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The Angular Correlation of Three Nuclear Radiations
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An angular correlation formula for any three nuclear radiations is given, including the effects of other
intermediate radiations which are not observed, Emission from aligned nuclei is also covered. Application
to nuclear reactions is considered. In particular the correlation formula is given for p rays following inelastic
neutron scattering when continuum theory is applied to the compound nucleus state.

I. INTRODUCTION

HE triple angular correlation problem has been
treated for three successive p rays, ' and for two

p rays following P decay of aligned nuclei' or a deuteron-
stripping reaction. ' The purpose of this paper is to give
a general formula for the directional angular correlation
of any three radiations from an arbitrary cascade, with
intermediate radiations which are not observed. The
formalism includes the correlation of two radiations
from aligned nuclei, and nuclear reactions with aligned
targets. For any particular set of transitions we merely
insert the appropriate radiation parameters which have
been fully tabulated elsewhere. ' ' Previously published
results are then included as special cases.

Not all three radiations need be emitted. Absorption
from a beam is equivalent for the purpose of defining a
direction. Hence the application to a nuclear reaction
followed by several emission s [such as (P,pp) or
(n,rt'ot)], provided there is no interference between
compound nucleus states of diGerent spin.

Mixtures of radiation multipoles or orbital angular
momenta are considered but not polarization detection.
The latter would increase the complexity of the results
prohibitively.

All dependence on unobserved radiations is thrown
into the (normalized) Racah functions

A, (JpJr) =Pil: B(L)B*(L')g,(LL'JpA),
—

( ) p—zr—l[(2I,+1)(2I+1)(2L +1)j-*,

XC (LL'tt, ;
—',——,')W (J,J,LL'; ttJp),

(2)

where r)„has been tabulated, ' and the B(L) are reduced
matrix elements so that the fraction of intensity with
L is ~B(L) ~'. B(L) is real if Coulomb effects are
neglected; these will introduce a phase factor e'",
where I is the corresponding orbital momentum. If the
only L's involved are those for a single /, i.e., L=/~ —,',
this phase factor drops out.

For p rays, in the notation of tabulated parameters, '

one for each transition. If any of these radiations is
"mixed" (two or more I. values) we have to sum over
L with appropriate amplitudes, but the sum is inco-
herent and interference terms do not appear. The eatlre
of unobserved radiations is irrelevant.

The A„, ), have been tabulated for all forms of radi-
ation of interest. For example, for spin--,'particles,

II. CORRELATION FORMULAS A„(JpJ,)=+I.z, C(Lt)C(L')X„(LL'JpJr), (3)

)„=F„(LJpJ,) if L'=L,
= (—)~p ~' '[(2Jr+1)(2Ljl)(2L+3)j**

XG„(LJpJt) if L'=L+1.

Consider the decay scheme Jp(Lp) J&(L&) . J,(L„)
XJ„~t.. J.(L.)J,+r, where the J are nuclear spins and
the L are the total angular momenta carried away or
absorbed at each transition. Using standard techniques'
we find the angular correlation between radiations Lo,
L„, and L„ taking the direction of Lo as polar axis:

Again the fraction of intensity with L is [C(L)js, with
C(L') real.

For conversion electrons, P and n rays, we obtain A„
by multiplying the value for 2z-pole p rays, Eq. (3),
by the appropriate tabulated' ' ' correction factors
f o(L).

If the nucleus is initially aligned and of spin J&, the
density matrix describing its orientation may always
be expressed as a series of statistical tensors, r B„(J&).
In this case we omit the Lo transition and replace its

lf (t7AA)=Z .~A, (JpJt)Ax(J, +tJ,)&„~(J,J, t)
XS„„x(t)„|),d )U„(L,J,Js) U„(LsJsJp)
X U„(L„ tJ„,J„)Ug (L„+tJ„+.tJ„+s)

XUg(L, tJ, ,J,), (1)

where P is the difference in azimuth of the directions of
L„and L,. The A„depend only on the details of the
first transition, the A~ only on the final transition, and
the coupling term E„„zdepends only on the intermediate
radiation L„.

'L. C. Biedenharn and M. E. Rose, Revs. Modern Phys. 25,
729 (1953).' J. A. M. Cox and H. A. Tolhoek, Physica 18, 359 (1952).' G. R. Satchler, Proc. Phys. Soc. (London) A66, 1081 (1953).

j.3

4L. C. Biedenharn, Oak Ridge National Laboratory Report
1098 (unpublished).

P Rose, Biedenharn, and Arfken, Phys. Rev. 85, 5 (1952).
M. E. Rose and L. C. Biedenharn, Oak Ridge National

Laboratory Report No. 1324 (unpublished).' U. Fane, Natl. Bur. Standards Rept. No. 1214 (1951) (un-
published). Our B„(J)is his i I (JJ)a0).
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parameter A„(JpJi) by B„(Ji).(If aligned in sense as
well as direction, odd values of p may now appear. )

B„(J)=+sr(—)~ ~(2J+1)'*C(JJ1i;M —M)Wpr,

where 8'~ is the relative population of the M magnetic
substate' (for example, a Boltzmann factor aeA'~).

Then Bp= 1 if Ppr WM ——1.
The coupling term R„„&is given by

E„,i(J.Jb)
=pl, i, r, (LL')L(2J,+1)(2Jb+1) (2L+1)(2L'+1)]'

XX(J J p; LL'v; JbJb)), (4)

r„(LL')=C(L)C(L') ( )~' 'C(L—L'v; 1—1)
for p rays, (4a)

or

r„(LL')=P'ii S(Ll)S*(L'.1')C(ll'v; 00) (i)' '

X (—) 'P(2l+1) (21'+ 1)j 'W(LL'll'; vs)

=Z'ii S(Li)S*(L'f') (—)' '(—) ""
XZ(/'L'lL; sv), (4b)

for particles of spin s and orbital momentum 1. The Z
functions are tabulated in reference 4. The primed sum
over /, l' indicates we take only even or only odd values,
according to the parity change. Again the S(Ll) are
reduced matrix elements, real except for any Coulomb
phase factor e'". For s= st (neutron or proton emission),
(4b) reduces to

r„=B(L)B*(L')(—)
~'—&C (LL'v; —',——,'). (4c)

E„,z for pure dipole p rays, and the Wigner coefficients
C(LL'v; —,

' —-', ), have been tabulated in reference 3, and
the Pano recoupling symbol X'' de6ned. As before,
if the L„radiation consists of conversion electrons, n or
p rays, we multiply the r„ for 2z"-pole p rays by the
appropriate b„(L,).'

The angular factor is explicitly

S„„b——4irp C(v)tp; m m) Y,"(—8„)0Y. (0.&), (5)

where the V„are Condon and Shortley spherical
harmonics.

R„„zS„„zassume very simple forms when all (yves) &~2
and the radiations are unmixed. These are given in
reference 3 for p rays; for spin--,' particles we just
replace the F„occurring there by the corresponding g„.

Integration over the direction of any one of the three
radiations immediately reduces Eq. (1) to the general
double correlation formula (Appendix IV of reference
3).

The angular complexity of the correlation is restricted

by the largest values of p, v, and X. These are limited

by the usual requirements for the nonvanishing of
Racah functions. ' They are always even (except for
nuclear alignment, when p may be odd) and have to

s N. R. Steenberg, Proc. Phys. Soc. (London) A66, 399 (1953).
' H. A. Jahn and J. Hope, Phys. Rev. 93, 318 (1954). Therei

X is called the "Wigner 9j symbol. "

satisfy triangular inequalities in the following triads:
(ave), (pLpLp ), (iiJ iJi) ) (vL„L„'), (XL,L,') ) ()~J,J,).
In addition, the unobserved radiations do not limit the
complexity, but the intervening nuclear spins still act
as "gates" for angular information, so that

To avoid possible confusion we should point out that if
two unobserved radiations (e.g. , Li and Ls) are replaced
by a crossover transition in a competing cascade, one
of the nuclear spins (Js) is then omitted and does not
restrict the angular complexity. The observed corre-
lation, of course, is then an incoherent superposition of
the two competing cascades.

Also, it has recently been shown" that a cascade of
"basic" transitions between nuclear states whose spins
form a monotonic sequence gives angular correlations
which are independent of the nuclear spins and the
number of intervening unobserved radiations. That is
to say, if Ji= Js+Li) Js= Jp+Ls ol Ji Js Li)
J2= J3—L2 for the unobserved part of our cascade,
the angular correlation is the same as if these transitions
were replaced by a single crossover with Ji J„+Lor-—
Ji——J„—L, respectively, where L=L,+Ls +L„ i.
In this case, the two competing cascades mentioned
above give the same correlation.

If the three observed transitions also form part of
the monotonic sequence (Jp ——Ji+Lp, etc.) reference 10
is easily extended to show that the triple correlation is
now independent of nuclear spins and unobserved
radiations; it depends only on Lo, L„, and L,. In fact,
any multiple correlation from such a sequence depends
only on the nature of the observed radiations.

Practical interest centers on the correlation when only
one angular momentum is concerned in each transition
(e.g. , pure multipole y rays). The correlation function

(1) then simpli6es and gives unambiguous results which

depend only on angular momenta. All dependence on
unknown matrix elements B(L), C(L), etc., disappears.

III. NUCLEAR REACTIONS

Blatt and Biedenharn" have given expressions for
the angular distribution of nuclear reaction products
("double correlation" ). It is clear from the complexity
of their results that little is to be gained by generalizing
to reactions followed by cascades of radiation. However,
our formulas are easily applied when there are no

"J.Weneser and D. R. Hamilton, Phys. Rev. 92, 321 (1953).
While the conclusions they draw are correct, the formulas contain
a misprint; jf should be j everywhere except in the last column
of their paper. Their jf is defined byj =L„+jfand is not the same
as j„.The products of Racah functions representing unobserved
radiations reduce (in their notation) to W(jij&j &j &, vL),
where L=L1+L2. ~ +L„&,. i.e., a]l unobserved radiations may
be replaced by a single unobserved crossover with angular mo-
mentum L without observable eRects."J.M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 25,
258 (1953).
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interference terms between compound nucleus states of
diAerent spin and parity. This occurs

(i) at resonance when the reaction proceeds through
a compound state of definite spin J& and parity. The
correlation formula (1) is used as it stands, the Ls
transition representing the capture process. Values of
the matrix elements B(L) for neutrons or protons when
the initial and compound nuclear states obey j-j or
L-S coupling rules have been given in reference 3.

(ii) if we apply continuum theory"" the interference
terms disappear on taking a statistical average, and the
outgoing partial waves are incoherent. We may then
replace the matrix elements by "transmission coefh-
cients"" for the incoming and outgoing particles at
energy E:

For spin- —, particles each L implies a definite orbital
=L+~s or /=L '„but not—b—oth by parity consider-
ations. Then the matrix elements B(L)—=B(L/) are a
special case of S(L/), and we put

B(L)B*(L')~8(//') Ti(E).

The sums over L now reduce to two values L=l&-,'.
The Anal angular correlation is then an incoherent sum
of functions like (1) for different Ji, parity, /s and /i.
All unknown matrix elements have disappeared; as-
suming a definite nuclear model (the statistical model)
we have been able to replace them by calculable
transmission coeKcients.

An example of interest is the (ss',7) correlation
following inelastic scattering of neutrons. Making the
above assumptions, we And for emission of a 2~-pole

7 ray:

W(8,8,$)=P Tip(Ep)Ti, (E,)(2Ji+1)
XQ r/„(LoLo'Jo Ji)&x(LJsJs)

XE,.~(JsJi)5',.~, (8i8se), (6)

summed over /p, /t&, J~, p, v, and X, and Lp Lp =lp~2,
where now

R„vi,=P (—)z" &$(2Jr+1) (2Js+1) (2Li+1)(2Li'+1)g'
XC(LiLi'v, s

—s)X(JiJris i LiLi'v) JsJs)~))
~ J. M. Blatt and V. W. Weisskopf, Theoretical Nuclear Physics

Qohn Wiley and Sons, Inc. , New York, 1952), Chapter VIII.
"O. Hittmair, Phys. Rev. 87, 375 (1952). The transmission

coeKcient for the outgoing neutrons, T4(Er), and a factor
W(jess jsss, e2v), appear to have been omitted.

summed over L~, L~'=l~&-,', where Ep, E~ are the
energies of the incident and scattered neutrons, respec-
tively. Expressions for Ti(E) are given in Blatt and
Weisskopf. "

Equation (6) simplifies if the target nucleus is even-
even, so that Jo= 0, (+), and J i=Io. For fairly low
Eo (say about 2 Mev and below) we need only consider
s, p, and d waves. If the first state Js——2, (+), is
excited, followed by E2 emission (L=2), the rs' —y
correlation (6) becomes

W (8i 82$) —To (Ep) T2 (E1)L2+ 1 .42 1P2 (co sv)
—0.571P4(cosy)1+Ti(Eo)Ti(Ei) j5+Ps(cos8s)
—1.200Ps (cos8i) +0.500Ps (cosy)
—0.004LCOS2$Ps'(cos8i) Ps'(cos8s)
—2 cos&Ps'(cos8i) P,'(cos8s) —12Ps(cos8i) Ps (cos8s)j—0.020LCOS2$P, '(cos8i) P4'(cos8s)
+12 COSPPs'(cos8i)P4'(cos8s)

+72Ps(cos8i)P4(cos8s) j)+Ts(Ep) TQ(Er)

XL2+2.713Ps (cos8s) —1.716P4 (cos8s)j.
The P„are (un-normalized) associated Legendre poly-
nomials, "E~'= sine, etc.

Since the compound state is formed isotropically by
5 waves, the first bracket depends only on the angle 7
between the scattered neutron and the p ray:

COSQ —COS8i COS8s+Sin8i Sin8s COSP.

The constant terms and terms in 02 alone are together
the same as the angular distribution of the p rays alone,
when the scattered neutrons are not observed, as may
be seen by integrating over 0&, the neutron angle.
Proton scattering would only mean different T&'s to
account for the Coulomb barrier.

Finally we note that reactions involving aligned
nuclei may also be considered, provided again we have
no interference between diGerent compound nucleus
spins. If we replace the Lp transition by alignment
according to the prescription given above, and take the
L„radiation to be captured, not emitted, we have
immediately the angular distribution of the reaction
products when an unpolarized beam is fired at a target
of aligned nuclei.

The author wishes to thank Dr. J. A. Spiers for
advice on this problem.

"E.Jahnke and F. Emde, Tables of Fismcreoms (Dover Publi-
cations, New York, 1945).


