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A method is developed for normalizing WEB-type approximations to wave functions for a simple potential
well type of problem. The procedure closely resembles Furry's method of finding the normalization for the
usual WEB approximations,

where
d'p(x)/dx'+ p'(x)p(x) =0,

p'(x) =W —V(x).

Here 8' is 2m times the total energy of a particle of
mass rrt moving in a potential V(x)j2stt. The function
U(x) will be limited to the general form shown in

Fig. 1, a potential well giving two turning points x1 and
x2 with x1&x~. The approximation is based on the
function p($) which satisfies a Schrodinger equation,

d'4 ($)ldS' —P'($)&($) =o

for some function
P'(S) =E—U($),

in which the parameter E is independent of S. The
function U($) will here be taken qualitatively similar
to V(x), a potential well giving two turning points si
and s2 with s1(s2. Moreover, it will be assumed that
the normalizing constants of the bound states p„($) are
known. The approximate wave function is

il=S 'p($)

I. INTRODUCTION

''N a recent paper' a %KB-type approximation for
&- the solutions of the one-dimensional Schrodinger
equation was described. The method was illustrated in
that paper by using, as an example, the problem of a
potential well with two classical turning points of the
motion. In addition, for this example, an approximate
method for normalizing the wave function was given.
In the present paper an alternate method for obtaining
the normalization is discussed. This treatment closely
resembles one given by Furry' for the normalization of
the usual WEB approximate wave functions in the case
of a potential well problem with two turning points.

The function P for which an approximation is found

by Miller and Good' satisfies the one-dimensional
Schrodinger equation, '

Also the equation

(7)

gives the functional relationship between 8' and E.
If E is the eigenvalue for the rtth bound state of U(S),
the corresponding W=W given by Eq. (7) is the
approximate eigenvalue for the rtth bound state of U(x).

II. NORMALIZATION

In this discussion f (x) corresponding to any W will
denote a solution of Eq. (1) which goes to zero as x
approaches minus infinity but which does not neces-
sarily go to zero as x approaches plus infinity. Likewise

Pe(x) is a solution which goes to zero as x approaches
plus infinity but not necessarily as x approaches minus
in6nity. Furthermore the relative amplitudes of these
two functions will be chosen so that when W is an
eigenvalue 8'„ for the eth bound state, the functions

and Pp are both the same function P„.This function
goes to zero as x approaches either plus or minus
infinity. Each of the functions ip and hatt satisfies
Eq. (1)

iP "(x)+(W—V)f (x) =0,
6"(x)+ (W—U)A(x) =o

Likewise, the complex conjugate of f„s atisfie s

iP„*"(x)+(W„V)P *(x)=0. —

Vts)

where S is given as a function of x by

~S
P (o)do=p (g)dg. .

'S. C. Miller, Jr. and R. H. Good, Jr., Phys. Rev; 91, 174
(1953).

W. H. Furry, Phys. Rev. 71, 360 (1947).' Units have been chosen so that k= 1.
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Upon multiplying Eq. (8) by ~P„*and Eq. (10) by ~~/, simplifies to
subtracting one equation from the other, and integrating
from —00 to a point a, one obtains /p„/'dh

&a

P *f,dr= —-', (W—W ) '

X (4-V-' —4 *7-) —, (11)

l (d—E/dW) C~-*~(d~-/'dS d~—/dS)/'~E

(d—q„/ds) a Q.* A—*)/aE+c c.
= (dE/dW) ip i'dS, (15)

since the term in parentheses on the right is zero at
x= —~. If Eq. (11) is added to its complex conjugate,
the result is

Q„*P +P„P *)de= ——,'(W —W ) '

XB„'Q.'—4.') —4„'Q.*—4„*)+c.c.] ., (12)

where terms have been added and subtracted on the
right and c.c. means complex conjugate. Similarly
using Eqs. (9) and (10), one obtains

~s2

A„'/A„"=, [P(a.)] 'do.
x2

[P(8)3 'dk (17)

where each of the expressions is evaluated at E=E„.
With the definitions of p' and P' in Eqs. (2) and (4),
differentiation of Eq. (7) leads to

fQ Ã2 82

dE/dW= ~' [P($)j 'd5 ) [P(~)7 'd~ (16)
S] ~1

If, then, 2„is the approximate normalizing constant of
1t „and A„' is the normalizing constant of p„, Eq. (15)
can be written as

This is the desired approximate expression giving the
normalizing constant A „.

For the particular P(5) used in reference 1 for which
U(5) =5'

~2

[P(o)] 'do = m-,
—

~1

(19)

g„=H„(5) exp (—5'/2),
In the limit as W approaches W„, a term such as,

where 8„is the eth Hermite polynomial. Also for this

sum of Eqs. (12) and (13) in this limit is

I 4- I,
'd&= -' [42-*~8 -' —6')/PW—

tt-'~(4-* A—*)/~W+c —c 3- (14)

3„"=(2" le!)—'.

Therefore the normalizing constant is given by

(20)

evaluted at 8'= 8'„.
A similar expression holds for the integral of ~p„('

over 5 in terms of P and Ps and their derivatives with

respect to 5 and E, evaluated at 5(a) and E„. The
functions P and Ps are to have the same properties for
large S as f and Ps have for large x.

An approximate expression for the integral in Eq. (14)
is obtained by substituting for P from Eq. (5) in the
right side of Eq. (14) and changing variables from x
to 5 and W to E. Since, from Eqs. (6) and (7), 5' is
here real and positive, this approximate expression

A„'=z: 2"e! (21)

For a representative case such as the potential V(x)
used in reference 1, the approximate normalizing con-
stant is correct to about three significant 6gures. This
method of normalization should give as accurate results
for high-energy levels as for low ones with no appreci-
able change in the labor of computation. A possible
defect in this method is that there appears to be no way
to estimate the error in the approximation. Also there
does not seem to be any way to generalize the method
to give matrix elements of general functions.


