral from points r' outside the sphere is continuous
on r. It follows that the continuity of v„will be as-
sured if

v(r) = vp(r)+k' dr'G(r, r')
I

1——Iv'
a'2

eikj r—r'I

n )
dS'——(r—r')

r r «3

dr'G (r,r') grad'(1 —a'p") p'...p J

~dr'G(r, r') curl' curVI 1——Iv'

$cv

+ dS'n'G (r,r')

X[(1-n'p")'P''- (1-n'g") P ']

+ t dS'n'G(r, r')

iq t
11

curl'I 1——
I

v —curVI 1——
I v, 'n'), ( a'&,

for r= r0~sn and sufBciently small 0. and 8, the integral
running over points on 5 lying within the sphere, and
the integrand well behaved, i.e., diGerentiable, at ro.

Replace r' by rp in the integrand of Eq. (88), except
in (r—r')/Ir —r'I', which is equivalent to making a
Taylor expansion with remainder term of order of
magnitude

~dS'- X f (r' —rp) grad'} expik Ir r'I—
Ir—r'I'

1&, ( 11
1 (98)n'i, ( ~'),

t dS' grad'G(r, r')
By using Eqs. (38)—(58) and remembering y' x", each
of the components of the expression (98) can be seen
to have an upper bound involving sums of integrals
such as

t««««

dx
sx'3

(x"+s')-:
In Eq. (78) it is possible that [1—(1/n')]v' is discon-
tinuous or nondifferentiable on a curve C on one or
both sides of S, in which case curl'[1 —(1/n')]v' would
not exist on C on one or both sides of 5, For example,
v, might be discontinuous on the rim of a plane piston
source. However the value of the surface integral is
not changed by assigning arbitrary 6nite values to
curl'(1 —(1/n')]v' on C, so that such discontinuities do
not affect the validity of Eq. (78). 1VIoreover, in de-
riving the boundary conditions it is assumed that p(rp)
and v„(rp) on either side of S differ infinitesimally from
the values of p(r) and v„(r)at points r on the same side
of 8 in the neighborhood of r0. This assumption need not
be correct at points rp where [1—(1/n')]v' is discon-
tinuous or nondiGerentiable on either side of the sur-
face. Consequently we are required to demonstrate
the boundary conditions only at points ro where

[1—(1/a')],v, and [1—(1/n')], v, are well behaved. It
can now be seen that in Eq. (78) all integrals except
the surface integral involving grad'1/Ir —r'I (arising
from grad'G) are of the same types as those in Eq.
(18) and can be proved continuous in a like manner. As

n.
p 2 7l p+ikz

dx' de'x'-
x'2 s2 '

where

X[~'t'+ (y'as)n]X{nXq(rp)} & p, (118)

(128)

evaluated at r'= rp. In Eq. (118) y' and t' are the only
quantities depending on O'. The region of integration is

x"

0
X/2 S2-:-'

each of which can be made as small as desired by choos-
ing n~ and 8 su%.ciently small. Consequently the re-
mainder term Eq. (98) is negligible, and, again using
Eqs. (38)—(58) and examining integrals like those of
(108), Eq. (88) is seen to be equivalent to the condi-
tion that
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a circle in the tangent plane, centered at xp, with 0'

the azimuth of t'. Thus the terms involving t' in Eq.
(118) vanish when integrated over O'. The remaining
terms in the integrand, in (y'&s)n, are perpendicular
to n. We conclude therefore that the normal com-
ponent of any v(r) solving Eq. (11) is continuous at
I'=1'p on S.

We remark that our procedure in referring the demon-
stration of the continuity of v„(r) to the preceding
proof of the continuity of p(r) means that the rather
lengthy argument used in proving p(r) continuous
really did not involve any extra work. Actually p (r) can
be readily proved continuous directly from Eq. (3A),
but this proof cannot be extended to proving v„(r)
continuous. We see no obvious way to avoid the
detailed examination of the surface integrals in Eq. (78).

the second integral on the right of Eq. (1C) equals the
third integral on the right of Eq. (17). Consequently,
comparing Eqs. (17) and (1C), to prove Kq. (19) it is
only necessary to show

dryv(np) ' curl curlJ dr'Gy'v'( —n)

dryv( —n) curl curl dr'Gv'v'(no). (3C)

By elementary manipulations using Stokes' theorem, it
can be seen that the left side of Eq. (3C) equals

f
dSv yv(np) X dS'v'XGy'v'( —n)

APPENDIX C

Corresponding to Eq. (17) we have

A (—no, —n)

~t dr[pp( —n) p(no) —&opoyv( —n) v(no)]

——~J droop(
—n) div ~dr'Gy'v'(no)

—~' dSv yv(np)X jj dr'G curl'y'v'(. —n)

dr[curlyv(np) j ' dS'v'XGy'v'( —n)

+ I dr[curlyv(np) j J
dr'G[curl'y'v'( —n)$. (4C)

i r
I+— dryv( —n) .grad dr'Gp'p'(no)

4 j J

1
+—I dryv( —n) .curl curl dr'Gy'v'(np)

J

1
"drdr'[p( —n)pGp'p'(no)

In (4C) v is the normal to dS, and the surface integrals
run over the interior and exterior of each surface of dis-
continuity, with v, = v as previously defined in Eq. (8A)
on the interior surface and v, = —v on the exterior
surface. A similar expression for the integral on the
right of Eq. (3C) is obtained by interchanging np and
—n in (4C). 8ut interchanging the dot and first cross
in each of the first two integrals on the right side of
(4C), and then interchanging the dummy variables r
and r', it is seen that the right side of (4C) is symmetric

kp&G&lv( n). v~(n, )] (1C) in np and —n. It follows that Eq. (3C) is true, and
therefore that Eq. (19) is proved.

where G is symmetric, G(r, r') =G(r', r), and grad'G
= —gradG. Moreover

drpp(no) div dr'Gy'v'( —n)

APPENDIX D

From Kqs. (14), (17), and (37):

SAN=
~

dr exp( okn r) —(1—np')bp(np)4. ~

drdr'Pp(no)y'v'( n) gradG—

= ~I drdr'p'p'(np)vv( —n). grad'G, (2C)
8A2 ——

interchanging the dummy variables r and r'. It follows

that the second integral on the right of Eq. (17) equals
the third integral on the right of Eq. (1C). Similarly,

lq
+poco~ 1——)n. Bv(no), (1D)

n)

—k'
dr exp(iknp r) (1 np')8p( —n)—

4x

—
poco~ 1——~np'5v( n), (2D)

ni
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1 t

drl pp(n, )t'p( —n)+ pp( —n) Sp(n, )

—&opoyv(no) 8v(—n) —(opoyv( —n). ((v(no))

$
"drpSp(no) div dr'Gy'v'( —n)

4m ~

APPENDIX E

The simplest way to derive Eq. (55) is to assume first
that p and c are continuous. Introduce u~=rE~ into
Eq. (54), which yields

d'u( l (l+ 1) 1 ( u(q
u(+k'u( k——'(1 ((—,')u(+ pI

—u( ——I. (1E)
dro ro p ( r &

Z
I drdr'Qp(no)y' gradG$ ((v'(—n)

4x ~

The function G((r,r') of Eq. (56) is the outgoing Green's
function satisfying

f
+— dry((v(no) grad dr'Gp'p'( —n) r2dr

d'G( l((+ 1)
(+k'G( ———8(r—r'), (2E)

f

+— drdr'yp'I v(no) gradG/8p'( —n)
4~~

+—~dry5v(no) curl curl dr'Gy'v'( —n)

1
+— dryv (no) curl curl dr'Gy'8v'( —n)

4 J

1
+— drdr'L((p (no)pGp'p'( —n)

4x ~

+p(no)PGP'~p'( n)—
—k'yGy'v'( —n) .l(v (no)

—k'yGy'v(n, ) ((v'( —n) j. (3D)

By substituting Eqs. (1D)—(3D) in Eq. (36) and
collecting terms, it is found that the terms in 8p(no)
vanish by virtue of Eq. (16).The terms in 8v (no) vanish
by virtue of the equation for v( —n). The terms in
8p'( —n) vanish because of the first of Eq. (11), after
interchanging the dummy variables r and r' in the
double integrals of Eq. (3D). We similarly interchange
r and r' in the terms in bv'( —n), with the exception of
the curl curl term where this interchange is of no utility.
However, by following the procedure used to demon-
strate Eq. (3C), it is seen that

~dry((v (—n) curl curl (dr'Gy'v'(no). (4D)

where 8(r—r') is a one-dimensional 8 function over the
interval 0&r& ~. It may then be directly veri6ed that

u( ——u(o —~ dr'G((r r')
J )

1 f u(') (3E)
X k'(1 —((')u(+—

I u( ——Ip
p' & r' )

u(o= i (( 2E+1)rj((kr),

satisfies Eq. (1E) and consequently that

R(= o((21+1)j((kr)

dr'r'G((r, r') k'(1 —p")R(+ p', (4E)

satisfies Eq. (54). Now use the identity,

r'G(p' =—r'G((p' —
po)

p p

8)' d—(p' —po) —(r'G()
p' dr'

d (R()—r'G((p' —po)—,I, I, (5E)
dr'( p')'

and substitute in Eq. (4E). The total derivative term
contributes nothing since r'G~ vanishes at the origin
while p' —po vanishes at inanity. Thus there results

1
R(——o((21+1)j((kr) —— ' drr'G((r, r')

rJ,
&& k'(1 —( ")R('—(p' —po)—,

dr' p'

Moreover the proof of Eq. (4D) does not necessitate
using the boundary conditions. With the aid of Eq.
(4D) the terms in 8v'( —n) are thereby all converted
to integrals over 8v( —n), and at once are observed to
vanish because of the second of Eq. (11).This completes
the desired proof.

+- ~ dr'(1 n')R(' (r'G,). —(6E)—
r J dr'

(7E)

Equation (54) implies

d (R() 2 R( l(l+1) I' R(—
I
—I=——+

droop) r p r& p p
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Substitution of Eq. (7E) into Eq. (6E) then yields
Eq. (55). Just as in Appendix A, we now argue that
since Eq. (55) does not involve derivatives of p' and/or
c', it remains valid in the limit in which p' and/or c'

becomes discontinuous across one or more surfaces.
Eq. (55) can also be deduced without assuming p'

and/or c' continuous, either directly from Eq. (54) or
via the integral equation (9A), in either case with rather
more labor.

APPENDIX F

way we find that

1'd
8i.(rg) 8—i;(rg) = ——Gi(rg+e, ry)

rq dr

Gi (r(f E r(f) {$F r 8$ 'r T'~8[ j'}r rd=.(3F)
dr

Since from Eq. (2E)

dG&(r~+ ~, r~) dR(r~ —~, r~)

The proof that &&', Eq. (71), is stationary is straight-
forward. Appendix D is a guide. The coefFicients of
hSi and hSi are readily seen to vanish by virtue of
Eqs. (65) and (66). Similarly the coeKcient of hSi'
vanishes. There is a complication in the coeKcient of
hSi. It is seen that this coeKcient will not vanish by
Eq. (66) unless it is true that

d8i 2 l(l+1) 1 d' l(l+1)
+-Si—— &i+k'R= ——- +k'

dr r r~ r Ldr

~ ~ ~ (4F)We regard Si and 8i as independent quantities in dr
Eqs. (65) and (66). Since Eq. (66) was obtained by
differentiating Eq. (65), Eq. (67) is evidently true. To we get a,8&, n;8&;,——which is the desired boundary
demonstrate Eq. (68), differentiate Eq. (66) to get condition.
d8&/dr and, combining this with Eqs. (65) and (66), APPENDIX G

evaluate the left side of Eq. (68). By using the differ-
ential equation' for j&(kr), the results obtained are

dr'Gi (r'a'S i' r'Si')—

dr'r'r'S )'
0 dr'.

(1F)

d (
" dGi(r, r')

drr. S,r ~ d"r"' hS, 'J, dr ~, dr'

d
I

" . dpi(r, r')
dr'r'r'hSi'

~

drrrSi . (1G)
We integrate by parts the second integral in Eq. (1F)
Thereby we convert the right side of Eq. (1F) to inte-
grals to which Eq. (2E) can be applied under the inte-
gral sign, plus a sum over r'=r~ which vanishes after
application of Eq. (2E), since the delta function
vanishes for the only points in which we are now
interested, namely points r not equal to any r&. Thus
we find

d8 i 2 l (f+ 1)
+—gi—— Si+k'Si

dr
1 d

= —0Si+ +— (r rgb), (2F)—
r rdr

which, after some manipulation, reduces to Eq. (68).
In Fq. (65) the first integrand is bounded. The

second integral when integrated by parts yields an
integral excluding infinitesimal intervals surrounding
the points r'=r~', and therefore one for which the
integrand is again bounded. The integration by parts
also yields a well-behaved sum over r'= r~', and we infer
that Si(r) is continuous. We similarly integrate by parts
the integrals involving dGi/dr in Eq. (66), perform the
d/dr operation indicated in the last integral of Eq. (66),
and observe that discontinuities in 8~ can arise only
from the terms in dGi/dr in the sum over r'. In this

Equation (1G) can be proved however. The left side of
Eq. (1G) is

oo d r
—k

~

drrrSi
~

dr'r'r'hS&'rn&(kr)~'j i(kr')
0 dr o dr'

+ ~ dr'r'r'hSi'rj i(kr) r'ng(kr')—
dr'

d= —k ~' drrr8i rrhSi rni(kr)rji(kr)
0 dr

rj i(kr) rni(kr—)—
00

d—k drrr8& dr'r'r'h8g' rnid(kr) —rj'i(kr')—
0

+ dr'r'r'h8&'~j
& (kr) r'n &(kr')—

dr

We evaluate the right side of Eq. (1G) as we did the
left side and observe the expression so obtained is
identical with the result of interchanging the order of
integration in the double integrals on the right side of
Eq. (2G). Hence Eq. (1G) is true.


