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interesting in view of the fact that the nearby superconducting
transition metals, vanadium, niobium, and tantalum, usually
exhibit very broad magnetic field transitions unless great care is
taken to avoid contamination of these metals by small amounts of
nitrogen and oxygen.>® The absence of such effects in rhenium
may perhaps be due to the low solubility of nitrogen and oxygen
in this metal; it may be noted that rhenium has a close-packed
hexagonal structure in contrast to the more open, body-centered
cubic structure of the group 54 metals.

In comparing the present data with previous results, it seems
possible that the low transition temperature (0.95°K) reported
by Aschermann and Justi may have been due to chemical im-
purities in their sintered rod, as evidenced by a rather high re-
sidual resistance, 0.017 of the ice-point value. However, the some-
what high transition temperature (2.4°K) reported for the powder
specimens cannot be attributed to chemical impurities, as the
materials were believed to be spectroscopically pure. In seeking
the origin of this anomalous behavior, we have observed that
untreated rhenium powder samples received from the University
of Tennessee (reduced from ammonium perrhenate) undergo a
superconducting transition which is spread out over the range
from 2.4°K down to 1.7°K. However, after such samples have
been compressed and heated for 12 hours at 1460°C, the entire
superconducting transition takes place between 1.8° and 1.7°K,
in good agreement with the behavior of the bulk metal. It seems
likely that these effects are due to the existence in the untreated
rhenium powder of appreciable amounts of very finely divided
metal with transition temperatures higher than that of bulk
rhenium, perhaps for reasons similar to those responsible for the
elevated transition temperatures found by Buckel and Hilsch? for
thin films of tin condensed at low temperatures. The occurrence
of such finely divided metal is possible because of the low tem-
perature at which the ammonium perrhenate reduction takes
place, 300°C, well below the melting temperature of rhenium,
3170°C. Annealing at quite high temperatures is necessary to
permit the aggregation of metal fragments and the removal of
imperfections so that crystals are produced with superconducting
transition temperatures close to that of bulk rhenium.

I am grateful to H. Charbnau and S. Foldes for assisting in
the fabrication of the rhenium rod. A detailed account of the work
will be published later.
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HERE are many problems in physics characterized by a
strong local perturbation on an otherwise solvable problem.
One such problem that has been treated by Smith and the author
is the vibration of a lattice in the neighborhood of an impurity
center.! More recently, Slater? has treated the problem of elec-
tronic impurity levels using difference equations. Since many
other applications are possible, it seems worthwhile to present
the procedure used to solve such problems in its most general and
abstract form.
We are required to find the eigenvector x and eigenvalues \ of
the matrix A +b:

Zi(A+b)sjxi =Nz, O
where the matrix 4 =4;; has elements 7, j=1, 2, ---N, and all
elements of the matrix b;; vanish except b, for 7, s=1,2, - - k. It
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is assumed that the eigenvectors S, and eigenvalues E(p) of 4
are known:

Z;4::Sip=E(p)Sip- 2
Equation (1) can be rewritten in the form x= (A—A4)"tx, or
X;=2 A—A)irbrstts, 3

r,8

expressing all elements «; of the eigenvector in terms of the few
components x, associated with the localized perturbation. The
latter components may be obtained by specializing 7 to any of the
values 1, 2, - - k and solving % equations in £ unknowns—a prob-
lem whose order is small if the perturbation is localized.

The reciprocal matrix elements in (3) can be obtained from (2)
by regarding S as the matrix of a similarity transformation

A=A =[SA—E)"'S];;
=EﬁSiPD‘_E(p)]ﬁ‘(S_l)pi
= Epsipsip*/D\_E(P)]-

In the last part of (4) we have utilized the fact that S will be
unitary if A4 is Hermitian.

A particularly simple special case arises if the matrix b has
only one nonvanishing element

bij=bodiodjo.

4

©)

This case has particular usefulness for the vibration of a lattice
one of whose atoms differs in mass from that of a pure lattice. In
this case the X% problem reduces to a single equation obtained
from (3) by setting =0 (and cancelling o) :

1=00Zp|Sop|2/[N—E($)]- (©)
If the matrix A4 is cyclic, then .S will have Bloch form,
Sip=N"texp(ip-R)), ()

where R; is the position of atom j in the lattice. For this cyclic
case, Egs. (4) and (6) reduce to those obtained by Slater.

Equation (6) can be rationalized to an algebraic equation of
degree N for \. The N roots for N will interlace the unperturbed
roots E(p). For positive bo, each X will exceed the corresponding
E(p), but not the next higher E(p). The largest X is not limited,
however, and can separate from the other roots if b, is large
enough. For the calculation of a separated root the sum in (6)
can be replaced by an integral.

Each intermediate eigenvalue will differ by an amount of order
N1 from one E(p). Thus one term in the sum (6) will be of finite
size. Since unperturbed eigenvalues neighboring to E(p) will
differ from it by an amount of order N~% in three dimensions and
N—%in two dimensions, the neighboring terms in the sum will all
be infinitesimal. It will therefore be possible to replace (6) by an
isolated term plus a principal-valued integral. This procedure is
similar to that used in the spherical-model saddle-point condition.?

In one dimension, the eigenvalue separation is of order N7, so
that if N differs from one eigenvalue E(p;) by an amount of order
O(N™) its distance from the neighboring eigenvalues is similar.
This difficulty may be overcome by considering separately the
contributions to the sum for which |p—p:| >N~% and for which
|p—p1| <N-% The former contribution may be replaced by a
principal-valued integral since a symmetric interval about p is
excluded, and the terms now vary sufficiently slowly for the sum
to be replaced by an integral. The latter contribution must be
handled as a sum, but only the properties of E(p) in the neighbor-
hood of p: are involved. The number of terms in this sum (of
order N?) can then be allowed to go to infinity. Equation (6)
can, for one dimension, therefore be written:

_ B 21 ap N|S0p:1|2 cotre
bo)~1= (27)"1P }
= [ s eyt g ©
where the eigenvalue A (1) has been written in the form
A(p) =E(p1+2rN"1e), ©)

so that e is the fraction of the separation between E(#:) and the
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next eigenvalue that A(p:) has been shifted relative to E(p1).
Since cotwe covers the range from infinity to zero as e changes
from zero to one-half, the eigenvalues are never shifted more
than half an interval.

Application of the above techniques to vibrations of imperfect
lattices will be discussed in more detail later.
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NDER the title above, a paper is being submitted to T/e
Pliysical Review, containing material some of which has
been presented in the unpublished Technical Report No. 5 of the
Solid-State and Molecular Theory Group of Massachusetts In-
stitute of Technology. Further material on the same subject will
be incorporated in two further papers. These treat the technique
of handling the motion of electrons in perturbed periodic lattices,
by expanding the perturbed solutions in terms of Wannier func-
tions, and setting up and solving the equations for the coefficients
of the Wannier functions, which take the form of difference equa-
tions. Previous treatments of this problem! have usually approxi-
mated the difference equations by differential equations, thereby
leading to the concept of an effective mass. This approximation,
though sometimes satisfactory, is not rigorous, and we feel that
the difference equation method is preferable.

Our attention has now been called by Professor Melvin Lax to
the fact that he and a student of his, Mr. James H. Smith, of
Syracuse University, have been independently using similar
mathematical methods for handling problems in the vibrations
of a lattice containing local impurities and imperfections. Lax
describes these methods in an accompanying Letter to the Editor.
The purpose of the present letter is merely to point out that our
work, and that of Lax and Smith, were carried out independently,
both leading to a mathematical technique which appears to have
wide applicability, in problems of quantum theory of solids an
in the mathematical theory of difference equations. The applica-
tion to the vibrations of a lattice, which Lax and Smith are treat-
ing, had also occurred to us as a useful application of the method,
but we have not made wide use of this application.
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ESONANCE absorption believed associated with the spin
of electrons bound to Group V donor atoms has been ob-
served in several different samples of silicon. The absorption
was measured on a Zeeman modulation spectrometer operating
at a frequency of 24 000 Mc/sec. The samples were cut from single
crystals in the form of bars 0.420 in.X0.170 in.X0.030 in. They
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were mounted on the narrow side of a rectangular resonant cavity
kept at a temperature of 4.2°K.

The first resonances were observed in arsenic-doped silicon
which had been plastically deformed by compression at 1000°C.!
Four fairly sharp absorption lines (ca 10 oersteds between inflec-
tion points) appeared, equal in amplitude and spaced uniformly
73 oersteds apart. These are shown schematically in Fig. 1(a), (b),
(c), where a line roughly indicating relative magnitude is plotted
against its gyromagnetic ratio (g). The gyromagnetic ratio was
determined by introducing diphenyl picryl hydrazyl into the
system and comparing its resonance absorption line (g=2.0036?)
with the newly observed lines.

These four lines did not appear in undoped silicon (10 ohm-cm,
2 type at room temperature) either compressed or uncompressed.
Neither did they appear in an arsenic-doped sample (5X106
atoms/cm?) which had not been compressed. In all of these
samples, however, one weak line was observed with a g=2.006,
approximately coinciding with one of the four strong lines previ-
ously observed. This line was strongly affected by etching and is
thus presumably associated with the crystal surface.

Four lines with the same separation and appearance as the ones
described above have also been found in silicon in which the
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F16. 1. The gyromagnetic ratio of the spin resonance absorption
lines for various specimens of silicon.

arsenic donors have been compensated with boron acceptors
[Fig. 1(d)]. In this sample the lines were fairly weak, and the
line with g=2.006 was larger and broader than the other three.
This is probably caused by the presence of the same single weak
line observed in the control samples.

In this compensated crystal the lines only showed up in that
part of the crystal where the arsenic concentration exceeded the

. boron concentration. In addition the four lines were observed in

an uncompressed silicon sample with 10'® arsenic atoms/cc. These
observations lead us to believe that the lines are associated with
neutral arsenic atoms. Why the compression enhances the lines
is not understood.

The presence of four lines associated with arsenic strongly
suggests that this is hyperfine structure caused by the As™
nucleus of spin 3/2. In order to verify this suggestion, phos-
phorus was used to replace the arsenic as the donor material.
Phosphorus has the single isotope P3! with a nuclear spin of 1/2
and thus should give a twofold hyperfine splitting. A sample
containing 4X10Y cm™ phosphorus atoms was plastically de-
formed and measured. Two strong lines of about equal amplitude
appeared with a separation of 42 oersteds [Fig. 1(e)]. This sup-
ports the interpretation that we are observing hyperfine splitting.
In addition to the two strong lines there was a slight suggestion
of a weak line midway between them, as shown in the figure. At
the present time we are not certain whether this is real or
not.

We have also examined p-type silicon with 10'7 boron atoms/cc,
both compressed and uncompressed. No lines were observed.



