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These symmetry relations show the equivalence in
the positions occupied by the elements r, a, d, and s,
and of the positions occupied by the elements p, e, b,
tz, q, g, c, and f T.hese two sets of positions differ from
each other and this is shown by the different way in
which the 12j symbol degenerates with one element
zero in either type of position:
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The general expression for the slow-neutron cross section of a molecule is cast in a form which allows arl

explicit formulation of the assumption, that the duration of the collision is short compared to the natural
periods of the molecule. It is shown that the assumption allows one to extend Placzek's results to molecules
containing light nuclei, with only minor modifications. The limits of validity of the assumption are discussed,
and the possibilities of exceptions are studied in detail on some examples.

l. INTRODUCTION
' gLACZEK has recently' achieved considerable

progress in the problem of evaluating the slow-
neutron cross section of systems of nuclei, such as
molecules or crystals. His results, however, are obtained
under the assumption that the nuclei involved are
heavy compared to the neutron. The following calcu-
lations are an attempt to remove this limitation.

It will appear that a rather diferent method is
required for this purpose. In a broader sense, therefore,
the present calculations may be overed as a contribution
to the general technique for handling the scattering of
a particle by a weakly bound system, when particles of
comparable mass are involved. ' The slow-neutron case
here selected for study possesses, of course, some simpli-
fying features (such as the constancy of the scattering
length of each individual nucleus) the absence of which
in other cases of interest may well restrict considerably
the possibilities of the method here described.

In the following, the scattering system of nuclei will
be referred to as a "molecule, " although more complex
systems may be implied. The reader is referred to
Placzek's paper for all preliminaries; we shall borrow
formulas and symbols from that paper without further
explanation. We shall save some writing, however, by

*Work partially supported by the Office of Ordnance Research.
' G. Placzek, Phys. Rev. 86, 377 (1952). This paper will be

referred to with the abbreviation P, for example, in quoting
formulas, thus: Eq. P(5.16}.

We have in mind, in particular, the high energy problems
mentioned in reference 5.

using units such that tvt = 1, and rrt (mass of the neutron)
=1. This removes the need of a special symbol p for
the ratio 3f/rrt of nuclear mass to neutron mass.

The slow-neutron cross section a. of a molecule is in
general a complicated function of the energy Eo of the
neutrons; in particular the slope of this function changes
abruptly whenever Eo attains the threshold for the
excitation of a new level of the molecule. The results of
Placzek indicate, however, that when Iio becomes large
compared to the level spacing 6 of the scattering
system, those changes in slope become negligible, so
that 0 becomes a smooth function of Eo which can be
represented by means of simple asymptotic formulas. '
For example in the case of a single nucleus, (Ezr)evan
be given as an expansion in falling powers of Eo,
Eq. P(5.16).

In his argument, however, Placzek makes use of the
fact that for a molecule composed of heavy nuclei the
energy transfer is in general small (of the order M ')
compared to the initial kinetic energy of the neutron.
It is clear that this circumstance has a decisive role in
preventing the excitation of any high level of the
molecule from being felt in the total cross section until
Eo is well above the threshold for that particular level ~

Clearly this is a sufficient reason why no noticeable
discontinuities in slope should occur. Placzek's calcu-
lations on heavy nuclei, therefore, offer no guarantee
that a simple extension of his formulas to light nuclei
is possible. This circumstance is strikingly illustrated

' See also A. M. L. Messiah, Phys. Rev. 84, 204 (1951).
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by the behavior of the cross section of a harmonically
bound nucleus"; this case, becauseof its peculiar interest,
will be again discussed in Sec. 4 of this paper.

In order to investigate the case of light nuclei it is
necessary to perform the summation over the- excited
state b of the molecule, without first resorting to an
expansion in powers of the fractional energy transfer,
Eqs. P(2.10), P(3—4), P(3.5). This may be done by
means of a "symbolic method, '" leading to Eq. (3)
below. Our problem is to find a suitable expansion of
this expression.

ai &= (2irko)
—'pi, di~ dt~F,.~'

)&exp(it(-', ii' —x ko+Ei, —E.)). (1)

By means of the Hamiltonian operator P(7.1) we can
write

e itE~F (F—g itH)

&itEb (F )0 (Fo&itir)

(2a)

(2b)

F*being the Hermitean conjugate of I'. The summation
over b is now simply a matrix multiplication, so that

+00

a& = (2irko) ) di~ dhG, .exp[it(xiii —r. ko) j, (3)

where 6, is the expectation value in the state "a" of
the operator

G —Fk~iiHFe i tH pic (0)F—
($) F ([)—ei tHF~ iiH (4)—

These expressions are deceptively simple, since they
are exact, and hence contain implicitly all the possible
intricacies of the problem. We shall reduce them to a

4 G. Placzek, Nuovo cimento (to be published). A brief quali-
tative statement of Placzek's result may be found in A. M. I,.
Messiah, J. phys. et radium 12, 670 (1951).

SA. Akhiezer and I. Pomeranchuk, J. Phys. (U.S.S.R.) 11,
167 (1947).My attention to this method was drawn in the course
of conversations with Dr. Placzek and Dr. Chew. In particular I
am indebted to Dr. Chew for showing me some unpublished
calculations of his on the cross section of light nuclei for very
energetic neutrons, following lines very similar to those in Sec. 3
of this paper.

2. BASIC FORMULAS AND ASSUMPTIONS

The total neutron cross section of the molecule in the
state u is given by P(1.1) based on Fermi's modified
Born approximation. Notice that the summation over
state b is unrestricted. An essential role in this expres-
sion is played by the operator Ii, which according to
P(1.2) is a linear combination, with coefficients a, , of
exponential operators corresponding to the transfer of
a momentum w to the sth nucleus. Instead of F ~ for
the matrix element P(1.4) we use the slightly more
conventional, notation Ii ~,. Using the Fourier represen-
tation of the 8 function we write P(1.1) in the form

more truly simple form, by means of an approximation
valid for large values of the neutron momentum ko.

Such an approximation suggests itself naturally, if
one examines the expressions (3) and (4) more carefully.
The expectation value G, can be recognized as a
correlation function between momentum transfers &

(operator F) and —x (operator F*) applied t seconds
apart from one another. At first sight it may seem
surprising that such a time lag between two momentum
transfers should play any role at all in a first-order Born
calculation, which essentially expresses the idea that
the collision is effected in a single elementary interac-
tion. In fact the presence of two transfer operators in
the formulas appears to be merely the trivial result of
the circumstance that the amplitudes of the partial
scattered waves have to be squared to yield cross
sections. A different viewpoint will be taken, however,
after due consideration of the so-called optical theorem,
according to which the total cross section is also related
linearly to the imaginary part of the forward elastic
scattered wave.

For obvious reasons, when proceeding in this manner,
the lowest-order cross section in the Born method is
obtained from the second Born approximation to the
elastic amplitude. Now this has a bearing on our
question in two respects. First, if 0-' & is calculated in
this way, one gets, we think, a better insight into the
reason for the possibility of the transformation from
(1) to (3).Secondly, the formula now appears connected
with the following physical picture. The total cross
section is a measure of the attenuation of the neutron's
DeBroglie wave in crossing a space filled with molecules.
The optical theorem merely expresses the fact that the
attenuation is due to destructive interference of the
incident wave with the secondary coherent waves
emitted in the forward direction by each molecule. The
second-order process leading to forward elastic scat-
tering is the successive transfer to the molecule of two
equal and opposite momenta, the two elementary
interactions being now physically related parts of a
single process; it is thus not surprising that the time
interval between the two should appear explicitly in
the formulas.

In the second Born approximation the two interac-
tions mark the beginning and the end of the collision,
and t may thus be properly viewed as the "collision
time. " The explicit appearance of this time in the
formalism is perhaps the main advantage of Eq. (3).
For it suggests at once an approximation based on the
plausible physical idea that, for sufficiently large values
of ko, the duration of the collision must be short, and
on the resultant assumption that large values of. f do
not give a significant contribution to the integral over
3 in Eq. (3). This specific assumption will be called for
brevity the "short collision time approximation. "

It is fitting to admit at this point, that having in
Eq. (3) a complete mathematical statement of the
problem, we should now supply, instead of a physical
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plausibility argument, a formal proof that (3) has
indeed the property postulated above. This, however,
we are unable to do in a general manner. In fact we
shall even find an interesting exception to the assump-
tion, in the case of a harmonically and isotropically
bound nucleus of mass M= i.

Nevertheless we believe that, apart from this rather
unique exception, the assumption is fundamentally
correct; the remaining part of this section will be
devoted to a summary of all the arguments, besides
physical plausibility, which can be brought forward in
support of the assumption.

In Sec. 3 we shall examine the dependence on t of the
integrand of (3) by means of an expansion valid from
t=0 up to values large compared to Eo ' but small
compared to the natural periods of the molecule

( 6 ' in Placzek's notation). Unfortunately this
analysis tells us nothing about still larger values of $.

Within the region examined, however, the short collision
time assumption is fully con6rmed. Indeed the integral
over t converges rapidly as soon as t))EO '.

The assumption receives further support from a
study (Sec. 4) of the special case of a harmonically
bound nucleus, which, because of its simplicity, lends
itself to a detailed and rigorous treatment. Here an
explicit analytical expression can be given for the
integrand of (3), and the integration over st can be
carried out exactly. The remaining integration over t is
then indeed found to possess the property postulated
above, provided M/1.

For an isotropic harmonic oscillator of mass %=1

the short collision time approximation breaks down, in
the sense that, in addition to a small neighborhood of
t=o (which contributes the main term, i.e., the free
e-p cross section, plus the "normal" terms in E,—',
Eo ', etc.), also small intervals around t=&T, +2T,

(T being the oscillator's natural period) give
significant contributions. This is just the kind of thing
that the analysis of Sec. 3 could never reveal. Its
significance for the general case thus requires careful
consideration.

In addition it is noteworthy that the breakdown of
the approximation for M=1 is directly connected (see
Sec. 4) with the anomalous oscillatory behavior of the
cross section, as a function of the energy, discovered by
Placzek. This is indeed not very surprising; it is a
well-known fact, often discussed, for example, in the
theory of resonance cross sections, that rapid variations
of a cross section, over a small interval AE, are associ-
ated with phenomena involving long collision times,
namely t~AE ' as required by complementarity.

We may legitimately ask what the nature of the
process is, which leads to long collision times in the
present case. It turns out that a quite simple and
convincing answer is possible in terms of the ding-dong
picture of formula (3) developed above in connection
with the optical theorem. It is clear in fact that the
collision time can be long if, and only if, the neutron is

left with almost zero velocity after the 6rst momentum
transfer. This is precisely possible if M=1, in a head-
on collision (notice that the nucleus is assumed to be
in the ground state before the collision; therefore it
has only a small initial velocity). After the first collision'
the nucleus swings with a large amplitude; the second
collision can occur either immediately, or after 1, 2, 3
periods, when the nucleus passes again near the initial
position (where it left the neutron at rest) and with
the right direction of motion to kick the neutron again
in the forward direction.

This picture also explains in a very simple manner
various other features of the problem. For example it
clearly shows why already for 3f=2 the importance of
the longer collision times is rapidly damped with
increasing energy (Sec. 4). Going back to &=1, it
shows why the Placzek oscillation phenomenon is
strongly reduced (it appears only in terms of higher
order than Es ') if the oscillator is anisotropic (Ap-
pendix 2). In fact in this case the nucleus, after being
kicked, will perform a Lissajous motion which does not
bring it back to the origin until a condition t=e~T&
=e2T~=m3T3 is satisfied, where T~, T2, T3 are the three
diGerent periods, and e&e2e3 are three integers. Clearly
this makes a delayed second collision much less prob-
able.

These intuitive considerations can now be extended
to other cases, in order to show that the exception of
the isotropic harmonic oscillator is rather unique.
Consider for example an isotropic but slightly anhar-
monic oscillator. Even starting from the more conven-
tional formula (1) it is possible to argue that the cross
section at high energies will oscillate far less than in
the exactly harmonic case. In the latter case, in fact,
the large oscillation is obviously tied to the high
degeneracy of the levels. If the oscillator is anharmonic
this degeneracy is removed (only the 2l+1 degeneracy
due to angular momentum conservation is left) with
the result that the levels are much more closely spaced. '
Hence also the kink. s in the cross section diagram which
occur at each possible excitation energy will be more
closely spaced with the result that the curve is much
closer to a smooth function. Now reverting to our time-

6The first collision is represented by the first operator from
the right, i.e., F, the second by F . For the sake of simplicity we
are assuming in the text that the integral is over negative values
of t only. This would give, apart from a factor i, the full forward
scattered wave, instead of the imaginary part thereof.

~ One can, of course, point out that not all levels can be easily
excited in a collision. If the ground state is spread over a region
of dimensions ~(Mo) & and a momentum x is transferred to the
nucleus, only angular momenta up to l, ,~~(Mcu) & can be
excited. On the other hand, treating the oscillator as nearly
harmonic, the state of energy ~'/2M=neo contains angular
momenta up to l x e. Hence, l, ,~lm, x& apart from a numerical
coeKcient j.. This means then, that while a level neo of the
harmonic oscillator splits into m+1 separate levels when the
accidental degeneracy is removed by a small anharmonic term,
only about m& of these appear as kinks in the o(E0) function.
While this is a considerable reduction, it still means that the
amplitude of the oscillation decreases like Eo, i.e., faster than
the Doppler term.
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dependent formalism, we have explained that the
oscillations of the function are connected to the "long"
collision times. Hence these must be relatively unim-
portant; our basic assumption must be essentially
correct. In the double collision picture this can also be
explained as follows. The di6erence between the har-
monic and anharmonic case is that in the former case
a wave packet always performs a strictly periodic
motion; in the latter the wave packet undergoes the
well-known diffusion phenomenon. Hence the proba-
bility that the nucleus hits again the neutron when it
passes again near the initial position after one full
oscillation is much reduced.

All of these arguments are admittedly only quali-
tative, but the gist of the matter seems to be that
significant contributions from longer times (giving rise
to "anomalous" asymptotic behaviors) may arise only
for 3f= 1. Furthermore, in the latter case, only for the
isotropic harmonic oscillator does one find anomalies
of the same order in 1/Eo as the Doppler term. In all
other cases they are of a higher order. In the case of a
molecule containing only heavy nuclei, moreover, we
shall see that the approximation is exactly equivalent
to the well-justi6ed procedure of Placzek.

We now turn to the formal development of the
preceding ideas, and in so doing we shall first examine
(Secs. 3, 4) the "diagonal" terms in the cross section,
i.e., the terms proportional to aP (see P, Sec. 7, Eq.
P(7.13), etc.), postponing to Sec. 5 the discussion of
the "nondiagonal" or "interference" terms, propor-
tional to u, ' a, with s / s. This separation is desirable
not only for systematic reasons, but also and even
more because the discussion is rather diferent in the
two cases.

3. SINGLE NUCLEUS

For the sake of simplicity, we shall develop the
treatment of a diagonal term for the example of a single
nucleus bound by a fixed potential V(r). The formula
obtained is quite easily extended to the general case of
a diagonal term, as is shown by the discussion in P;
this point will be further elucidated at the end of this
section.

Going back to Eqs. (3) and (4), and dropping the
now useless index s and the summation sign from the
definition P(1.2) of the operator P, we shall ask for
an expansion of the integrand, which exhibits the
existence of an eBective collision time, much shorter
than the natural periods of the "molecule. "

To this end we must identify within the integrand
the strongly time-dependent factor or factors that are
responsible for the shortness of the collision.

An obvious factor of this kind is the exponential of
Eq. (3) which oscillates with a frequency given by

d E hp x ='x' —'k-p' ='-(ho —x-)'— (5)

which is of course the energy lost by the neutron if it
transfers a momentum x to the nucleus. At this stage,

however, AE is not the energy transfer which actually
occurs, but an indeterminate quantity depending on
the integration variable x. Similarly at this stage hE is
not yet equal to the energy gained by the molecule,
AE'=8&—E„ the ultimate equality between the two
being imposed upon them by the integration over t.

The justification for regarding the exponential factor
as strongly time dependent is provided by the estimates

4, 6& &0=~&0', valid in the region of x space
which electively contributes to the integral. A simple
example to show that this strongly oscillating factor,
after integration over x, can indeed give a time de-
pendence implying a Gnite and short collision time is
provided by the case of infinitely tight binding; it is
then easy to see that G,=constant. Integration over z
then leaves an expression proportional to

which is indeed convergent at infinity and clearly
indicates a collision time of the order of Eo ' (for the
seeming divergence at t =0 see Sec. 4).

There are now cases in which 6 „ though not a
constant, is a slow function of time and may be ex-
panded in powers of t. The first term is then of the
above type and gives the "bound" cross section %ra'. '
Furthermore, the successive terms reproduce the whole
expansion in P exactly. " It is indeed quite obvious
that the translation into our language of Placzek's
assumption, that the energy transfer is «Eo, is the
statement that the correlation function G, is weakly
time dependent.

In the case of light nuclei, of course, the assumption
fails, i.e., the exponential in (3) is not the only rapidly
variable term. In particular the elementary example of
a free nucleus at rest, for which one has, apart from a
proportionality factor u',

G.. exp (i t~'/2M), (6)

clearly indicates that the two factors in (3), namely
the exponential and G, are on very much the same
footing. In the case of a bound nucleus, the analogy is
slightly obscured, simply because of the different be-
havior of the two energy transfers hE and AE', while

8 In this consideration it is essential that, since a time depend-
ence is under discussion, the integration over E has not been
carried out. It is just for that reason that (contrary to a fairly
common but slipshod formulation of the complementarity rela-
tionship for collisions) we cannot identify in general the AE that
determines the time dependence (and hence the collision time
according to the usual relation t~AE ') with the actual energy
transfer in the collision, or an average thereof. Clearly there is,
for example, no reason why the collision time should become
infinite when M~~ I

9 More generally, for a molecule, the first term of the expansion
of G„ in powers of t gives Placzek's "static approximation, " as
one can see immediately.

'0 Again this is not hard to see, since an expansion of (4) in
powers of t is simultaneously an expansion in powers of the
molecular excitation energies Ef,—E, which is the essence of
Placzek's expansion.
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the former is a unique function (5) of the momentum
transfer x, the latter is not so, in general, so that G
is a weighted sum of exponentials e"~~' with all allowed
values of AE'.

For a fast incident neutron, however, that is, there-
fore, for large momentum transfers, we know on physical
grounds, and from various examples, that the weights
are strongly in favor of values in the neighborhood of

DE'= K2/2M,

i.e., the transfer to a free nucleus which appears in (6).
Thus a natural extension of our previous assumption

suggests itself, namely, that G„ is the product of the
exponential in (6) times a slowly variable factor,
which can be expanded in powers of t. It is also not
dificult to make a rough guess about this latter factor.
As we pointed out before, G, Eq. (4), is the product of
two operators representing, respectively, momentum
transfers x and —x to the nucleus but at diferent
times, t seconds apart. The first and most obvious
effect of this time lag is the appearance of a phase factor
such as (6) due to the temporary increase in energy
(7) produced by the first "kick." Another obvious
effect, however, is that, owing to the 6rst kick, the
wave packet representing the nucleus will be set in
motion and travel a distance =Kt/M in the time interval
between the kicks. Since after the application of the
second kick (which restores the average velocity of the
wave packet approximately to its original zero value)
we must take the scalar product of the resultant wave
function with the original state, we see that the dis-
placement suffered by the wave packet in the time t
will decrease the overlap integral by a factor roughly
of the type

we see that (4) becomes

G a2ettH'e itH——g2 exp(ritK2/M)eit(H+L&e itH— (11)

where our purpose is attained. Equation (3) becomes

0 "/42r= (82r2kt&) '~~d24 "g„(24,t) exp[ittr(24)]dt, (12)

where

n(24) =-,'K'(1+M ') —24 kt&

= —', (1+M—') ( (k„—24)
2—k„2} (13)

k, = kt&M/(M+1),

g(24 t) —a2ett(H+L&e itH— (14)

g(~, t) = Q (it) "g.(~)/n!,
n=o

(15)

where the coefficients are easily found" by means of
the recursion formula and initial values:

g„+i g„L+Ng„ i[H——,L]
+2~(~—1)g=2[H, [H,L]]+" (16)

On the basis of previous considerations, we now expect
(14) to be only weakly time dependent, compared to
the exponential. In fact, if we neglect the time de-
pendence of g altogether, integration over t gives
t&[tr (24)], which expresses energy conservation in a
collision with a free nucleus at rest, an altogether
reasonable first approximation.

%e then proceed to expand:

exp ( K't'/M'D') = 1 K'—t'/M'D'+ . — (8)
go=a, gi=—a I.

if D represents the average dimensions of the wave
packet. Just such a term will in fact appear in the more
detailed calculations of the next two sections. And it is
worth noting that if a&)D ', i.e., if the momentum
transfer is large compared to the average momenta of
the nuclei in the initial bound state, the factor (8) may
be regarded as slowly variable compared to (6). This
allows one to use the expanded form on the right-hand
side of (8).

It is now convenient to isolate a factor like (6) from
the time dependence of G. This may be done as follows.
The momentum transfer operator exp(i24 r) may be
used to generate a unitary transformation of the
Hamiltonian

H'= exp( i24 r)H e—xp(i24 r) =H+L+ ,'M &K2, (9)-
where

L=M '(24 P).

The same unitary transformation will transform a
function of H: f(H) into f(H'). Since F=a exp(i24 r),

Before using (15) and (16) in Eq. (12) we must calculate
expectation values of these operators in the state a.
Furthermore we shall assume that the scattering system
is randomly oriented. If necessary, this may be achieved
by means of an average over states, Eq. P(3.8). Such
an average will be implied by the notation ( ). One
then gets, with the abbreviation (g (K))=s„—:s (K2),

st& ——a'; s,/a'= (L)= 0,

s /g2 (L2+ [H I]) (I2) K2(p2/3M2) 2 (K2/M)(g)

s2/a'= (K'/6M')(p'y) = g4tK /2M,

s4/g2 K4(p4/5M4)+ (K2/3M2)((ply)2)

= (K'/M)' -4(14. )+ (K'/M) C,

These results include various simplifications; in the
first place use is made of the fact that the expectation

"The easiest way to obtain (16) is to differentiate (14) thus:
tig/dt=ie"&H+L&Le "H=igL(t), where L(t) = e" Le "H, and sub-
stitute (15) into the equation, using:

e"HLe "H= L+itLH, L)+ 2 (it)2LH, LH, L]j+
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si/sp ——0; s,/sp ——(4/3) EA„y,

s&/sp ——BA,y; s4/sp= (16/5) (E ) A y +2CA„y.
(18)

The expressions s play a similar role here as the
expressions S„in Eqs. P(3.9), (3.10), and (18) is similar
to P(5.6), but simpler. The reason the first terms on
the right-hand side of P(5.6) are missing in (18) is that
those terms merely represent the e8ect of the reduced
mass factor, as explained by Placzek, an effect which
is here separately included once and for all exactly in
the exponent n(x), Eq. (13).

When the cross section (12) is averaged over o to
produce isotropy (if necessary), and the Eqs. (15), (17),
and (18) are used, the integration over t can be per-
formed for each term. The eth term is, apart from a
factor,

I„= s~(~')5&"&[n(x))dip (19)

which, after a shift of the origin, x=4„+tl, may be
integrated first over the solid angle dQp (notice that
the argument of the 8 function does not depend on the
direction of q) and then over q by means of n partial
integrations. One gets

I'„(k„,q) =q s (z')dQ, = (7r/k„)
4g-

s„(x)dh,
(20)

with x+= (k +q)'
Evaluating (20) explicitly up to x=4, and summing,

with the appropriate factors, one gets a formula
identical to P(3.11), apart from the following changes.
(a) The right-hand side is multiplied with the reduced
mass factor [M/(M+1)]'. (b) The functions S (a')
with the values P(5.2) (5.6) are replaced by the func-
tions s„(~'), Eqs. (17), (18). (c) The parameters u=4kp'
and Ep are replaced by u„=4k„', and E„=EpM/(M+1).

The introduction of "relative" energy E„and mo-
mentum k„ is of course to be expected in view of our

value, in a stationary state, of the time derivative
L=i[H,L) vanishes. This applies also to d'L/dt'
= —[H, [H,L)] as well as to L itself, since L= [H,x r]
is also a time derivative. These remarks give at once
the results for g~ and g~. The latter, however, was also
averaged over the direction of x, which is allowed for
randomly oriented systems. The calculation of g3 and

g4 is more involved, but similar. g3, for instance, contains
a term d'L/dt', which cancels as explained above, a term
I.', which cancels when one averages over the direction
of x, and a term LL+2LL, which can be reduced to
2[L,I) by using (LL+LL)=0. The evaluation of the
commutator leads to the result above. g4 is handled in
a similar manner.

With the notation P(5.7), (5.8), (5.9) we can also
write

approximation. Formula P(3.11) thus modified leads
then, after trivial operations, to the result, in terms of
the free cross section P (5.15):

o/o. i„,——1+-,'E'A, M 'Ep '

pp[(M+1)/M)'CA M 'Ep '+, (21)

which now takes the place of P(5.16).
The result is changed by so little that we may be

justified in pointing out some differences which do not
strike the eye. The first two terms are exactly the same
as before; the only difference here is that they are not
obtained by rearrangement and summation of a series
of partial terms as in P(5.14); they come out exactly
and at once, which is perhaps a slight methodical
advantage. There is in both P(5.16) and (21) an
invisible third term, of order Eo, and proportional to
BA„, that the coefficient of this term cancels is estab-
lished by Placzek's calculation only to the lowest order
in M '; one could of course push the approximation
further, but there is then no simple argument to
predict the general structure of the term as a function
of M. Equation (21) shows, however, that the term
vanishes identically. The last term of (21), finally,
differs from the corresponding term in P(5.16) because
of the appearance of the inverse of the reduced mass
factor. This means that Placzek's t term is proportional
to the bound- rather than the free cross section. CA„
see Eq. P(5.9), is proportional to the average square of
the binding force. The result just mentioned is therefore
physically plausible, but it could not have been inferred
with certainty from an expansion in powers of 3f '.

We close this section with two more remarks. The
first concerns another possible approximation method;
it seems at first very tempting to use a "weak binding"
approximation, expanding (14) in powers of the po-
tential. The zero order then contains all terms of (15)
obtained by neglecting systematically in (16) the
commutator [H,L,] and. commutators thereof; The
result is both simple and physically plausible; it obvi-
ously describes the collision against a free nucleus,
which is not initially at rest, but has instead a velocity
distribution as found in the initial state. There the
simplicity ends, however; already the next term looks
rather complicated and not easily usable. It does not
seem, therefore, that this approximation can be used
to circumvent the difficulties of the "short collision
time" method.

The second remark concerns the extension to a
molecule containing several nuclei. We may use, of
course, the discussion of P, Sec. 7, to separate the
scattering into coherent and incoherent parts. The
incoherent scattering is the sum of terms relating to
individual nuclei, and for each of these terms a formula
like (21) applies, or more precisely a formula which is
related to (21) like P(7.8) to P(5.16), with the same
change in the meaning of the symbol C. Finally, the
formula can be extended to include the whole "diagonal"
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term for a given nucleus simply by changing the value
of the scattering length u, .

4. ISOTROPIC OSCILLATOR

The main new result obtained in this section is to
exhibit in detail the transition from the "normal"
behavior of the asymptotic cross section of a heavy
oscillator (M))1), Eqs. P(6.4) (6.8) (6.9) to the peculiar
oscillating behavior discovered by Placzek4 for the case
of equal masses (M=1). This behavior may be de-
scribed as follows: Writing the cross section in the
form P(6.8) or, for M=1,

p —ggitts

For a harmonic oscillator, one has:

(25)

range of energies than the simple. constant value
c(zzp)

In the case of a harmonic oscillator, the symbolic
expression (3) can be transformed as follows. Having to
do with a single nucleus, we omit the index s. In the
ground state, or in any isotropic average over states,
the expectation value of G must be independent of the
direction of ~, which we may therefore choose to be the
s axis, so that

o/o fppp 1+zzp 'c(zzp)& (22) e"~se @~=s(t) =—s cos&pt+{ sinppt, (26)

c„(N,) =1—s—Q c (~;),
7'M

(23)

where 8=zzp [Ipj—is the fractional part of zzp, and
x;=VX(j+8)&, while C is the error integral,

C (2:)=2zr—& exp( —yp)dy. (24)

where no=E~ ' is the neutron energy measured in
units of the oscillator's quantum, one would expect
from the general formula P(6.9) that c(zzp)~pi when
Np~pp. Placzek finds, instead, that c(zzp) approaches
asymptotically the periodic function of period one,

where pi is the proper frequency of the oscillator and f'

is, apart from a factor, the momentum associated to z.
In fact,

[s,f']=i (Mpp)
—'.

From (5), (25), and (26) one has:

p(t) —aezsz(t)

G(t) =a'e '"' exp(i~z cos&ut+iii{ sinpit).

(27)

(28)

This may be written with all the operators under a
single exponential, remembering that if [A,B) com-
mutes with both A and 8 one has

gA~B gA+B+)fA, B] ~A+B~$[A,B] (29)
It is interesting to note that the function (23) has

cusps at integer values of eo. Thus the cusps which are
present in the low-energy behavior of the cross section
es energy, '2 are also preserved in the asymptotic
representation of the cross section.

The average of the function (23) over one period,
however, is equal to ~~ and thus coincides with the
constant limit expected from the general formula for
3f)1. This shows that if the cross section were meas-
ured with poor energy resolution (AE))pi) the asymp-
totic behavior would be found to be given by the
general formula derived for 3f)1.

In principle, however, the oscillation of the 1/Ep
term in the cross section for &=1 is observable, and
the difference between the asymptotic behaviors in the
cases M= 1 and M) 1 is quite real. On the other hand
what one means by asymptotic behavior is partly a
matter of definition. We shall see that the symbolic
method leads to an asymptotic representation of the
cross section by means of damped oscillations. The
damping is zero for M= 1 and increases with increasing
M (as one might expect from a comparison of the
M=12 and M ~ curves in P Fig. 1), so that for
large M the function c(zzp) very rapidly approaches a
constant value. For M&1 but small, the asymptotic
formula we shall give should be valid over a wider

'~ See, for example, E. Fermi, Ricerca sci. 7 (2), 13 (1936),
and P) Flg. 1,

G„=a' exp{ (i~'/2Mpi) (e'"'—1)), (31)

which, if the exponent is expanded in powers of t, gives
the expected behavior, Eqs. (7) and (8). A similar
formula is obtained for a thermal distribution over the
energy levels of the oscil1ator. For simplicity, however,
we shall stick to the case of the ground state.

Inserting (31) into (3), and expressing o in terms of
the "bound" cross section 0-b =An-u' or later alternatively
of the "free" cross section oz„,——opM'/(M+1)2, we find

o/op (8zr%p)
—' ——I dt ~dh exp{it(x~p —kp zp)J 2

—(zip/2Mpp)(i —e'"')). (32)

'3 Or more generally in an isotropic distribution over states.

In our case [A,Bj is a c number, and

G= a' exp{i(~2/2Mpi) sinppt)

Xexp{ i~s(1 c—ospit)+—iiif' sin pit}. (30)

Furthermore, it is easy to see that the expectation value
in the ground state" of an operator exp(zczs+iPt)
depends only on np+Pz, and may thus be calculated
more simply as the expectation value of exp{i (nz+P') &2},
which, in the ground state, is exp{—(u'+Pz)//4M&v).
One thus finds, after simple reductions,
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We have assumed here that the x and t integrations
c@n be interchanged; if we first attribute to t a small

positive imaginary part, the integral over x becomes
absolutely and uniformly convergent, and the inter-

change can be safely carried out.
Performing the x integration and introducing a non-

dimensional time variable (=~t, and a nondimensional

energy measure n& ——kP/2m&v as before, and with the
abbreviations

(33)

we find

(34)

The integrand of (34) has singularities (branch points)
where X has poles or zeros. The only singularity on the
real axis is at (=0, which according to a previous
remark must be avoided by passing above it."

For an asymptotic evaluation of (34) for large values
of eo, we can remark that any part of the integration
path on which an inequality,

Re(p) )e, (35)

g as Ir.~w

is satisfied, c being a positive constant, will give a
negligible contribution, of the order e '"', to the inte-

gral. We may derive the greatest benefit from this, if
we deform the path in such a way as to have (35)
satisfied over as much of the path and with as large a
value of c as is possible.

Now from (33) it is easy to see that Re(p) is positive
over the whole real axis, except at the points /=2~v
(v=0, &1, &2 ) where it is zero. These points,
therefore, must be examined more carefully.

Setting $= 2s v+g, and expanding (33) in powers of

q, one finds that, in the neighborhood of the real axis,
the region where Re(p) )0 has the structure represented

by the shaded area in Figs. 1 and 2. We try to lay the

path, as far as possible, within the shaded area; the

place, where it must get out of it, is just above the
origin. We may, however, deform the path in the
manner indicated by the heavy line in the figures, so
that the only part of the path where Re(p) (0 is a small

circular arc at the top of the loop around the origin.
It is best to divide the right-hand side of (34) into

two parts, one I„corresponding to the loop which

leads —from a point $; on the negative imaginary axis

2T' 4v'
ixPxx+~Awxlrz~46888/

FlG. 2. Integration path for 3II= 1.

—around the origin —back to the same point, and one
II, corresponding to the "horizontal" part of the path,
which leads from —~ to the point P;, and from P, on
the right-hand side of the imaginary axis" to +~.

We can choose the point (;on the negative imaginary
axis in such a way that the integrand. is extremely small
at ];.We may choose, for instance, the point where p
has a maximum along the negative imaginary axis.
For M))1, $;=—i 1n3II and the maximum value of p is
also in%, so that the exponential in the integrand
has a very small value M "0. As M—&1 the maximum
value of p decreases; for 3II=1 one has $;= 2i,—and
p(P;)=0.48. Even with this value the exponential,
e 0' "', is asymptotically negligible as soon as eo&&1.

If M&)1 it can now be shown that the contribution
Iy, of the whole "horizontal path" is negligible. In fact,
as 3f increases, the lower boundaries of the shaded
area, indicated in Fig. 1, move downwards, the distance
from the real axis being of the order of lnM; the path
can be laid in such a way that an inequality (35) is
satisfied over the whole path, with a value of c of the
order of lnM. One then finds an upper limit to the
integral along the horizontal path,

II,(e '"o
~
g

~
&d$~c~e ~»

J
(36)

where c~ is another constant. It should be noticed, to
justify this, that X ~f~

' when ~&~, so that the
integral in Eq. (36) is convergent. On the other hand,
when M approaches unity the "necks" through which
the path must pass become narrower and narrower,
until they reduce, see Fig. 2, for %=1, to points, where
~e»&~ =1. The neighborhood of these points gi~es
then a contribution to (34), which is not exponentially
small compared to the main term; it yields, in fact,
terms of order eo ', and is responsible for the oscillatory
behavior discovered by Placzek.

Now to the actual evaluation: Beginning with the
loop integral, we notice that for

~
)~&&1 the exponent

nop= —inoPM/—(1+M), so that the exponential
rapidly vanishes on the negative imaginary axis as soon
as

~ f ~

))no '. After the substitution r= ignoM/—
(1+M), an expansion of p and X**in powers of r becomes
simultaneously an expansion in powers of ep . Substi-
tuting into (34) and expanding the whole integrand
with respect to rtp ', one then gets, apart from a factor,
the expression

FIG. 1. Integration path for 3f&1.

' We shall assume that the complex $ plane is cut along the
negative imaginary axis, starting from the branch-point of ) &

at /=0.

r &e'$1+ (Mno) '-(jIr+$H)
J —(Mno) '(~3' (8M—7)7'—*(11—4M)r'

—xr4)+ ~ )dr (37)
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p(2zrv+'9)=p +p rl+2p rz+' ' '

p„=2zriv, p„'= 0, p„"=1+ (z/zrv).
(39)

The inequality (35) can be satisfied everywhere on the
path, excluding the neighborhood of the saddle-points.
It is therefore sufficient to evaluate asymptotically the
contribution Ii, (v) from a small interval around each
saddle-point. Here we shall content ourselves with the
lowest order term, which is proportional to ep '. This,
together with the corresponding term in (38), will yield
the function c„(zzp).

The evaluation is based, of course, on the familiar
reduction to a Gauss integral.

One has:

exp (—zzpp) =exp (—zzpp„) exp ( ', zzpp„—"r-l'),

which has a sharp Gaussian peak of width ep: at the
saddle-point, provided the path crosses the saddle in the
right direction. " To the lowest order in mp we are
then allowed to replace X*' in the integral (34) by its
value X„& at $=2zrv, i.e., by (i/2zrv)'. Then, carrying
out the Gauss integrals and remembering (34) and
(38), we find that

o/o b =Ii+P (Is t"&+cc)
v=1

where the path runs in a loop around the origin from,
and to, a point r;= —ig,rzpM/(1+M), which if np))1
can be set = —~ without noticeable error. Using the
integral representation of the reciprocal j. function"
one finds for the loop part:

Ii= (1+3' ') 'f1+(4Mzzp) '+0(zzp —')). (38)

Notice the reduced mass factor (1+HI ') '=rrz„, /op,
notice also that the coefficient of the ep ' term vanishes
identically.

Turning now to II„we first assume &=1.Figure 2

clearly shows that the points $=2zrv (v=+1, &2, ),
are saddle-points for Re(p). This follows of course from
the expansion already used, that is

(23) and (41) for the same function; but it is not
difficult to verify by integration of (23) with a factor
exp(2zriv8), that (41) is indeed the Fourier series for
the function (23). The advantage of (23) is, of course,
its much more rapid convergence.

We finally set ourselves the probleIn of bridging the
gap between the two extreme cases 35=1 and M))1.
The preceding discussion clearly points the way. As
long as 3f)1, it is always possible to say that
Is exp( —czzp), but c~0 as Ivf +1, so —that neglecting
Iz entirely is not a good approximation. Looking at
Fig. 1 we realize that there must be a saddle-point in
the middle of each narrow "neck" of the shaded area.
%e can calculate I& approximately by a saddle-point
method, just as we did for V=1.

We obtain again (40), the only difference being in
the values of I~, and of the coefficients X„p„,p„".The
position of the saddle-points is quickly obtained as
follows. The equation for a saddle-point $ is p'($) =0,
which one can rewrite using (33),

e't =M (1—2ie/(/+2i) ), (42)

where &=1—3I '(1. Taking the logarithm on both
sides, and designating f more speci&cally by $„, if $ is
the saddle-point which tends to 2~v when M—&1, we get

$„=2zrv—i 1n3E—z In(1 —2ie($„+2i) '), (43)

where the principal value of each logarithm is meant.
From (43) it is easy to obtain an expansion in powers
of M—1 or of e, which converges rapidly if (3E—1)«1.
For the practically more interesting case: 3f equal a
small integer, one can reach the goal more quickly by
an iteration method. Starting from $„=2zrv i lnM as-
an approximate value, one feeds this into the right-
hand side of (43) and gets a better value, and so on.

Another usable expansion is one in falling powers of
2%v:

$,=2zrv z lnM+—P a (2zrv) ",
n,=l

ai ———2s, as ———2ze(lnM —2+ e)

=Ii+-,'V2zzp '+{X.~(p,") l exp( —zzpp„}+cc). (40)
v=].

Using M=1 in Eq. (38) and the values (39), and
expressing 0. in terms of O.f„,=—40.g, we 6nd, on com-
parison with (22),

We have now obtained two entirely different expressions

'5E. T. Whittaker and G. N. Watson, A Course of Modere
ArIalysis (The McMillan Company, New York, 1946), fourth
edition, Sec. 12.22.

rp For example at an angle —
v arctan(1/v. v) to the real axis.

According to (33) the exponent ——,'e0pv"g2 is then real and
negative. This is indicated in Fig. 2.

It is easy to see that (43) defines $„—2zrv as an analytic
function of s= (2zrv) ' regarded as a complex variable,
and that s=0 is not a singularity. Hence, (44) must
have a nonzero radius of convergence and is in fact
apparently quite usable down to v= 1.

Knowing f, one can calculate the coefficients of the
expansion (40}.The most interesting one is the expo-
nent p„. Using (42), (23) can be transformed into

p =p(E.) =zk. (1+»$. ')L1+z(2—e)k. 'j (45)

This too can be expanded for large v'.

p„=i(2zrv —e'(2zrv) '+ )+1nm' —c

—e'(2 —e—inM) (2zrv)
—'+ . , (46)

the error being of order (2zrv) '.



SCATTE R I Xi G OF NEUTRONS 1237

Ggi f2*e"'alfie ——"'H f,=exp(ix r,), (47)

the first problem is to find its time dependence. The
discussion will be clearer if we first get rid of an obvious
pitfall.

There is, of course, no analog to an interference term
in the classical theory of impacts, and thus no a priori
argument for a time dependence such as in (6), based
on the classical energy momentum relation (7); to
begin with, if M1@M2, we would not even know which
mass to use in these equations. Nevertheless if we apply
the transformation (9) (11) to (47), we get

G~i= f~*fi exp(itz'/2M&)e'"~+~'&e "~ (48)

1., being defined by (10) with M, and y replaced by
M, and y, . The first exponential in (48) represents a
strong (if 3E, 1) time dependence of the type we
have no good reason to expect. Alternatively, we may
obtain a similar factor involving M2 instead of MI, if
we notice that G =G ', where

Gl ~
—i tHP+ei tHP

)

'7 Owing to the omission of terms of order n0 2, our formula
can only give a rough approximation for values of n0 as low as
those in P, Fig. 1.

Some numerical values for the exponents p„are given
in Table I. The most noteworthy feature, of course, is
the nonvanishing real part of p„. Each term of the
series (40) is a damped harmonic oscillation. The
damping factor is only weakly dependent on v, and
is roughly exp{—no(in& —e)}. Also, the imaginary
part of p„ is only slightly diferent from 2~v, so that
the series is almost harmonic. The amount of damping
indicated by Table I is in good agreement, as far as a
comparison is possible, '~ with the numerical results of
Placzek, as displayed in P (Fig. 1).

Finally, it is noteworthy that even for M as low as 2,
the damping is fairly rapid, the amplitude being reduced
to 1/e when the energy increases by five oscillator
quanta.

5. NONDIAGONAL TERMS

In the discussion of these terms we have to rely to an
even larger extent than before on purely qualitative
arguments, except in special examples. Furthermore it
turns out that in the present instance the "short
collision time" approximation is essentially equivalent
to the "small energy transfer" approximation of
Placzek, and does not lead to any improvement over
his formulas. One useful result emerges from the follow-

ing discussion, however, namely that as far as the non-

diagonal terms are concerned, Placzek's formulas are
not essentially tied to the condition M))1, a fact which
is not obvious from the discussion given in P. Thus we

may say that we have a suitable treatment for all cases.
If we pick in the operator (4) the interference term

relative to, say, nuclei T and 2, that is, apart from a
factor a1a2, the expression

TABLE I. Values of p, .

(a) Real part of p&

2 3 12

v= 1
2

0.1880
0.1919
0.1931

0.4294
0.4313
0.4320

0.9694
0.9612
0.9584

1.598
1.576
1.568

(b) Imaginary part of p„divided by 2~v

1 0.9937 0.9888 0.9825
1 0.9984 0.9972 0.9956

1 1

0.979
0.995
1

and transform accordingly, pushing F* towards the
right. The truth is, however, that the appearance of
these strongly oscillating factors is without significance;
they are canceled by compensating terms which occur
in the expectation value of the remaining operators.
More precisely we state that, if the time dependence of
(G2i) is written as an exponential exp[if(t)], no linear
term in t is present in the exponent.

This can be seen most simply by showing that the
time derivative of (G2i) is zero at )=0. And this follows
immediately from P(7.17). Since the point is of some
importance, however, it will be further explained by an
alternative derivation. We rewrite (47) in the form

G9] —exp( ias2)—exp (iKsi(i)), (5o)

tak. ing the s axis parallel to x. For comparison the
diagonal term G» can be similarly written, by replacing
s2 with si in (50). For small values of t we expand in

powers of t, neglecting terms of order t' or higher.
Remembering (29) we obtain

G2i exp ( iKs2) e—xp (iasi+itasi)
=exp[i'(si —s&)+itKsij,

and similarly

Gii= exp (—icosi) exp (i~si+itzsi)
=exp[ib&si+-,'i~'Mi 't],

(51)

(52)

where the main difference between the two operators
is that the commutator term in (29) is zero for G2i,
but not for G11. It is just this term that gives the
strong time dependent factor for G11, but not for G21.
To complete this consideration, one has only to notice
that under the assumption that the eigenfunction of
state a is real (i.e., invariant against time reversal;
this assumption is essential, and is also made in P) the
expectation value of an operator exp(ns+Pp, ) is an
even function of P. Hence the exponential opera, tors in

(51) do not contribute any linear exponent in t.
The cancellation of the strong linear term in G~1

means that the first-order reduced mass correction does
not apply to the interference terms, as pointed out in

P. But for us it means, especially, that the transfor-
mation employed successfully in Sec. 3 is here not
merely useless, but actually misleading. Under these
circumstances it is more natural to expand the whole



Q2» in powers of t, but then. of course we are back with
the "small energy transfer" approximation and no
improvement over P is obtained. The question we want
to discuss, however, is whether such an improvement is
really necessary.

The absence of a large linear term is in itself no
guarantee that the time dependence of G2» is weak. A
strong time dependence could appear in higher powers
of t in the expansion or at later times, when the expan-
sion is of no help. The case of long times has been
examined in detail in Appendix 3 for a special case.
There one can see in (A13), for example, that when t~

is large a strong time dependence can indeed appear
for large t values. That turns out to be unimportant,
however, for the simple reason that the value of G~» is
at the same time quite negligible,

It is the latter circumstance that is decisive. Although
in the general case this cannot be demonstrated as
forcibly as in the special case of the appendix, we can
at least show that quite improbable circumstances
must occur for an exception to be possible.

Let us begin with the trivial case of two "inde-
pendent" nuclei, for example two nuclei bound in a
6xed external potential, but not interacting with each
other, so that individual states can be assigned to each.
In this well-known case the only coherent scattering is
elastic; G2» is not time dependent at all; this is so, of
course, because the two factors of the matrix element

~b= (f2*).b(fi)b. (53)

associated with the energy transfer E&—E, cannot both
be /0 unless b=a. Knowing this, we can see, further-
more, that the only nonzero matrix element 3f, becomes
negligible as soon as ~ is large compared to the zero
point momenta of 1 and 2 in the state a. This establishes
our statement for this case.

Naturally, the example chosen is so special that its
detailed features are of no special interest for the general
case. If, for example, we add an interaction A, V»2

between the two particles, we expect to get the same
result for the cross section in the limit X—+0; most of
the detailed statements made above become invalid,
however. In particular, it is necessary to remember the
role of degeneracy in such a problem. Owing to de-

generacy between levels of the unperturbed problem,
even a weak interaction can lead to strong mixing of
states, so that the matrix elements M~ for individual
states can be strongly aGected. It is no longer true,
for example, that for ~ large, every M& must become
necessarily small. (The reader will find it instructive to
consider in detail the possible eGects of mixing between
states in which either one of the two particles is strongly
excited, while the remaining one is left in the ground
state. ) On the other hand, a sum over states such as
the sum in Eq. (1) possesses a well-known stability
against perturbations, so that for small X it will still
be true that the contribution of large a values to the
nondiagonal term can be neglected.

In the above example, a significant departure from
our general assumption could only occur if the inter-
action becomes so large as to cause large splittings
amongst the original degenerate levels, or, in more
physical language, if momentum is exchanged rapidly
between the two particles, more precisely, so rapidly
that a momentum exchange ~ can occur during the
short time available in a collision. If this necessary
condition is examined more in detail, one finds that
large a values can only contribute if the energy Eo of
the incident neutron is smaller than an expression of
the type of (O'V/Bx')D', where V is the interaction and
D the distance between the two particles. This expres-
sion again may be taken to be of the order of binding
energies if the particles are close to one another in the
molecule and even smaller otherwise.

Although this necessary condition is better than
nothing, it is not very strong and we have some reason
to think that much more stringent conditions must be
met, so that in practice we may safely assume that
large momentum transfers are negligible quite in
general.

We shall try to show this by means of a semiclassical
consideration based again on the time-dependent
picture. Reverting to the form (4) of the operator G
and using a configuration representation of the operator
e"~, we can write the expectation value of 62» in the
state a in the form

(G2i)=, I P, (rir2) exp( —ix r&)dridr&(r&r2te"~~r, 'r2')

Xdri'dr2' exp(ix ri')P, (r&'r2')e *' .. (54)

For simplicity only the coordinates of the two particles
involved have been indicated explicitly, but if other
particles are present, additional coordinates r3,
and r3' ~ would have to be written in at the left and
right, respectively. The following argument would not
be affected. Let us now consider a classical motion
leading from positions ri', r2' at time t (it is convenient
to fix our attention on the case t(0) to positions ri, r2

at time 0; let S(rir2, ri'r2', t) be the action integral for
this motion. We now make the classical approximation

(rir2
~

e"~
~

ri'r2') = exp {iS(rir&,ri'r2 t) ),

neglecting a normalization factor, which would only
complicate the formulas without much consequence.
If a classical approximation is valid at all, the expo-
nential on the right-hand side of (55) can be treated
as a rapidly oscillating factor. We intend to discuss all
the integrations in (3) and (54) (i.e., the integrations
over x, t, ri, r2, ri', r2') by means of the method of
stationary phase. This is, of course, very crude, but
since we only intend to ascertain the conditions under
which a "large" result can be obtained, the approxi-
mation seems legitimate. We recall that

BS/Br, = p, , BS/Br,' = —p, BS/Bt =E, (56)
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where p; and y (2=1, 2) are the final and initial
momenta of the two particles and E is the energy in
the classical motion envisaged above. We regard the
momenta of 1 and 2 in state a as negligible, that is we
treat f,* and P, as slowly variable (we neglect their
derivatives). Then writing the stationarity condition
for the integrations (in the order mentioned above) we
find

r,—r,'= —t(k0 —21),

-2A2 —x.k0+E=E„
(57)

(58)

pi ——0, y2
——x; pi' ——21, p2' ——0. (59)

In addition we must require, of course, that rir2 and,
respectively, r&'r2' be in a region of configuration space
where the wave function of the ground state is large.
The meaning of these equations is obvious. They say
that there must be a classical motion of 1 and 2 (and
if necessary of the remaining nuclei) which starting
from a probable" configuration ri'r2', with momentum
g for nucleus 1 and zero momentum for nucleus 2, leads
as a result of the interactions to probable" final positions
r&r2. with momenta 0 and ~, respectively. Moreover,
(58) is the energy conservation equation including the
neutron, and. (57) expresses the condition for the
neutron to be able to travel, in the time —t, from
position r~ where it hits nucleus 1, to position r2 where
it hits nucleus 2.

The result is thus by no means unexpected; in fact
the above discussion is merely an explicit formalization
of the intuitive considerations we have applied several
times before. It will serve, perhaps, to show to what
extent a classical description of the molecular motion
is applicable to these essentially nonclassical inter-
ference terms.

If all this be granted, it will appear that (57) and
(58) are additional requirements that will in general be
hard to satisfy, even if the forces between 1 and 2 are
strong enough to effect the momentum transfer that
was discussed before, and is also exhibited in the
conditions (59). While it is not true in general that the
conditions are incompatible, they do turn out to be so,
for example, in the case of the oscillator model of
Appendix 3, where the conclusions reached have been
checked by the direct quantum-mechanical calculation.

While it is not possible to state quite generally that
the "classical" conditions (57) (58) (59) can never be
satisfied, it seems reasonable to draw the following
conclusions. The more complicated the system, the less
likely it will be that the whole eGect of a large blow
applied to particle 1 can be undone by a counterblow
applied simultaneously or at any other time, to a single
other particle 2. Hence exceptions to the rule that
large momentum transfers do not contribute signifi-
cantly to interference terms will occur at most in very
simple systems, like a diatomic molecule. Even so,

"Probable refers here to the space distribution in the ground
state.

they will play a role only under rather special condi-
tions.

It follows then, that barring these special exceptions,
and for neutrons satisfying the condition Eo))h, see
P(2.3), the energy transfers effective in interference
scattering will be &&Eo, so that the approximation
developed in P should be applicable, even to molecules
containing very light nuclei. In particular the "static"
approximation t first line of P(7.20)) should give an
adequate representation of the cross section for most
purposes.

Some comment is desirable, however, concerning the
subsequent terms of Placzek's expansion, say, for
instance, the 2nd and 3rd line of P (7.20). If our conclu-
sions are correct, we should expect these terms to be
small compared to the static approximation. Under
the assumptions of P, the smallness of these terms is in
fact warranted by the large mass of the nuclei, as for
instance indicated by the factor p,p, in the last line of
P(7.20). Such factors are of no help in our ease. As
pointed out in P, however, these terms are also small
for other reasons, namely, because of factors

exp( 4E0/AALU—), 10 being a frequency of nuclear
motion (Debye-Wailer factors, etc.). Now as a rough
rule of thumb, we may say the frequency co varies with
the mass as JI/I ', so that the exponential varies
~exp( —nE0/M2), n being roughly a constant. Thus
this factor is actually much smaller for light nuclei and
compensates for the absence of the mass denominators.

A diGerent question, however, also arises. Namely,
we may want to know not merely whether the second,
third, . terms in the expansion are small, but also
whether they electively represent the error of' the
first, or static, approximation. This question is more
dificult to answer in view of the energy dependence of
the successive terms in P(7.20). Thus the first term is
proportional to Eo ', while the second term and the
terms in the second and third lines contain exponential
factors of the type mentioned above. Proceeding further
in the expansion, however, we would find the term
S4'(0) in P(3.11) and other terms to be found later
again yield simple reciprocal powers of Eo. Thus the
series is definitely not an asymptotic expansion in the
same sense as P(5.16) or (21). At very high energies
we ought to leave out all exponential terms and keep
the powers of Eo ", the series would then start as
follows:

012—42r121+2~0 f 2(r12 )A (1/96&1552)E0
X(gradi V grad, V),„+ ). (60)

For large masses and moderate energies, however, the
terms thus thrown away are more important than the
term added above.

For macroscopic bodies, such as crystals, there is in
addition the question of the convergence of the sum
over the indices s, s'. This question has been exhaus-
tively discussed for the static approximation" but not

'9 Placzek, ¹ijboer, and Van Hove, Phys. Rev. S2, 392 (1951).
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for the second and third line of P(7.20). A provisional
estimate we have made shows that no special di%culty
is encountered, but we hope to come back to this
question later.
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kpdp/dQ=Q(e!) ' ~ k's~(K')8'" (a)dk
n dp

(A1)

where ~' and n are now functions of k:

2Mn= (1+M)k' —2kpk cos8—(M 1)k'—
K = kp —2kpk cos8+k'

Inserting (1S) into (Ai) one can calculate each term
explicitly. We give the result in an abbreviated form.
Introduce a variable x= (k/kp) —cos8/(M+1) and the
value xo corresponding to the value of k for which o.=0:

xp ——(M' —sin'8) l/ (M+ 1). (A2)

APPENDIX 1

Single Nucleus, Differential Cross Section

One can, by means of the method of Sec. 3, also
calculate the diGerential cross section or the eGective
diGerential cross section. In the case of light nuclei
this means, of course, lumping together final neutrons
of widely diGerent energy. The result is, therefore,
somewhat less significant and will be discussed only

briefly. In order to obtain the diGerential cross section
we must go back to Eqs. (12) and (19) and introduce
as an integration variable the final momentum of the
neutron k = kp —x in place of x. Writing then dk =k'dkd0

in place of dx and performing the integral over k, but
not over dQ we obtain

P, ,„(8)=(1+M ') " '

(8y" ) cos8q
X

I I
x-'lx+

48x') ( M+1)
(A7)

To get do, «/dQ, replace all P's by P's in Eq. (A6), thus,

a doe«/dQ, =fp p'(8)+(2/3MEp)EA„)go i(8)+ ' ' '. (AS)

The formulas as written are not perhaps very explicit
but the Eqs. (A5) to (AS) will give an explicit answer
with a little work, but without difhculty, if needed.

One may wish to compare these formulas with
P(5.19) and P(5.20). For this purpose bear in mind
that the energy dependence in Eqs. (A6) and (AS) is
given explicitly. And in fact one finds EA„divided by
Ep, 8 and (E')&„divided by Ep', C divided by Ep' as
expected.

On the other hand, the 3f dependence appears only
in part. We have tried to write the p and P functions
so that they are of zero order in M, when 3f is large.
Cancellations may occur, however, in the limit M~~,
so that a function may occasionally turn out to be of
the order 3f ' or even smaller. One verifies easily, for
instance, that in the limit M= ~, @3 ~~0. Thus, the 8
term in Eq. (A6) is not of first order in M ' as it seems
to be, but higher, in agreement with P(5.19) where it
appears to be of order .V '. On the other hand, the
Po i function which multiplies 8 in the effective cross
section does not vanish in the limit 3E= ~, in agreement
with the M dependence of the 8 term in P(5.20).

In particular,

4p, p(8)= (1+M ') 'xo'$xo —(1+M) ' cos8] '. (A5)

We can now write the first terms of the expansion of
the diGerential cross section

a &d&/do-=y, ,(8)+(2/3ME, )E:.y, , , (8)
—(8/6MEp )yo, i(8)+' (2/15M Ep )(E )A Ijb4, o(8)

+ (C/12MEp )P4, i(8)+ ' ' ' (A6)

The effective differential cross section can be similarly
obtained if one adds a factor kp/k to the integral in
(A1). This leads to functions

APPENDIX 2

Nonisotroyic Oscillator
Then, remembering that in Eq. (17), s„ is a function
s (u) of u=K', write n as a function of x. This may be
indicated explicitly by I=ko'v, where For simplicity we assume M= 1 from the start, since

this is the critical case. We assume that the oscillator
v = 1—2(k/kp) cos8+ (k/kp)' has three different frequencies co~, co2, co3 along the

= Lx—M cos8/(M+1) j'+sin'8. (A3) Cartesian axes 1, 2 and 3. By an analysis completely
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G„=a2 g exp{ (K '/2pp/) (e""'—1)},

and later, instead of (34),

where

o/o = ', (7rE,) -'d—tg f;(t),
j=l

similar to that leading to (31), one finds

(A9)

the anomalous term in the cross section is, roughly

(1/12g)p (~v)
—5/2(~ /+ )2o 2vvf—vsp/vvy

plus two other similar terms in or& and co3. For simplicity
some factors of order of magnitude one, and some phase
factors are omitted. This result shows that the anoma-
lous oscillation does not entirely disappear from the
asymptotic formula; however, two important diR'er-

ences emerge. First, the anomaly is removed from the
Eo ' corrections and shifted to a term of order Eo ',
secondly, the numerical factors are such as to make the
e8ect quite insigni6cant.

k~k2ks being the components of the vector ko. Leaving
aside the neighborhood of t=0, which overs nothing
essentially new, we examine the contribution from
longer times. If a direction of ko is chosen at random,
and Eo is increased, it can be seen that the modulus of
the integrand of (A9) goes to zero exponentially for
any given tAO on the real axis. This is because the real
parts of f&f&fp cannot be zero simultaneously if
po~/co2&o&5 (barring the CaSe o&~. o/5. cop ——/5~.'n2. ep, Where

r/~, e2, /55 are three integers). However if kp is directed
along one of the axes, then clearly the periodicity
phenomenon of Sec. 4 reappears. Averaging the cross
section over the direction of ko, we see that "anomalous"
terms will come from the neighborhood of the three axes.

Assume for example k~=ko, k2&&ko, k3&&ko. There are
then saddle-points near the real axis; when k2 and
k3—&0 these saddle-points tend to co~t= &2m, &4~,
Writing for the saddle-point

/= 27rv//v/q+r,

and expanding r in powers of k2 and k3, we find

APPENDIX 3

Oscillator Model for Interference Terms

We consider a diatomic molecule of total mass
M=M&+M2 with the potential energy

V(r) =-',M)2o&'r', (A10)

where r=r~ —r5 and M» M~M2/M——. This would be a
tolerably good model for a molecule, were it not for the
unrealistic feature, that the equilibrium position is at
r=0. It does provide us, however, with a simple and
exact illustration of some interesting points. In terms
of the total and relative momenta: P=p~+p2 and
p= M—'(M5p, —M~p2) the Hamiltonian of the molecule
1S

H=-', (M 'P'+M» 'p')+V(r).

It is an easy matter to evaluate the expectation value
of the operator G, Eq. (4), for the ground state of the
molecule. For simplicity let us consider only the non-
diagonal term, a~u262i. The factors referring to the
center of mass can be separated; one gets then easily:

where
/o~r=kp '(1+i/7rv) '(k 'A +k 'A }

2;= (,A, (2—i$,) (1+i);lt,),
$;= 2s.vo/;/pod, X, '= 1 i/, e'5/. — —

(G2r) =exp(it~'/2M)(exp (ix rM~/M)

)&exp[i+ r(t)M2/M]), (A11)

which is, so far, independent of the assumption (A10).
Kith that assumption, however, we get

The contribution of the saddle-point to the integral is
again of the type of Eq. (40). Apart from less interesting
factors, it is Ep ' times an exponential of tpp; co;k,9,;—
calculated at the saddle-point. Neglecting again higher
order terms in k2 and ks, however, it is obvious that the
exponent can be calculated at the "unperturbed"
saddle-point t=2m. / v~.poTheexponent is thenfound to be

41I vEQMI '{i+(kp/kp)'P&X&+ (k&/kp)'P, X,}.
Since X2 and X3 have a positive real part, the correction
terms in k. and k3 have, of course, the eRert to introduce
an exponential damping with increasing energy. The
anomalous terms are thus only important when k2'k&'

«ko', more precisely within a solid angle of the order
of co~/Ep. Averaging over the direction of the incident
neutron, and including the similar contributions from
the angular regions around axis 2 and 3, one finds that

r (t) = r coso/t+ (M~2pp) 'p sin&et. (A12)

A calculation similar to that of Sec. 4 then gives

(G») = exp( —(~'/4M»pp)

+ (//'/2Mpo) (1+i&et e'"') } (A13)—
Before we proceed, we may notice various properties
of (A13). For t=0 the expression is exponentially small
for large ~, which, of course, illustrates the fact that
when momenta x and —x are applied to two diGerent
nuclei, it is unlikely that the molecule will be left in the
ground state. For small t, the exponent may be ex-
panded, and the absence of a linear term may be verified.

For any real value of t, one has, furthermore,

l(Gg2)
~

& exp( —(~'/4M$2o/) (Mg —M5)'M '}. (A14)

Thus if M~~M2, the molecule is not likely to be
restored to the ground state, even if there is an arbitrary
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time lag between the two momentum transfers. The
equality sign in (A14), i.e., a maximum value for the
matrix element, is obtained for cot=&+, &3&,
This result, which recalls to mind the behavior of the
diagonal matrix element in Sec. 4, is easily understood,
since it is just after a half-period, or an odd multiple
thereof, that the maximum momentum transfer from
1 to 2 has taken place.

If moreover M~ ——M2, the two nuclei will have com-
pletely interchanged their momenta, at the times indi-
cated, so that both can be brought to rest by a counter-
blow —x applied to nucleus 2. In fact the absolute
value of (A13) becomes, under these circumstances,
equal to 1; one might think, therefore, that "long"
times, of the order of the oscillator period, could give
important contributions to the cross section, supplying
us with a nondiagonal counterpart of the "anomalpus"
terms of Sec. 4. This is, however, not the case, no
matter what values we choose for 3fj and M2.

So far our discussion has only brought out the
consequences of momentum conservation in the cplli-
sions and the initial and final values of the momenta.
The subsequent integration over x and t will produce
the additional requirements of coincidence in space and
energy conservation expressed by (57) and (58) of
Sec. 5. Even without calculation one can see that those
requirements cannot be fulfilled here. Initially the twp
nuclei are at rest and close to each other (neglecting
the zero point motion); immediately after the first
collision, nucleus 1 is moving rapidly with a momentum
x, which must be a value permissible in a free collision;
nucleus 2 is at rest. Now when the second collision is
supposed to occur, at a "favorable" time, say after a
half-period, the two nuclei are again close together;
hence the second collision can only occur if the velocity
pf the neutron after the first collision is equal to that
of the center of mass. The reader can easily verify
that this is incompatible with the condition M& ——3f&.

Now to the calculation. The integration over z is
trivial. Writing the cross section in the form
0 =4ir(ai'Iii+2aia2Ii2+a2'I22), and introducing the
abbreviations p=idt, and

X—=X($)=L(23Ei2) ' —M '(1+i/ —e'&) —iQ ' (A15)

one 6nds

(A16)

i.e., an expression similar to (34), with a diferent
function X.

We must remember that (A16) includes the contri-
bution of collisions with small momentum transfers.
Thus it is not surprising that the integrand of (A16)
is not now exponentially small for large energies eo in
the neighborhood of time )=0. In fact, for small g,

2M'i2 and the contribution of small times to (A16) is

Ii2=-', (vrNp)&(2Mi2) )t exp( —2MigeoP)dg

Noticing that (ri2')= (2Mi2~) ', we recognize in (A17)
the 6rst and most important term of P(7.20). Other
terms, of higher order in tt.o ', can of course be obtained
from the neighborhood of )=0 by a complete asymp-
totic expansion of the integral.

Leaving these. terms aside, we now show that the
remaining part of the integral, i.e., excluding the
neighborhood of )=0, gives an exponentially small
contribution (even for Mi ——312). First, if cViW3E2,
and excluding a finite interval around the origin, it is
easy to show that on the real axis an inequality like
(35) is satisfied, which proves the statement. If Mi 3E2-—
we have to examine the neighborhood of the points
(=+x, +3m, . where the real part is equal to zero.
One finds that at these points,

Hence, these points are not saddle points; if the inte-
gration path is deformed and caused to pass under the
points $= & (2m+1)m, the inequality (35) can be
re-established along the whole integration path, and the
integral is thus exp( —ceo). This completes the proof
of all our statements.


