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pseudo-quadrupole eGect," and the interaction of the
nuclear magnetic moments with each other through the
intermediary of the electronic magnetic moments. "The
former e6ect is not separable from the true nuclear
quadrupole effect. The energy involved in the latter
effect is less than 1 kc/sec in most known cases. In
order to obtain more precise information a few cubic
centimeters of liquid NH3 were sealed in a thick walled
glass tube and Hahn of the Watson Laboratories kindly
examined the proton resonance in the NH3 vapor in
equilibrium with the liquid by means of the spin echo
technique. "The resonance was observed with a sample

'4N. F. Ramsey and E M..Purcell, Phys. Rev. 85, 143 (1952).
's E. L. Hahn, Phys. Rev. 80, 580 (1950); 88, 1070 (1952).

vapor pressure of several atmospheres to a sample
vapor pressure of the order of 40 atmospheres. The
strong resonance signal was found to be without a trace
of the modulations which would be caused by the above-
mentioned eGect. From this result Hahn was able
to inform us that the magnitude of the interaction is
certainly less than 300 cps and most probably less than
100 cps. Thus it would not be experimentally de-
tectable by us.

The authors at Columbia University would like to
thank Professor C. H. Townes for suggesting this
problem and for his active support in carrying it
through. We are also grateful to Mr. C. Dechert and
his staff for help in construction of the apparatus.
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The new features in the hyperfine spectrum of N"H& described in the preceding paper are shown to be
due to the interactions of the magnetic moments of the three protons with the molecular magnetic field
caused by rotation and with the magnetic moment of the N'4 nucleus. Since the protons are off the molecular
symmetry axis, these interactions are of a form diferent from that usually encountered. They possess
matrix elements connecting states differing by two units in symmetric top quantum number E and are
capable, therefore, of lifting the degeneracy between states for which X=—1 and X=1. A systematic
treatment of the problem of the hyperfine interactions in this molecule has been made in order to find any
other eGects detectable with present equipment.

I. INTRODUCTION

ARLY measurements of the hyperhne structure of
the inversion spectrum of ammonia were inter-

pretable' as due to an interaction between molecular
electric fields and the quadrupole moment of N". More
accurate measurements' indicated that small interac-
tions between the N" magnetic moment and a magnetic
field due to molecular rotation were also present. ' The
new experimental data presented in the previous paper
(which we shall refer to as I) shows that several other
types of sects are also of importance. Hence, a sys-
tematic and comprehensive treatment of the problem
has been undertaken in order to find all eGects which

could conceivably be observed with a microwave spec-
trometer of sensitivity and resolving power comparable
with what is now available. Doubling of the %=1 lines
is shown to be a new manifestation of magnetic hyper-
fine interactions.

II. FORMULATION OF THE PROBLEM

For the purposes of this calculation, the molecular
Hamiltonian based on the Pauli approximation to the
wave equation can be written as:4 '

X=A (J I.)'+A (J„—1.„)—s+C(J.—I,)'
y (epp&c)p r;Ic s(r; roc)-—

t Work at Columbia University supported by the U. S. Atomic
Energy Commission.* U. S. Atomic Energy Commission Predoctoral Fellow. Now at
Watson Laboratory, Columbia University. This work is sub-
mitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Columbia University.

'W. E. Good and D. K. Coles, Phys. Rev. 70, 979 (1946};
J. H. Van Vleck, Phys. Rev. 71, 468 (1947).

2 J. %. Simmons and W. Gordy, Phys. Rev. 73, 713 (1948).
s R. S. Henderson, Phys. Rev. 74, 107, 626 (1948); see, also, J.

M. Jauch, Phys. Rev. 74, 1262 (1948).
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4 J. H. Van Vleck, Revs. Modern Phys. 23, 213 (1951).
L. H. Thomas, private communication. The equation derived

on the basis of footnote (35) of Van Vleck's paper (reference 4)
is not entirely correct since factors of 1/r;z' and 1/r;z' were inad-
vertently left out of his Eq. (37) and the factor (1+Zrr34'&/gxMx}
replaces the factors $ in a fashion evident by comparing the
expressions (1.1) and (1.3) with his Eq. (37).
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interactions between electron and nuclear magnetic
moments with the currents set up by the rotation of
nuclear charges. %e shall not discuss the nitrogen
quadrupolar interaction (1.5) since it has been treated
elsewhere. '

t' Zrcj)dr )X
I

1+ ~vrc —vr. grcIrcgm)
rrcr ERIK gLIrrrcr+tto

Ã, L K&L

3gxI—x (rx rr) g—r.Ii (rz —. ri) j (1.4)

+ Xnitrogen quadrupole interaotion

+-s(16~t ot.)Z gx&(rx —r )S'Ix (16)

In (1), capital subscripts refer to nuclei and lower case
to electrons. These particles have, respectively, position
vectors I'~, r, , and velocities v~, v, relative to the
molecular center of mass which is assumed to coincide
with the center of mass of the nuclei. They have charges
Z&e, —e; spins Irr, Sj, and g factors grc, g„respectively.
p, and p, o are the Bohr and nuclear magnetrons, respec-
tively, while Mp is the proton mass and M~ the mass
of the Eth nucleus.

The inversion vibration which gives rise to the
microwave spectrum (=24000 Mc/sec) is a "tun-
nelling" of the nitrogen, which is normally at the apex
of the NH3 pyramidal structure, through the plane of
the three protons. This inversion energy has been
omit;ted from (1) since it has a negligible effect on the
hyperfine interactions.

The terms (1.0) represent the rotational energy of the
nuclei. 7 A and C are the transverse and axial rotational
constants exclusive of the electrons; J„J„,J, are the
components of the total molecular angular momentum
exclusive of nuclear spin; and L, L„,L,- are the total
electronic orbital angular momentum operators. The
cross terms of (1.0),

2' (J*L*+JwLe)+CJ.L.3~ (2)

represent the interactions of rotational and electronic
angular momenta neglected in the Born-Oppenheimer
approximation and cause the excitation of electronic
states above the ground 'Z state. The presence of such
excited states gives rise to a magnetic field at the nuclei
and consequently contributes to hyperfine effects. ' The
effect of terms (1.1) which express the interaction of the
nuclear magnetic moments with electronic currents,
does not vanish because of the rotational perturbation
terms (2) and is partly responsible for the experimen-
tally observed doubling. Terms (1.2) and (1.6)' are

e Sheng, Barker, and Dennison, Phys. Rev. 60, 786 (1941).
H. B. G. Casimir, The Rotation of u Rigid Body ie Quuetlm

Mechanics (J. B. Wolters, Groningen, 1931).' The "physical" basis of these interactions has been given by
G. C. Wick, Phys. Rev. 73, 51 (1948).

For diatomic molecules this term is more carefully considered
by R. A. Frosch and H. M. Foley, Phys. Rev. 88, 1337 (1952).

III. THE MOLECULAR WAVE FUNCTIONS

Fortunately, the complexity of (1) can be greatly
reduced by considering the relative magnitude of the
energies involved, by eliminating effects which are too
small to be observed experimentally by present tech-
niques, and by taking into account the symmetry of the
molecule and the statistics of the protons.

From its geometry it is clear that the molecule NH&
is left unchanged in any physically observable way
when transformed by any of the members of the rota-
tion-reHection point group C~y which is isomorphic to
the permutation group P~ of the protons. We are con-
cerned here only with the ground electronic state and
the ground vibrational states (excepting the inversion,
which can be considered a type of vibration). Hence, the
electronic and vibrational parts of the wave function are
symmetric (symmetry A r) rela, tive to the group Csv. In
addition the nitrogen spin function has symmetry A&.
We need only to examine in detail the product function
of the other variables

4 =An(4, t7X)1(v(s)4 (ar)4 (as)4 (as),

where p, 8, 7t are the Eulerian angles of the nuclear
framework, O.i, (72, o-3 represent the proton spin coor-
dinates, and s is the inversion coordinate. The coor-
dinate system used is that of Hund. "It is described, the
Eulerian angles defined, and the symmetric top rotation
functions frt(rtz, 0,71) given in Appendix I. Hund" and
Dennison" "have shown that for the lowest of the two
inversion states between which the microwave transition
occurs,

4 v=-o(s) =tv-o(-s),
and for the upper inversion state Pv t(s) = —Pv t(—s).

From the results of the symmetry operations P3 on
the coordinate space of the functions of (3), the repre-
sentative matrices of the group for each of these func-
tions belonging to the same energy level can be found
and reduced to its irreducible constituents. "If the direct
products of these irreducible representations are in
turn reduced, the total irreducible representations of the
molecule can be identified. There results a set of func-
tions which have definite symmetry with respect to the

"F.Hund, Z. Physik 43, 823 (1927).
"G. Herzberg, Izzfrared and Raznan Spectrzzrn (D. Van Nos-

trand Company, Inc. , New York, 1945) describes these modes and
gives their symmetries relative to the point group C3& of the
molecule.

"Z. I. Slawsky and D. M. Dennison, J. Chem. Phys. 7, 509
(1939);D. M. Dennison, Revs. Modern Phys. 3, 281 (1931)."E.Wigner, Grzzppentheorie zznd ihre Anzcendzzng (F. Vieweg,
Braunschweig, 1931}.See also K. B.Wilson, J. Chem. Phys. 3, 276
(1935) for applications to molecules. Note that he uses a different
coordinate system from ours.
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group I'3 and of these only those belonging to the irre-
ducible representation A2, are to be kept in accord with
the statistics of the protons.

The wave functions of (3) form irreducible represen-
tations of the three-dimensional rotation group and of
the various angular momenta involved in the problem.
Since the permutation and rotation groups commute,
these wave functions must form simultaneous irre-
ducible representations of these groups. The order in
which the reductions of the direct products of these
simultaneous irreducible representations are made will
depend on the choice of coupling scheme. We shall
choose it as follows: since magnetic interactions are
much smaller than the nitrogen quadrupole coupling
energy, the nitrogen spin, IN is first coupled to J to
give FI. The protons can then be numbered according
to their positions relative to the chosen molecular axes
and coupled together to give a resultant I, which is in
turn coupled to Fi to give the total angular momentum
of the molecule F. We are thus led to the coupling
scheme in Fig. 1 which is

J+IN=Fi, It+Is+Is ——I, I+Fr ——F. (5)

The symmetry properties of all the possible wave
functions of the molecule were found in accordance
with the above discussion and are listed in Table I.
This table shows that when E is a multiple of 3
(~E~ =3m), I=a and only 4 of the possible functions
are physically allowed while when ~E~ =3ri+1, I=-,'
and only 8 of the possible functions are allowed. It may
be seen from this table that when

~

E
~

= 3rr the two
rotational levels have different symmetry and hence
can be split by rotation-vibration interactions as found
by Dennison and Nielsen. " When ~EI =3N&1 the
rotation-vibration part of the wave function is de-
generate and the levels cannot be split by the same type
of effect." The levels can be split, however, by the
effects of nuclear spin since the total wave functions
including spin have a variety of symmetries as shown
in Table I.

Before making detailed calculations of the effect of
the Hamiltonian (1), it may be helpful to give a simple

Gos &

Gos x Sin &

Fro. 2. (a) Azimuthal molecular wave functions (M,r=O, A=i). '

(b) Variation of magnetic energy with x(E= t).

physical argument for the lifting of the E degeneracy
by the magnetic interactions. For each value of

~

E
~

the
molecular wave function can contain a factor of either
sinEx or cosKX, where x is the azimuthal angle about
the molecular symmetry axis.

A plot of the probability of a given value of x is given
in Fig. 2(a) for E=1, with the nuclear position super-
imposed. If the molecule is in one or the other of the
above two possible degenerate states, its most probable
orientation relative to the fixed laboratory axis is dif-
ferent even though classically the probabilities of clock-
wise and counter clockwise rotation are equally repre-
sented. Picturing the molecule projected on the plane of
the protons in Fig. 2(b), indicating a proton spin by an
arrow at the vertex of the triangle, we can see why the
interaction between the proton and nitrogen magnetic
moments gives the two states different energies. "The
central arrow indicates the orientation of the magnetic
moment of the nitrogen nucleus which can be assumed,
neglecting the precession of IN about F to remain fixed
during the molecular rotation. For any constant as-
sumed orientation of the proton spin relative to the
fixed laboratory frame, clearly the two states have dif-
ferent energies, and thus the E degeneracy is removed.

The number of lobes of the y dependence of the wave
function increases with E and consequently the varia-
tion in dipolar interaction energy becomes essentially
zero for E& i.

FIG. 1. N' H3 molecular coupling scheme referred to laboratory
axis. Z is the fixed direction in the laboratory, s is the axis coin-
ciding with the molecular symmetry axis, and K is the projection
of J on the molecular symmetry axis.

"D.M. Dennison and H. H. Nielsen, Phys. H.ev. 72, 86, 1101
I'1947).

IV. THE PERTURBATION CALCULATION

Introduction

The perturbation problem can be solved to second
order' in the ratio of hyperfine to electronic energies by

'5 Interaction between the protons and the magnetic field due
to molecular rotation gives the same type of eGect if, as may be
expected, the magnetic field at the proton varies with y.
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TAaLE I. Symmetry properties of the ¹483 wave functions.

[K(

f (VKJIFF1M' q)
Wave function exclusive

of proton spinsa
Irreducible

Number of represen-
functions tation

Value ofI MI

f (I1I2I23IMI)
Proton spin functions

Irreducible
Number of repre-
functions sentation

4'(VKJIFF1IFMP)
Total molecular wave function

Irreducible
Value of Number of represen-

F functions tation

3n+1' 2(2P&+1)

A2

3/2 a3/2
~1/2

1/2 +1/2—1/2
3/2 a3/2

a1/2
1/2 +1/2—1/2

3/2 a3/2
a1/2

1/2 +1/2
-1/2

Fia3/2
F1~1/2
F1~1/2

P,W3/2
F1~1/2
Fg&1/2

P,+3/2
Fg&1/2
F1~1/2
Fg&1/2
F1~1/2

4(2Pg+1)
4(2Pg+1)

4(2F&+1)
4(2P&+1)

8(2F&+1)
2(2r, +1)
2(2J,+1)
4(2Fg+1)

A1

E

A2

A1
A2
jV

a For a change of v from even to odd or vice versa the functions identified by the symbols At, A2 would be interchanged.
b A similar tabulation holds for

~
K

~

=322 —1.

diagonalizing an effective Hamiltonian G, obtained from
the true Hamiltonian, H of (1) by the relations between
matrix elements

&Eoi
I
G

I
Eoi'& = (Eoi

I
Gi

I
Eoi')+ (Eoi

I
Gs

I
Eoi')

(E,slGIEV&=O,

(EoslGilEoz'&= &Eosl 3(llEos'&,

(Eoil Gs IEpi') =Q (Zip —Ei)—
'(Q(Epil X

I

Ei")
Eglp

(6.1)

(6.2)

X(Ei"
I
x, lEoi'&), (6.3)

where Eto= energy of the ground electronic state and
Et=energy of an excited electronic state.

In our problem the / refer to excited electronic states,
to the ground electronic state ('Z) and the quantum
numbers i, to the rotation, vibration, and hyperfine
quantum numbers J, E; v; I'"~, I". Once the matrix G
has been calculated, the energy of the ground state can
be found by diagonalizing the matrix:

G =Gi+Gs ——((Eoi I
G

I
Eoi'&} (E)

The matrix elements of the hyperfine interactions in G
which are oG-diagonal in the rotation or vibration
energies off-diagonal in J, E, or 'v can be neglected
relative to those which are diagonal since their con-
tribution in the perturbation calculation is smaller by
a factor of at least 10 '. Similarly, the matrix elements
of the magnetic hyper6ne interactions oG-diagonal in
the quadrupole interaction energy (off diagonal in Pi)
make contributions smaller by a factor of at least 1/40
than those of their diagonal elements and thus they too
will be neglected.

The total Hamiltonian (1) can be broken up into
two parts: 3C~ involving only these terms which are
diagonal in the electronic quantum numbers and hence
contribute to G~, and the terms X2 involving the
remaining oG diagonal terms which contribute to G~

defined in (6.3).

Terms Involving Only the Ground Electronic
States (Gi)

Terms which make up what we have called G~ cannot
include any operators involving either electronic veloci-
ties or angular momenta, for such operators are known
to be off-diagonal in the electronic quantum numbers
in a 'Z molecule. "The matrix G~ is thus made up of
those terms which are left in (1) after the electronic
velocities and angular momenta have been set equal to
zero. The expression so obtained will contain the rota-
tional energy (from 1.0), the quadrupole interaction
energy (1.5), that part of the electron current terms
diagonal in 1 (from 1.1), the nuclear current terms
(1.4). The first two of these we have assumed are well

known. ' The next two can readily be calculated in the
molecular representation using the substitution, 4

~K= ~X rK,

where ~,=2AJ 5 ', co„=2AJ„A', ~,=2CJ,A '. Appen-
dix II shows details of this calculation. The dipolar
terms (1.4) are conveniently separated into the dipolar
interactions of the protons with each other and of the
protons with the nitrogen.

Dipolar interactions of two magnetic moments
transform under rotation as second degree spherical
harmonics. '~ Therefore, the only nonzero matrix ele-
ments of the proton proton dipolar interaction are those
between the states I=—,

' and I=-,' or between I=-,' and
I=-,'. The latter type exist only between states for
which IEI =3+ and IEI =3is&1, respectively. Since
such states are oG diagonal in the rotation energy, these
matrix elements can be neglected. Allowed states for
which I= s must have

I El =3is and for such states the
K degeneracy is lifted by a vibrational interaction. '4

' I. H. Van Vleck, Theory of E/ectric and Magnetic SNscepti-
bilities (Oxford University Press, London, 1932), p. 274."J.H. Van Vleck, Phys. Rev. 74, 1168 (1948).
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+ ~QN. (10.5)

The terms listed in (10.0-10.5) have their origins in the
correspondingly numbered terms of (1.0-1.5), (v

~

r '~ s)
indicates the inverse cube of the nitrogen-proton
distance is to be averaged over the vibration. p is the
angle between r and the symmetry axis. All other con-
stants not previously identi6ed are given in Appendix II
and are dependent only on the electronic states. The
meaning of the primes on the coordinate subscripts of
the proton angular momenta will be discussed in con-

' K. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1951).

Thus because of the small magnitude of the dipolar
interaction (pH'/hrNH, =7 kc/sec) matrix elements of
the second type will not cause detectable splittings
of these

~
E~ =333 lines. For these reasons we shall drop

the dipolar interactions of the protons with each other
from further consideration. The nitrogen proton dipolar
interaction produces a measurable eGect on the spec-
trum and is discussed in Appendix II.

In order to be able to use matrix elements tabulated
by Condon and Shortley" we shall carry out the cal-
culation of the coupling of the angular momenta referred
to molecular axes. ' Angular momenta then have the
same addition laws as in atomic cases if the inter-
nal angular momenta are reversed in sign. ' I,et then
the angular momenta J, Fi, F previously defined rela-
tive to laboratory axes (capital subscripts X, V, Z) be
referred to molecular axes. Let 0 be the total reversed
internal angular momentum defined by

0.=L.+IN.+I.= —(L.+IN.+I.),
J„=F„+0„,3 =x, y, s; (9.1)

then

PO„F37=0, Pz,J.7=0, TxT& TzT, = —ikT,—, (9.2)

P= S) P) S) P= X) P) S) T=P) PI) J) O.

These relations lead to the "molecular frame coupling
scheme" given in Fig. 3 which should be compared with
the "laboratory coupling scheme" of Fig. 1.

Based on the above considerations the calculation
of the matrix elements of GI in the molecular repre-
sentation gives

((1,3~G, ~i,3')) =~(J.+J„)+CJ, (10.0)

—(ai+ap) (J.IN,+JpINp) bpJ, IN, — (10.1a)

(&1+&2)(J*Il +J 'I2x'+A" I3*") (10.3a)

( Pi+P2) (J3Ilp+ Jy'I2y'+ J3"I33") '(10.1b)

—(Vi+V3) (J*I3.+J, I3.+J,"I3;) (10.3b)

+Pp'gNgNL(s~r '~s)IN I—3(s~r-psinpp~v)

X (INDI le+ 3INz(I2z+ Ipz) 3v3 INg (I23 I33)

43/3IN3(I3* I3—.)+4I r.(I3,—+I3,))
+3(s i

r-' cos'P
i
s~IN, I,7 (10.4)

F) F+7

I = I)+I~~

J-" Fj +I~

I'IG. 3. N"H3 molecular coupling scheme
referred to laboratory axis.

nection with Eq. (12).We shall now turn to the calcula-
tion of G2, the part of G which comes from the second-
order calculation.

K3= A (L,3+L„')+CL,' 2A (LQ,+L„J„)——2CL,J,
+(i p/~)Px;Lr;x '(, r, r-x)X—v,7 gxix (11).

The first two terms above do not affect the hyperfine
structure and thus will be dropped. The interaction of
the protons with the electrons expressed in the last
term is the same at points separated by a i20'rotation
about the molecular symmetry axis. Advantage can be
taken of this fact by employing initially three molecular
coordinate systems: x, y, s (described in Appendix I)
in which proton (1) lies in the xs plane; x', y', s' in
which proton (2) lies in the x's' plane; and x", y", s"
in which proton (3) lies in the x"s" plane. These
systems all have a common s axis (see Fig. 4). If ad-
vantage is taken of the above symmetry and the terms
of (11) are substituted into (6), G3 becomes

((lpi~Gp~lp3 ))= u3(IN J +IN J„)bpIN J (12.1)

c33(I3J*+I3*A+I—3*"A")
P3 (I&3J„+I3„J3+I—3„"J„")
yp(Iig J,+I3;J;+I3—:J; ),

(12.2)

Terms Off-Diagonal in Electronic States (G3)

Terms of G3 are of two types: (1) those off-diagonal
in the electronic orbital quantum numbers and (2)
those oG-diagonal in the total electronic spin quantum
numbers. (1.0) and (1.1) contain the terms of the first
mentioned type while (1.2) and (1.6) contain the
second-type terms. The perturbation of the electronic
states by molecular rotation finds expression in Eq.
(6.3) which will contain cross products of terms of type
(2) and (1.1).The effect of the terms (1.1) will therefore
be appreciable. On the other hand, since the total elec-
tronic spin is zero, electronic spin states are not per-
turbed by rotation. Hence, these latter terms are
orders of magnitude smaller than the former and can
be neglected. With this approximation, discussed in
more detail in Appendix II, the o8-diagonal terms left
for consideration are
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where the coeKcients of the angular momenta referred
to the molecular frames depend only on the molecular
electronic states. (12) contains only the parts of (6)
significant for our purposes. A summary of its derivation
together with the neglected terms is given in Appendix
II. «XI

The Secular Equation

The matrix 6, the important parts of which are given

by the sum of (10) and (12), must be obtained in the
molecular representation

l»rIiI»IFFiIir Jx)
FIG. 4. The three initial proton coordinate systems.

where

ni(J, I,v) =

G=A J(J+1)+(C—.4)E' (13 0) Q2(J)IP)) =

According to the discussion in the introduction to this

section, only matrix elements diagonal in J, E, and Il I

need be considered. Using the coupling scheme of Fig. 3,
the appropriate matrix elements of G can be found by
standard methods given in Condon and Shortley. "
The result of this calculation which is described in

Appendix III is:

3(I~ J)'+2(I~.J)-I~(I~+1)J(J+1)
(2J—1)(2J+3)2I,v(2Iiv 1)—

3(I~ J)2+2J(J+1)I~ J
Ix(Iiv+—1)J(J+1)

(2J—1)(2J+3)
3E'

+rqivQiv 1— — ~li(J, Iiv)
J(J+1)

(f)—a)E'
+ a+ Iii J

J(J+ 1)

(13.5)

(13.1a, 13.3a)

21'' J=Fi(Fi+1)—J(J+1) I~(1~+1))—

2Fi. J=Fi(Fi+1)+J(J+1) I~(I,v+1)—)

2Fi I=—F(F+1)—Fi(Fi+1)—I(I+1).

2gIlgpfp(j F] I
+- 02 (J,Iv)

Fi(Fi+1)

3E'
X (2)lr

—'(1——,
' sin2p)!2))l 1—

J(J+1))
(13.4)

1 1'
(+P)J(J+1)

Fi(Fi+1)J(J+1)
3I» I q

+[V—(+P)jE'+( —P)l 1—
I(I+1))

7(I2—I,) Iy
X(J* J ) )73(& P)l

& I(I+1) )

X (J~J,+J,J~), (13.1b,13.3b)

( 3(I2 I 2)) (J2 72)
!—

2 2) r ' sin'p! 2)) 1+-—
I(I+1) ) J(1+1)

(I,—I2) I (J.J„+J„J,)
+ -2V3(2)! r—' sin2p! 2))

I(I+1) J(J+1)

a= ai+a2+a2 is proportional to the transverse molecu-
lar magnetic field at the nitrogen nucleus and b= b2+b2
is proportional to the axial field. The terms with sub-
scripts i, 3 are due to the electron currents, the terms
with subscript 2 to the nuclear currents.

&=&2+&2+&2)

P =Pi+P2+P2)

'r Vi+72+'Y2)

where n is proportional to the total x molecular mag-
netic field at a given proton, and p is proportional to the

y magnetic field and y is the s magnetic field. The
subscripts i, 2, 3 have the same meaning as for u, b.
Other quantities have been identified previously (see
Appendix also). To find the energies of the perturbed
levels in each inversion state, it is necessary to solve
the secular equation:

((I„IJE!G!I„'IJ~E)
—E6 (I22,I22')8 (E,E')}=0, (14)

with the aid of the matrix elements given in Appendix
III. For E/1 the Hamiltonian, to the approximations
made above, is diagonal and the energy levels are given

by
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(C)(b)

60- I
UPPER IN- /

Ao VERSION F=3/& (Qi
LEVEL ll
V=1

F,=2 jl

-20-

Ao

F'- S/2 &(AAI

F'=5/2" II II

QEQAQA
F'= 5/2 I l I l-40-

-60-
F'=5/2

+'v/zri ip =/1 J(J+1)+(C—/l)Es

3E'
e/Iv—Q//I 1— I(lr (I Isr)

J(J+1) )
(b —a)E'

~
+I ri+ —Ibr J

J(j+1)&

h —(cr+p))E'i (I Fi)(Fi J)
+ I

rr+p+ ——
J(J+1) 9 Pi(Fi+1)

+2gzzgnrpo'(o
I
r ' (1—-', sin'P)

I r)

3E & Fi I
n, (j&j), , (15)

J(J+1)J F,(F +1)
where I=a for IEI =3n, and I=-,' for IEI =3ri&1

For E/3e, a typical set of levels whose E and I»
degeneracy has not been lif ted is shown in Fig. Sb.
This figure shows the effect of terms of (15) for a given
F~ value in the upper and in the lower inversion states.
Note that when E/ 1 these are the final hyperfine
levels and they are perfectly normal. They lead to a
spectrum shown in full in Fig. 4 of I. For E=3m there
are twice the number of levels since I=

~ . Experimen-

tally the presence of these multiple levels when E/ 1

has not been detected (see I). A close examination of
the fit of the spectral pattern deduced from (15) does
show that it is necessary to allow for a small change in
the gradient of the molecular electric field at the
nitrogen nucleus with rotation to obtain the best fit.
This variation is caused. by centrifugal distortion of the
molecule, which has not been considered in the above
discussion.

For E=1, the determinant (14) is not diagonal
owing to the terms in (J,'—J„')and (J,J„+J„J,)
which connect states di6'ering in K by 2 units. Asso-
ciated with these operators are ones dependent on I23
which connect states I23 ——0 with states I23——1~ The
magnetic perturbations thus simultaneously lift the
degeneracy in the levels of K=&1 and I»=0,1. Em-
ploying the matrix elements calculated in Appendix III,
one may easily solve the secular equation (14).Its roots
are F-= W, W, W+2f, W—2f, where W is defined by
Eq. (15) and

2gsgazio Fi I
-', (sir ' sin'lulu)+ — ——Qi(J, I//)

Fi(Fr+1)

(Fi I)(Fr.J)
+ (p —cr)- J(J+1). (16)

Fi(Fr+1)J(j+1)
With these roots the molecular wave functions can be
determined and are given symbolically below in the
laboratory frame:

1
4z, n

———
I Ie E=1I Iz/Fi I,,„=1I= —, FMz)

W2

+'I Ee=»I Is', I»=O I= ;FM,)l, -

Qv
a t0' 9 9g (0

F- 5/2

+E=iF+s/= s L I
t' E= 1 I Iz/ pi Iron

= 1 I= -', p Mp)

+ I»&——1

JISM,

Fi I»=1 I=-', P MF)

+sly E=1»v FiI» OI= ', FM,)——-
40-
20-
0 Fi~3

LOWER

2 0 INVERS
10N LE

40

F-5/2 QEQA, (AAI',

~F= 5/2

F 7/2
] F= 7/2

QEQA, (AAl

F=7/2

MQ
~A

PIG. 5. Energy levels and transitions for the levels J=3, X= 1
(V=O, F,=3; V'=1, Frr=2) (a) Energy levels omitt. ing proton
sects quadruply degenerate. (b) Energy levels including proton
effects diagonal in X-neglecting lifting of K degeneracy. (c) Actual
energy levels —full lines; forbidden levels —dashed lines; E levels
are degenerate lines corresponding to allowed transitions shown
in right-hand set of Fig. 3(b) of (I).A ~ refers to symmetric levels;
A & refers to antisymmetric levels.

1 j Iz/ Fi Iso =0 I= sz p M~}j=+,i

where the upper signs are to be associated together, etc.
Inspection of Table I shows that the functions for
8=8" clearly belong to the representation E and have
the same type energy levels as are found for E@1. The
remaining two functions must then belong to the
irreducible representations A I and A 2. Which of these
they belong to can readily be determined by applying
the permutation operator P;; or specifically P» to the
wave functions. Let us express the wave functions O'I, ~

in the representation

e,, ,=-', LI.E=1 JF,MF,)(II,I»——1 I=-..'M, )
+'ll IiIss=O I= g Mz))& I 0& E= 1 JPi MF1)

X(IIrIss 1 I=a Mz) ilI I&is=0 I=—s Mz)j. (17)
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P„e,'= ~ ( 1)I+m, '. — (21)

Thus if (—1)'I+'&= —1 the function 4' is physically
allowed and the energy is E=W+2f while when

(—1)I+&'+"= —1 the function 48 is physically allowed
and the energy is E=W 2f These r—.esults can be sum-

marized by writing

E=W—(—1)'+"2f, «r ~&~ =1. (22)

Note that if the levels marked A~ were allowed, the
intensity pattern would be reversed similar to that of
Fig. 2b of I.

Interyretation of the Magnetic Constants

Evaluation of the magnetic eGects discussed above
gives the three components of magnetic field at the
hydrogen nuclei produced by rotation and the two

independent components at the nitrogen nucleus. In
addition, the magnetic moment of the molecule due to
rotation about the symmetry axis or perpendicular to
it are known from earlier work. " These seven pieces
of information about the magnetic properties of NHS

should in principle be interpretable in terms of its
structure.

The electric currents which produce the magnetic
fields associated with rotation of a 'Z molecule can be
divided into those due to motions of the electrons and
those due to the nuclei. The currents due to nuclear
motion may be satisfactorily calculated from a knowl-

edge of the equilibrium nuclear distances. Unfortunately
a calculation of electronic currents is very dificult

"P. A. M. Dirac, The Principles of Quantum 3Iechunics
(Clarendon Press, Oxford, 1947), third edition.

s' C. K. jen, Phys. Rev. 81, 197 (1951);g. R. Esbach and M. W.
P. Strandberg, Phys. Rev. 85, 24 (1952).

In this representation the operator I'2~ can be expressed
as"

P88 PSS PSS PSS (8+2I2 ' ls) ~ (18)

In the representation ~I1,I»,I,MI), Is IS can readily be
calculated from the identity

I I= (I,+I,+I,) (I,+I,+Is) =f(I+1),
from which

IS IS= su(1+1)—3 8
—2(ir'I»)l=s(1»(f»+1) —8).

Thus,

P28
~
11 I28 1 I—8 ~I)

~
Il I28 1 I 8' lII)y

(19)
PSST'1

~

I1 ISS=0 I= 8 M I)= —
~
Ii ISS=0 I= 8 M I).

Also, from Appendix I,
P„&*&I.SC J P, iV.,)=( 1)&+ I.—E. J P,—u, ),
PSS&*'

i
s EJF1

—M F1)= (—1) +"
i

v E 1P1 M F1),
(20)

where v=0 for the lower inversion state and e= 1 for
the upper inversion state. Therefore, applying I'» to
%8 expressed in (17a), we find

because it requires a fairly detailed knowledge of the
ground and excited electronic states. However, the
following simple model probably corresponds roughly
to the behavior of the electron distribution as the
molecule rotates and gives approximately correct
values for the various magnetic eBects.

Assume that the nitrogen nucleus, which stays
essentially stationary at the center of mass as the mole-
cule rotates, is surrounded by a fixed spherical cloud of
electrons which includes all of its own valence electrons
plus one-half of the valence electrons of the hydrogen
atoms. Assuming further that the amount of electron
charge in this fixed cloud at radii larger than the nitro-
gen-proton distance corresponds to one electron. The
protons rotating about the nitrogen, then each carries
one-half an electron around with them, slipping
through the fixed spherical charge distribution (see slip
effect). 'I The one-half electron carried around with
each proton is assumed to spherically surround this
proton, and hence will rotate about the nitrogen with
the proton while staying fixed in orientation like the
chair of a Ferris wheel (see slip effect again). ' "A simple
classical calculation shows that this model gives the
two different components of the molecular magnetic
moment and the three diff'erent components of the
magnetic 6eld at the protons due rotation to an ac-
curacy of about 15 percent.

The magnetic field at the nitrogen nucleus due to
rotation is considerably larger than that produced by
the above simple model, and to understand its large
value, one must consider an excited electronic state of
the molecule and the molecular orbitals of electrons
which rotate with the protons. These electrons have
angular momentum of about 3X10 4 if the protons have
angular momentum k and may be considered as excited
a fraction of the time near 3&10 ' into an electronic
state of angular momentum k. Near the nitrogen
nucleus, the wave function of the excited electron
should involve a 2p nitrogen wave function, and hence
produce a hyperfine interaction near 1.5&(10 ' of that
expected for a 2p electron in the nitrogen atom. This is

in fact very close to the observed magnetic hyper6ne
interaction for the N" nucleus in NH3.
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APPENDIX I. THE MOLECULAR WAVE FUNCTIONS
AND THEIR SYMMETRY PROPERTIES

Molecular Coordinates and Eulerean Angles
(see Fig. 6)

%ith the origin at the center of mass of the nuclei,
the s molecular axis is taken as positive in the direction
of advance of a right-handed screw rotating in the
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order of the numbering of the protons 1, 2, 3.The x axis
lies in the plane containing the axis and the proton
numbered (1).The Eulerian angles are taken as follows
relative to the fixed laboratory frame:

p—the 6xed frame azimuthal angle, is measured from
the fixed x axis to the line of nodes, on;

0—the polar angle, is measured from the fixed s axis
to the molecular s axis;

y—the molecular frame azimuthal angle, is measured
from the line of nodes to the molecular x axis.

The angles @, x are dined in the range 0 ~&it, x(2m.
and are positive in the direction of rotation x—+y. 0 is
defined in the range 0~&8~&~ and is positive for the
rotation y—+s.

The Symmetric Toy Functions, U/, ~~(&,0,7/),
and Their Properties

These functions are 2'

U J(y 8 ~) ( 1)xci{M+K)s/spT

FIG. 6. Molecular coordinates and Eulerean angles.

We shall write

U&~~(&,8,x) =
f
SEJM) in the laboratory frame

= fvMJE) in the molecular frame.

( 1)MciiM+x) w/2g

)&e™+K~P/rod~ 8 for M ~& E
The operator F23 which exchanges protons 2, 3 and
thus corresponds to the coordinate transformations

where

Xe'&~o+x&lPx.~ (8) for E &~ M, 4+~, x~—x,
8—+x—||, s~—s,

(A4)

(2J+1)(J+-',d+-', s)!(J——',s+-', d)l 1

+JKM )
8m'(J ——.'s+-,'d)!d!(J+-',s —-', d)l

d= fM —E f, s= fM+E f,

l= (1—cos8)/2, 2p= 2J—(d+s).

(Ai)

@J.H. Van Vleck, Phys. Rev. 33, 467 (1929), especially p. 476
and 480. Also L. Pauling and E. B. Wilson, Introduction to
Quantum Mechanics (McGraw-Hill Book Company, Inc. , New
York) 1935).

The proper choice of phases has been discussed by
Van Vleck" and by Casimir' and is determined for us

by the requirement that the matrix elements ofJ„J„,J,
obtained from the above representation have the same
phase convention as is established by Condon and
Shortley' whose tabulated matrix elements of angular
momenta we propose to use in further calculations.
This choice is such that

(JM E(J.~sJ„fJ M E~»
= LJ(J+1)—E(Ea1)$1,

(J M Ef J.~sJ„fJM~1E) (A2)

= LJ(J+1)—M(M&1)11.

By using the functions so defined, it can be shown that

Uxor~($) a —8, )()= ( 1)~+~V rcsr~(y) 8,—x). (A3)

when applied to the rotation vibration function
feEJM), gives

P'»IoE JM)=( 1)~+ I. E—J M), —
Pss

f
e —EJ M) = (—1)~+"

f
e EJ M).

(A5)

APPENDIX II. CALCULATION OF THE TERMS IN
EQ. (10) FROM EQ. (1)

Terms Involving Only the Ground Electronic
State (G&)

The contribution of the term (1.3) and of the nuclear
velocity dependent parts of the term (1.1) lead, respec-
tively, to the terms (10.3a, b) and (10.1a, b) if the
molecular coordinates are taken relative to the axis
shown in Fig. 5 of Appendix I for the I~ dependent
parts (10.3a, 10.1a) and relative to the axes of Fig. 3 for
the proton dependent parts (10.3b, 10.1b). The coef-
ficients of (10.1) all involve integrals over the electronic
wave functions, for example,

&i= —2e/iog~C(1/ck) (elo f Z; r, ~ '(r;—ri), (ri), f nlo),
(A6)

where r~ is the position vector of proton 1 relative to
the axes x, y, s of Fig. 3 or of proton 2 relative to the
axis x', y', s' of Fig. 4, etc. Because of our lack of
knowledge of the electronic functions, these integrals
cannot be evaluated and thus will be treated as unknown
parameters. From (1.3) the following coeKcients can be
identified and evaluated approximately since the geo-
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TAsLE II. Symbobc representation of the second-order electron orbital contributions to the perturbation calculation.

Matrix
number

('G2)1

(G2)4

Term

(A'JI. )'

a"(I~I.)'

~~t(l 212+J22L2+ f 2L2)

2A "1.2JI,i

2A "'I.'I (Is+In+ I3)

a"'I-2Ilv (6+Ir+6)

t 'I-'(IA+hI3+IMIr)

Descriptive name usually applied —physical interpretation

I. uncoupling —exchange of angular momentum between elec-
trons and rotation of nuclei

Nitrogen pseudoquadrupole interaction of electron orbital
origin —perturbation of precession of perpendicular components
of electron orbital momenta of N" spin

Proton pseudoquadrupolar interaction of electron orbital
ollgln

Nitrogen magnetic moment interaction with molecular mag-
netic field
Proton magnetic moment interaction with molecular magnetic
6eld
A pseudomagnetic dipolar interaction in which the nuclear
spins are coupled to each other by their magnetic polarization
of the magnetic orbitals
Similar to above (6)

Comments for NHI

Contribute to apparent
moments of inertia, no
hyperfine e&ects
Appears as part of the
experimentally meas-
ured eqQ. Estimated
upper limit about 5 cps
Transforms like a 2nd
degree spherical har-
monic vanishes since
Iv —2
Discussed in detail be-
low and in text
Discussed in detail be-
low and in text
Estimated in the order
of a few cycles

Estimated negligible

a So named by H. M. Foley, Phys. Rev. 72, 504 (1947), who treated this term of diatomic molecules.

metrical structure of the molecule is known: Using the position of the nuclei relative to the
molecular frame of Fig. 5, we have from (1.4) for the
nitrogen proton dipolar interaction the terms+ (3/1 7)r (1+Z~llI-~/g~u) ~}cos PI v)

= —3.6 kc/sec,

be= —6ettsg&C(1/ch) (v Ir ' sin'PI v)=3.0 kc/sec,

ns ———2ettsgtrA(1/ch)(vIr 'f(2v3 sinp) '

+ (Zlv/17) I 14(1+gtr ')+3( cos'P}
I v)

= —(8.0+4.0Zn-) kc/sec,

ps = —2ettogtrA (1/ch) (v I
r '

f L(3+gIr ') (2%3 sinp) ')
+Zan(1+glr ' (3/17gtr) cos'p)}—(v)

= —(27.0+29.4Zlv) kc/sec,

2ettegttC—(1/ch) (vI r 'f
I (2+gtr ') (V3 sinP) 'j

+Znr(1+grr ) sill p} Iv)
= —(21.6+16.1Zn ) kc/sec.

Where the numerical values are obtained by substi-
tuting the geometrical constants of the molecule" and
the nuclear constants" given below (I~, Ic transverse
and axial moments of inertia, respectively)

I~=2.82X10 "g cm' 8=67'58', A= h'/2I~, —
Ic=4.43X10 "g cm', gtr=2X2 7896, C= h'/2Ic, —

r = 1.014X10—8 cm, gg =0.403.

The eQ'ects of the "nuclear currents" which have thus
been calculated can be subtracted from the experi-
mentally measured eGects to obtain those due to elec-
tronic currents only. This, of course, assumes that the
eGects of nuclear currents can be calculated from our
model of NH3 which disregards inversion. That this is
a good approximation is demonstrated by the fact that
the dipolar interaction calculated by this means gives
good agreement with the data.

~ Segre Chart (Addison Wesley Press, Cambridge, 1948).

—3t esg~g„(v
I

r-' sinP cosP

X[In*Il. Inr. (Is,+—Is,)+,'I&r(I„I-„)—
—In. (@~+Is.)+In,It.+,'V3Int, (Ip„-Is„)j, —

in addition to the terms given in (10.4). According to
the discussion in Appendix III, these terms are only
off-diagonal in E by ~1 and thus they may be dropped.
The proton-proton dipolar interactions have been shown
in the text to be negligible.

Second-Order Terms Involving Excited
Electronic States (Gs)

In a light molecule like NH3 the Russell-Saunders
system of representation is a good approximation, so
that the terms involving the L, L„,L, and the electron
velocities will depend only on orbital quantum numbers
/, while the operators 5, S„,S, will involve the spin
quantum numbers 0.. Because of their larger magnitude
we shall consider the former terms erst and return to
the latter at the end of this Appendix.

Calculation of the orbital perturbations is based on
the last three terms of (11) which are to be substituted
into (6.3). Rather than writing out in detail the seven
diGerent kinds of terms to which such a substitution
leads, we shall use a symbolism to describe them ac-
cording to their dependence on angular momenta and
molecular parameters. We represent Eq. (6.3) as

Gs= f Q. (Ete—Et) '((lIAJL+a'LInr
l &10

+ '(LI +LI +II,) I l,))'}, (A7)

which when expanded in an equally symbolic way gives
the contributions to G2 listed in Table II.
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M„=Sfyy/M„, M„„=M„=M„,=0, (A12)

and so the result of Henderson, expression (12.1), is

obtained with

3I„=a3= M„y, 3f„=b3. (A13)

Calculation of (Go)o made in the manner above for

each proton in turn in its "own" system of axes (Fig. 4)
leads to the terms (12.2) if the reflection symmetry of
the electronic functions in the xz plane is considered.
The coeflicients appearing in (12.2) are:

rro=~ P (&io—&i) ((Io I bl»(llI I ~o&

l& lp

+(I II-*l»«1 8*14&) {A14)

p.= (1/c)eg„polX;r»- (r;—ri) Xv,

with similar definitions for po and yo in terms of $„,I„,
and $„I.„respectively. cro, po are not equal because of
the off-axis position of the protons. An order of mag-
nitude calculation of the term (Go)s—the pseudoquad-

To be specific, consider now the matrix (Gs)4 as an
example and define for convenience4

il„=2givelio(1/c)$p; r;N '(r, —re)Xv, l„"* o *. (AS)

In the molecular frame r~, the position vector of the
nitrogen nucleus, is treated as a constant vector and
its angular dependence relative to the laboratory axes
is thrown over on the total angular momentum. Thus

g„ is, along with L„,independent of the rotational
quantum numbers. The matrix (Go)4, for instance, has
elements

(ioz
I
(G,)4 lios')

= 2 («o—& )-'I Z((Z(41 ~.I-
I »(sly I

o"&)
l&lp V

x (p, (l I &, I
to&(s" 14, Is'&)

+ (Z.«o I n. I »(s I
I~.Is"&)

X (2, (t I &.I-;14&(s"
I
I.

I
s'&) }3. (A9)

q„and L, do not commute with each other if v/ v' but
do commute with J„andI„.Because only matrix ele-
ments diagonal in I and IXI are needed, the lack of
commutation of I„andJ„canbe ignored, With the
help of Eq. (A3), the matrix (Go)4 can be expanded as
a sum of products of angular momentum operators
I,J'„with coefficients dependent on the electronic
states only. 4 A typical coefFicient would be:

M,„=Q (Bio—Ei) '((lolil„ll&(lid„I., llo&

l gl0

+«o I
~ I-

I »«I n" I to&). (A10)
And so

(Go)o= o Z. Z" M "~IN", (A11)

where M„„arethe components of a symmetric tensor
whose principal axes coincide with those of the molecule

since the nitrogen nucleus is on the axis. From molecular

symmetry, therefore,

rupolar term, can be made" by assuming a case of
"pure precession. " The order of magnitude of (Gs)s is
given by

Ist {1+1)
(Go) o=poMg~'(r~ '&' ergs

46Eg
{A15)

(r, ') can be estimated from the fine structure separa-
tion of atomic spectra, "which gives

p'(r. ')=
2(l+-', )Z;

APPENDIX IIL REDUCTION OF EQS. (10) AND (12)
TO THE FORM OF EQ. (13)

Equations (10), (12) are in the form of sums of
products of angular momentum operators with coef-
ficients independent of these operators. The matrices
are to be diagonalized in a representation

I
IoIoIooI iIFFiIorJE&,

for which the vector coupling scheme of Fig. 3 is
understood. We shall first calculate the important
matrix elements contributed to G(7) by a typical

"H. A. Bethe and R. P. Bacher, Revs. Modern Phys. 8, 209
(1937).

'4 N. F. Ramsey and E. M. Purcell, Phys. Rev. SS, 143 (1952).» This estimate is discussed by C. H. Townes and B.P. Bailey,
J. Chem. Phys. I?, 782 (1949).

"N. F. Ramsey, Phys. Rev. 91, 303 (1953).

Z,~3.5 for nitrogen and assuming a p orbital of the
bonding electron at the nitrogen l= j.. Av is not directly
available from experiment but can be estimated to be
~120 cm ' for a p state, "while DZ~ is of the order
of 40 000 cm '. One obtains with these values (Go)o~5
cps which is negligible. A similar reasoning indicates
that (Go)o, (Gs); are negligible, while (Gs) o vanishes and
(Gs) i does not affect the hyperfine spectrum.

A calculation of the perturbation of the electronic
spin states can be carried out in a manner entirely
analogous to the above orbital calculation, using in Eq.
(6.3) the terms of (1.2) and of (1.6) instead of the
terms of (11). Employing the same rough-type sym-
bolism as in (A1), we may write

G»= {2 (~«—&.) '((~
I
f ~(Iiv+Ii+Io+Io)

I
~o&)',

(A16)

which leads to terms of the type listed in Table III.'4
The last two terms of Table III contain a part de-
pendent on molecular orientation and a part inde-
pendent of orientation both of about the same mag-
nitude. ' The orientation independent pa,rt has been
determined experimentally for several molecules to be
of the order of 1 to 100 cps. For NH3 experimentally
it is less than 300 cps (see I) and therefore we shall
neglect these terms.
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TAsLz III. Symbolic representation of the second-order electron spin contribution to the perturbation calculation.

Matrix
number Term Description Comments for NHI

(Gmg), 0"(RES)'

(Gmg) 2 y'S&(I/+I p+I 3 )

(G2s)a 2b"'S'I~(Ii+I2+Ia)

(Gmg)4 2pS'(IgI2+I~I~+Iils)

Nitrogen pseudoquadrupolar interaction arising from
the perturbation of electronic spin states by the
nitrogen magnetic moment.
Proton pseudoquadrupolar interaction

A pseudo-dipolar interaction and an EN I interaction
due to magnetic interactions of the nuclei with elec-
tron spins which are exchange-coupled together"
Similar to above

May not be negligible but not dis-
tinguishable from pure quadrupolar
interaction.
Transforms like a 2nd degree spherical
harmonic and therefore vanishes as

Experimentally determined to be neg-
ligible.

a E. L. Hahn, Phys. Rev. 80, 580 (1950).
b See reference 26.

product of two such operators. Then applying this
result to the operators of Eqs. (10), (12) we shall
deduce expression (13). Consider the matrix element
from (10.4):

By (A18),

(I I) ( I F~
(I.).=

I(I+1) 4F (F +1)I
BR= (I.I3I23I~IFF~I~JKI I~,I.„II2I3I2g

XI~I'F'F g'IN J'K'). (A17) Fi J
x

4J(J+1)i
V=X) g) S

(A20)
p= i) 2) 3)Sy noting the commutation properties and approxi-

mations previously discussed and by using the matrix
elements tabulated in Condon and Shortley, we can
reduce the above typical matrix element to the form

and thus substitution of (A20) into (A19) yields (13.1b)
and (13.3b).

When substitutions of the type (A18) are made in
10.4 one obtains after some rearranging L(10.4) =—G~].Fg II, I,

5lr =—
I(I+1)Fg (F,+1) Gg (Fg I)(Fg I~)

(v I
r-'(1 —-', sin'p)

I v)
X(yF&IvJK

I
I~.F&. I yF~I~JK'), (A18) &02g„g„F,(F,+1)

where we write for the coeKcient

(I I32Ig I/3II I2I I2I3I23 I)I)

its value I2 I/I(I+1). The reduction of the terms
(10.1a), (10.3a), and (12.1) to the corresponding terms

(13.1a), (13.3a) can readily be accomplished with the

help of the vector model of Fig. 3. Term (10.5) has been
shown elsewhere' to be expressible as (13.5). The
operators of (10.1b), (10.3b), and (12.2) can be trans-
formed to a common system of axes (see Fig. 4) by
expressing them in terms of the linear combinations:

Tgn&= J.+iJv, Tv&'&=J„T,o&=J. iJ„, —

3Fg I
(v I

r-'(1 —3 sin'P)
I v)I,F „

Fg(Fg+1)

( 3(h' —I23') ~y(vI(8r)- sin pI.)I 1+
I(I+1) )

X (I~iFz,—IN„Fq„) &v I
(vS/4r') sin'—p I v&

and by. noting t at or a rotation ~, )pg a outh t f tat'on g(0 Q ) about the «c»»ng that J+I~——F, and making use of the vector
mo el, one obtainscommon z axis,

T'~ ( ) —gg 'T~( ) go'( ) —T'0( ) T'
~

(&) —g$)r)g (0)

The result of such a transformation is

I (12.2)+ (10.1b)+ (10.3b)]
Gp =2a(J,I,+J„I„)—+yJ,I,+2&(J,I~,

J„I„',J.(I,+I,.)— ',J„(—I-„+I„)—-
V3e)J,(I2„I,„)+J—„(I2, I3 )].—(A19)—

INgF), = —f I~ J/LJ(J+1)]}J',2

3(3I~ 2—Ipp) —
~~ I—~a

(I~,Fg,—I»F,„)=—fI~ J/I J(J+1)]}
(A22)

X (J.'—Jv') —(I~ ' I~')—
(4.FR+I~„Fg.) = —fI~ J/LJ(J+1)]}

X (JZ„+J„J,) (I&.I»+I»I&.). —
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The matrix elements of (3IN,'—IN' ), (IN,' I—sr„'),and

(IN,IN„+I~„Isr~)transform under rotation as certain
linear combinations of second-degree spherical har-
monies and may therefore be written as 2~

(a) (IvFr JK~IN*' In—, ~
INFr JK )

= (()s(J,IN)/J(J+1))(JK~ J —J s~ JK'),

(b) (I~F&JK
~
(IN Iv„+IN„INg)IvF,JK')

=(()s(JI~)/J(J+1))(JKIJ J,+J„J.)JK'),

(c) (INF&JK
I
3I&,s I&'I I—&F,JK')

= (f)s(J,IN)/J(J+1)) (JK
~

3J ' J'~ JK')—, (A23)

where the factor of proportionality (Qs(J,IN)/J(J+1))
is the same for all matrix elements of this type. Qs (J,IN)
can most readily be evaluated from (A23c) with the
help of matrix elements tabulated in Condon and
Shortley. ' One finds after considerable algebra the
result given in Eq. (13). Substituting relations (A22)
and (A23) into (10.4) one obtains Eq. (13.4) of the text.
(Note that the signs of I, IN have been restored to
their normal values and compensating changes in sign
made in their coeKcients. )

Finally the proportionality factors of the type (A18)

can be evaluated from Condon and Shortley. ' Thus

3(IP Iss—s) q )—4 0)1+—
I(I+1) ) 4 0 4)

( 3IssII (—1 Oq
1—

I(I+1)4 ( 0 1l

!
(I,—I,).I i 0 2/VSq

I(I+1) E2/v3 0 )
where the rows and columns are to be labeled by values
of I23= 1, 0 in that order.

Elements of the type (IsrFrJK~ J,'~~INFtJK') are
evaluated in a similar fashion substituting E for 3f in
the Condon and Shortley matrix elements and changing
the sign of i, thus 2~

(JK~ J, —J„~JK)=0, (JKl J,J„+J„J.
~
JK)=0,

(J —1~ J,'—J„'iJ+1)=-,'J(J+1),
(J+1~J,J„+J„J,

~

J —1)=;sJ(J+1), -
(J +1~J,'—Jv'~ J' —1)=—',J(J+1),

(J 1~J.J„+J„J—.
~
J 1)= ——,'sJ(Jy1).

"See reference 13, Chap. XXI, Sec. 5.
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Sulfur Bonds and the Quadrupole Moments of 0, S, and Se Isotopes*

G. R. BIRD) AND C. H. TOWNEs
Columbia University, Eevf York, lVevJ York

(Received February 25, 1954)

Quadrupole couplings of S"in HDS, SO& and CH3SH have been measured. These and previously measured
quadrupole couplings of S" in OCS, HNCS, CS, and S8 are examined to determine the nature of sulfur
bonds and the best value for the S'3 quadrupole moment. s—p hybridization is found to be common, but not
universal, in sulfur bonds. The S" quadrupole moment is —0.%4~0.01)&10~'cm . If O and Se bonds are
assumed to be similar to those of S, the quadrupole moments of 0" and Se" are —0.004X10 "cm' and
0.9)(10 24 cm~, respectively.

INTRODUCTION

~~OUPLlNG of the nuclear quadrupole moments of~ the halogens in molecules has been extensively
studied and interpreted in terms of bond structure,
but attention given to quadrupole hyperfipe structure
of 0, S, or Se has been rather small by comparison.
We have attempted to study the quadrupole coupling
of S" in a variety of bond structures in order to obtain
information about the nature of sulfur bonds, and in

*This research was supported in part by the Army Signal
Corps jointly with the U. S. Office of Naval Research under a
Signal Corps contract.

t Formerly National Research Council Postdoctoral Fellow at
the Columbia Radiation Laboratory. Now at Department of
Chemistry, The Rice Institute, Houston, Texas.

addition to obtain improved values for the nuclear
quadrupole moments of S", S", and isotopes of the
chemically similar elements, 0 and Se.

The most abundant sulfur nuclei, S" and S", have
zero spin and hence no quadrupole moment, but the
less common S" (0.75 percent abundance) has a spin
of 3/2 and a quadrupole moment. & uadrupole hyperfine
structure due to this isotope was first observed by
Townes and Geschwind' in OCS, and its quadrupole
coupling constant in this molecule has been determined
with increasing accuracy by several workers, White's
value' eqQ= —29.130&0.008 Mc/sec being the most

' C. H. Townes and S. Geschwind, Phys. Rev. 74, 626 (1948).
2 R. L. White, Columbia Radiation Laboratory Quarterly

Report, March 31, 1953, p. 21 (unpublished).


