
PH YSI CAL R EVI EW VOLU ME 94, NUMBER 5 JUNE 1, 1954

Magnetic Moment of K" in Intermediate Coupling
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The K'0 nucleus is of interest since its spin I=4 forms a notable exception to Nordheim's rule while the
observed value p= —l.29'~ for the magnetic moment seems to favor the j—j coupling. The theory of
intermediate coupling is applied to the configuration d 'f with the view of accounting for the spin and the
observed magnetic moment. It is found that a small spin-orbit interaction will lead to a negative magnetic
moment. A central nucleon-nucleon interaction of the form (mE'+eQ) 1/" (r12), where I' denotes the Majorana
and Q the Bartlett operator, is assumed and calculations have been carried out for the exponential, Yukawa
and Gaussian types of potential t/'(r») with various "ranges. "For a suitable choice of the spin-orbit inter-
action parameter p, the observed magnetic moment can be obtained, the exact value of g depending on the
type of potential and range used.

2. ENERGY LEVELS OF THE d 'f CONFIGURATION

It is reasonable, on the nuclear shell model, to take
the proton-neutron configuration of the incomplete
shell in the nucleus K4' to be d 'f, i.e., one d pa, rticle
missing from a closed shell and an f particle. The 140
states of this configuration can be grouped in the I., S
limit into the levels

@6,5, 4y G5, 4, 3) F4, 3, 2y +2, 1, 0p

'Hs, 'G4, 'F s, 'Ds, 'Pi. (1)

1. INTRODUCTION

HE spin I=4 of the ground state of the K4'

nucleus forms a notable exception to Nordheiln's
empirical rule and might indicate that pure j, j coup-
ling does not hold for that nucleus. On the other hand,
the negative magnetic moment p= —1.29p,~ observed'
for K" seems to favor the j, j coupling, since none of
the I, S states having the observed spin I=4, namely,
'II'4, 'G4, 'P4, and 'G4, gives rise to a negative magnetic
moment, whereas of the four configurations (ds/s) 'fs/s,
(d, /, ) 'f, /, , (—d,/, ) 'f7/, , and (d,/, ) f7/s in j, j coupling,
the last does give rise to a negative magnetic moment
p= —1.70p~.3 It was suggested by Feenberg' that a
possible explanation of the observed moment might
be found in an intermediate coupling. In the present
note, calculations of the energy levels and the magnetic
moment for intermediate coupling have been carried
out in the manner of a previous work of the authors. 4

the sign of the resulting matrix element. ' This will give
the correct matrix element up to an additive constant.
Consider, for example, a sta, te in the m~, m, representa-
tion in which the missing d particle from the closed
shell d", denoted by d' for the moment, has the quantum
numbers m~', m, '. The matrix elements of the particle-
particle interactions in the configuration d 'f, d"f are
related by

P-(d 'f) =&(d'f),
P-(d'f) =R(d"f) &(8'jd—') &(d'f), —

where E([d'),d') means the interaction energy between
the d' particle and the other nine d particles. This may
be written

&(d'f) =&(d"f) &(d")+&—(d') &(d'f). —

Since the first 3 terms on the right are independent of
the m&', m, ' of the missing d particle, we may write

E(d'f) = const —E(d'f), (2)

in so far as relative energies of the various states in (1)
are concerned.

A general nucleon-nucleon interaction of the form

Vis= (/isP+/sg) V(
~
ri —rs

~ )

has been assumed, where P and Q are the Majorana
and Bartlett operators, respectively, and V is a central
potential. As we are dealing only with central inter-
actions, the potential can be expanded in a series of
Legendre polynomials and the resulting interaction
expressed in terms of the Slater integrals defined by

G (ai&as) = Rat(ri)Ras(rs)f~(rirs)Rai(rs)Ras(ri)dr&drsJ~*National Research Laboratories Postdoctorate Fellow.
'L. W. Nordheim, Phys. Rev. 78, 294 (1950); A. de Shalit,

Phys. Rev. 91, 1479 (1953}.
s P. F. Klinkenberg, Revs. Modern Phys. 24, 63 (1952);Eisinger,

Bederson, and Feld, Phys. Rev. 86, '/3 (1952) give p= —1.30+&.
s E. Feenberg, Phys. Rev. 76, 1275 (1949);I. Talmi, Phys. Rev

83, 1248 (1951);H. M. Schwarz, Phys. Rev. 89, 1293 (1953).' G, E. Tauber and Ta-You Wu, Phys. Rev. 93, 295 (1954).

where
2&+1 t.

fi ~ V(~ r, —r, ~)P, (cosa&„)d cosa~„. (4)
2

5 E. U. Condon and G. H. Shortley, Theory of Atomic Spectre
(Cambridge University Press, Cambridge, 1951},second edition.

1307

The matrix elements of the particle-particle interaction
can be calculated with the aid of the theorem of trace pg( R s( )R s( )f ( )dinvariance for the case of a d and an f particle, if for " '

J J
the d particle one uses the m~ and m, value of the
"missing" particle in the complete shell and changes
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FIG. 1. Energy levels of K' as a function of spin-orbit pa-
rameter g for Yukawa potential, rp= 1.0&10 "cm. Scales in Mev.
Only the lowest levels are shown,

The energies of the various states in the I.—5 limit for
the d 'f con6guration are given in Table I. The acci-
dental degeneracy of some of these states (and vanishing
matrix elements) is due to the fact that on introduc-
ing the missing particle all triplet states (ming„
mt'm, '~Q~mim„srit'm, ') vanish on account of the spin
wave functions, and that the sum of (rising„
rig&'m, '~P~mtris„sos, 'nz, ') is the same for a given value
of jM and S'

To evaluate the integrals F; and G;, we shall assume
for the radial wave functions E. the harmonic oscillator
wave functions. The Slater integrals can be expressed
in terms of the Talmi integrals J~ for harmonic oscillator
wave functions, 7

Ii——g Pjt exp( —prs)rs&+sV(r)Pr,
0

(5)
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' See reference 5, Chapter 6, Table I.
7 I Talmi, Helv. .Phys. Acta 25, 185 (1952).

FIG. 2. Magnetic moment of K' as a function of spin-orbit
parameter f for exponential potential and various ranges. Mag-
netic moment in units of pg. The parameter g is in Mev. Dotted
parts of the graphs indicate results near L, 5 and j,j limits.

TABLE I. Energy states for d3f configuration in L—S limit.

State

3H
'H
3G
1G
3F
1F
'D
1D
BjP

ljP

—210G5—210G6
0
0—60G3—60G3
0
0—35GI—35G1

0—2Fp —20F2—6F4
0—2F,+30F,+44F4
0—2Fp+22F2 —132F4
0—2Fp —12F2+198F4
0—2F0—48F2—132F4

To carry out the calculation, we have confined our-
selves to the following types of potentials:4

(i) ExPonential V(r) = Vsse "i"P,

(ii) Yukawa U(r) = Vpre '"(rp/r),
(iii) Gaussian V(r) = Vpo exp( —r'/rps),

where Uo is the depth and ro the "range" of the po-
tential. These constants and m and e appearing in the
interaction can be estimated from the data of two free
nucleons. ' With these values the Talmi integrals I~ for
the various interactions and ranges can be calculated,
and finally the energies of the various states (Table I)
can be obtained by inserting the appropriate expres-
sions for the F's and G's.

In order to obtain the energy levels for any inter-
mediate coupling between the 1., 8 and j, j limits, the
secular equations must be solved. From (1) it is seen
that there are three equations of order 4 (I=4, 3 and 2),
two of order 3 (I=5 and 1) and two linear ones (I=6
and 0). The spin-orbit matrices for two nucleons are
known" and can be given in terms of two parameters

A more general method, but not as readily adaptable for
numerical calculations, has been given by E. H. Kronheimer,
Phys. Rcv. 90, 1003 (1953).

9 See reference 4, Table II."G. Racah, Physica 16, 651 (1950).

as follows:

160 G'=-99(Ip —Is)+9(Ii—I4)+38(Is—Is),
Gi ——G'/35,

160 G'= 21[11(Ip—Is) —19(It—I4)+2 (Is—Is)7)
Gs =G'/315,

160 G'= 363[(Ip—Is) —5 (Ii—I4)+10 (Is—Ip) 7,
Gs =G'/1524. 6,

160 F =33(Ip+Is)+21 (Ii+I4)+26(Is+Is), (6)

p —po

160 P = 15[11(Ip+Is) 5(Ii+I4) 6(Is+Is)7,
F, FP/105

160 P = 297[(Ip+Is) 3(Ii+I4)+2(Is+Is)7,
P4 F4/693——.

A general method for obtaining the coefFicients in (6)
in any problem of this kind is given in Appendix I.s



MAGNETI C MOMENT OF K''

t'r =I'd and ps= fr A. s in the shell-model of Mayer et al."
the spin-orbit interaction is to be assumed negative for
particles and positive for "holes, "one can write

(10) one obtains for the magnetic moment:

(ti)/ti~ = 1.47a'+ 1.4P'+ 1.63''+ 1.518'

+0 43.nb 8—41.Pb+0 64.5yh .(11)

where a is an arbitrary positive constant a&l. The
secular equations are particularly simple for a=1 and
already give a splitting of the correct order for the d
and f levels;" they are given in Appendix II. The
energy levels as functions of the spin-orbit parameter I'

for the various ranges and potentials considered can
then be obtained by inserting the corresponding values
of the I.—S energies and solving them numerically.
Figure 1 shows the energy levels for one range in the
Yukawa potential. It is seen that the lowest level has
the spin I=4 in agreement with observation. The levels
for the other types of interactions and ranges are similar.
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where m~i and m, i are the orbital and spin angular
momentum operators of the nucleons, respectively, and
g&' and g, ' are the gyromagnetic ratios of orbit and spin,
respectively, and are given by

gt =1 g)

g P=5.58 g
N= —382

in order to adapt (9) to a hole-particle configuration,
it is again su%cient to consider only the missing particle
instead of the nearly completed shell, provided the
eigenvalues of the operators m~P and m, P are replaced
by their negatives. The appropriate wave function is
found from the solution of the secular equation. For
I=4 it is a linear combination of the (zeroth-order)
wave functions corresponding to the states 'H4, 'G4,
'F4, and 'G4 and can be written as

f(4 4) =cvP('H )+PP('G )++('P )+g ('G ), (10)

where the coeKcients rr, P, y, I are obtained from the
appropriate solution of the secular equation for I=4,
and satisfy the requirement that n'+ p'+p'+62= 1.The
(zeroth-order) wave functions are obtained by properly
combining the states corresponding to the various values
of M ~ and 3f, into multiplets and are given in Appendix
III. The phases have been so chosen as to give the
known expressions for the spin-orbit matrices. "

Applying the operator ti in (9) to the wave function

"M. G. Mayer, Phys. Rev. 74, 235 (1948); 75, 1969 (1949);
78, 16 (1950). Haxel, Jensen, and Sness, Phys. Rev. 75, 1766
(1949).

'~ The case for a=2 has also been considered without changing
the final results materially.

3. MAGNETIC MOMENT OF K"

The magnetic moment is given by the expectation
value of the operator

(9)
i=P, N

FIG. 3. Magnetic moment of K" as a function of spin-orbit
parameter g for Yukawa potential and various ranges. For scale
and notation see Fig. 2.

The magnetic moment as a function of the spin-orbit
parameter f has been plotted for the various potentials
and ranges considered (Figs. 2—4). From these figures
it is seen that for large values of the spin-orbit param-
eter the j—j coupling value p= —1.70p, & is obtained
as an asymptotic limit, and also that a compara-
tively small amount of spin-orbit coupling is sufhcient
to give the (observed) negative magnetic moment
p= —1.29@,N. This is due to the appearance of cross
terms in Eq. (11) which do not appear in the I.—S
limiting case."

p, EXP.
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FIG. 4. Magnetic moment of K as a function of spin-orbit
parameter g for Gaussian potential and various ranges. For scale
and notation see Fig. 2.
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APPENDIX I. CALCULATION OF SLATER INTEGRALS
IN TERMS OF TALMI INTEGRALS

The Slater integrals occuring in calculations of L—S limit
matrix elements are given by Eq. (4) of the test, where for the
radial wave function we use harmonic oscillator wave functions

Ra&(r) =Nhr'~+~ exp( —rrvrs) ye=0

Ras(r) =Ntsr'a+' exp( ',—vr—')

The Legendre polynomials Pz can be expressed in terms of a
power series in coscol2 for which the coefficients are well known. "

Pq(coscals) = Z C, cosaa»~, a= ' (12)even for k even,
a=0,1

the upper limit m being m=k/2 or (k —1)/2 according as k is
even or odd.

If one now introduces two new integrals, A' and B, defined by

APPENDIX II. SECULAR EQUATIONS FOR d 'f
CONFIGURATION [FOR a=1 IN (8)j

E=3II——,'g

0
5, 3G 3p =0

61'/5

I=6,
'II—E

0
—-,'i.vr30

I=4,

I=3,

3H+3g/5 —E 0 0 l.vr88/vr75
0 'G —E 0 -Iv'5
0 0 'F—31/4 —E 1 vr125/vr48

fV'88/avr75 —lav~5 1 V'125/vr48 'G+31'/20 —E

'G+3f/4 E —0 0 151/vr112
0 'F E -0 -l./v3
0 0 'D I E —I'v—r24/v'7

15$/v'112 f/v—3 f/24/Q7 'F+I'/4 E—
Aa= ', NtPNt2'f-ff (r&r&)'&+'2~ exp[ v(r—&'+ra')g

XV(~ r& —rr~) cos ca~2d cosa»2dridrs,
(13)

Ea —&Nt sNt 2fffr 2Ly+2r 2t2+2 exp[ v(r 2+r 2)j
X V(

~
ty —

rs ~) cos (oy2d coscoysdrydr2,

Il and G can be expressed as sums involving the new integrals

I 2
7

3P+3p'2 —E 0 @2'
0 IP-E —|-/V2

—1/VZ &F+-31/2 E—=0,

3I'+g —E 0 iv'12/v'5
0 'D —E 0 -v'61/2
0 0 'F 31/2 E—V'18&/—v 5

1 V'12/V'5 —I'vs/2 1'V' 18/+5 'D+1 /2 E—

1n m

Fs=(2k+1) Z C Ba, G"=(2k+1) Z C Aa.
a=1a=0

(14)
E=3P+3g.

Here 'II stands for the energy in the L, 5 limit in Table I, etc.
Following Talm& one now introduces new coordinates defined by

r=rs r&, —2R=rq+rs, cos8=(r R)/rR

The R and 8 integration can be done immediately, and one finally
obtains for A and B the series

L L
A'= 2 E,b, I„B= 2 E.d, I„

s=0

where
A, =2 i (1+2s)!!(2p —1)!!/(1+21&L)!!(1+2l2)!!;

b, is the coefficient of y' in the sum
(L a)f2—

Z '
(—1)'x y'( x+)~y' s (x y)a;—

d, is the coefficient of y' in the sum

Ltl L2 L L 22P

(—1)'*'y'(x+y) ' "(*—y) 2o =a+r!0' v' 2p+1

I!!=e(e—2) (e—4) 2 or 1, according as rs is even or odd;
L=ll+l2, where ll and l2 are the angular momenta, LI ——ll —~a,
L2=l2 —~a) and p=L+1 —s.

On combining (4) and (5), F and G can be expressed in terms
of the Talmi integrals by tabulating the required coefficients,
which are obtainable by inspection without having to do any
integration. It should be noted that Ba=Aa (and hence J ~=a~)
if both angular momenta are the same, i.e., ll ——l2. The method
can also be extended to the case for which the radial quantum
number aQ 0.

"See, e.g., E. Jahn!M and F. Emde, Tables of Fgssctiorcs (Dover
Publications, New York, 1943).

APPENDIX III. WAVE FUNCTIONS FOR d 'f
CONFIGURATION

The 140 wave functions can be grouped together in states of
definite 3E~ and 31, enumerated in Eq. (1) in the text. The corre-
sponding wave functions are linear combinations of the above
and can be found either by direct diagonalization or using the
operators'5

Z~=L, +iLv, S~=S,+lSv, c}~=I,+sJv
The wave functions required in calculating the magnetic moment
are those for which I=3/1=4 and are given in the following:"

&('& ) = [v'6( —2,2 )+v'6( —2', 2')3
vr20

—2(—1,3 ) —2(—1+,3+)j—3V'5( —2+,3 )—

X[Vr10(—2,1+)—4(—1,2+)+2(0,3+)j V'55,

P('G4) = —[V2(—2,2 )+v3 (—1,3 )
—V2 (—2+,2+) —v3 (—1+,3+)g/vri0,

p(sF4) = —[V2(—2,1+)+V'5(—1,2+)+Vr5(0,3+)g/V12,

P('G4) =(2v2[%2(—2,2 )+42(—2+,2+)

+v3 (—1,3 )+vj (—1+,3+)j—[V'10(—2,1+)

+{—1,2+) —3(0,3+)g}/10.
"N. M. Gray and L. A. Wills, Phys. Rev. 38, 248 (1931).' The first figure in each parenthesis gives the m value of the

"missing" proton, with the + or —denoting the s component
of the spin equal to +-,' or —~2 respectively. The second figure
gives the corresponding information for the neutron.


