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It is shown that the data on the energy and temperature dependence of the secondary yield of magnesium-
oxide single crystals, recently published by Johnson and McKay, can be understood on the basis of a simple
model. In fact, quantitative agreement is obtained for the temperature coefficient of the yield. The im-
portance of measurements far away from either side of the maximum of the yield curve is stressed.

1. INTRODUCTION

NUMBER of accurate measurements on the sec-

ondary emission coefficient of magnesium-oxide
single crystals has recently been published by Johnson
and McKay! in his journal. Their measurements of the
secondary yield § extend over a primary range up to
5 kev and over a temperature range between room tem-
perature and 740°C. In view of the fact that the yield
curves have been measured far beyond the maximum,
it seems of interest to attempt to explain these obser-
vations on the basis of a simple model and, as we shall
see below, this is indeed possible. The reasons why in
secondary emission the regions far away on either side
from the maximum are of particular interest in setting
up suitable models for the secondary emission process
will be made clear below.

The fact that the specimens used by Johnson and
McKay showed variations in 8ma.x between about 5.5
and 7.1 is probably of no consequence for the considera-
tions given in the present paper. Johnson and McKay
ascribe these variations to possible changes in the
physical structure or in the work function resulting
from the treatment after cleavage. Another possible
factor may be sought in variations in the concentration
of excess oxygen in the crystals.2 Whatever be the cause,
experience in this laboratory indicates that vacuum
heating of MgO to a temperature of 740°C over periods
required for the § measurements does not alter its
physical properties. It thus seems safe to assume that
the values of & given by Johnson and McKay for a
given crystal actually pertain to a crystal with a fixed
set of physical properties. From the measured points
published in Fig. 5 of the paper referred to above, the
following table may be set up for one of their samples in
the high primary energy region:

E,o represents the energy of the bombarding pri-
maries. We note that for the sample under consideration
the maximum yield at room temperature is 7.0, occur-
ring for E,~1100 ev; at 740°C the maximum yield
of 6.2 is obtained for E,=~900 ev. From the table the
following conclusions may be drawn:

(a) For primary energies =2 kev the ratio 8740/820 is
practically constant; the average value is 0.794-0.04 if
t Work supported by the U. S. Army Signal Corps.

! J. B. Johnson and K. G. McKay, Phys. Rev. 91, 582 (1953).
2 K. C. Nomura, Phys. Rev. 89, 894 (1953).

we exclude the perhaps doubtful value at E o= 3.0 kev.
(b) For primary energies 23 kev the secondary yield
varies approximately inversely proportional to E.

Moreover, their measurements show that for primary
energies below 500 ev the temperature effect is neg-
ligible, whereas the value of E, at which the yield is a
maximum shifts to lower values at higher temperatures.
For a qualitative explanation of the temperature effect
we refer to the paper of Johnson and McKay.

2. THE LOW PRIMARY ENERGY REGION

Before discussing the conclusions drawn from the
table a few remarks about the low primary energy region
may be in order. Denoting the number of secondary
electrons produced by a primary at a depth between «
and x+dx below the surface by #(x)dx and the proba-
bility of escape by f(x), the secondary yield may be
written as

6=f n(x) f(x)dx. 1
0

If the penetration depth x, of the primaries is very
small compared with the range x, of the secondaries,
the function f(x) is approximately a constant and (1)
reduces to

xnf(0), xpKa,, (2

where # is the total number of secondaries produced per
incident primary electron. Now, for primary energies
larger than several times the energy required to produce
a secondary, it seems reasonable to assume that the

TaBLE I. Values of the secondary emission coefficient of MgO
as function of the primary energy E, at room temperature and
at 740°C. The data are taken from Fig. 5 in the paper by Johnson
and McKay and only refer to the region beyond the maximum of
the yield curve.

Epo (kev) 8740°C 820°C 3740/%20 (Eppd)200C (kev)
5. 2.18 2.74 0.79 13.7
4.5 2.18 2.86 0.76 129
4.0 2.74 3.64 0.75 14.6
3.5 2.89 3.69 0.78 13.0
3.0 3.19 4.69 0.68 14.1
235 3.81 4.92 0.77 124
2.0 4.61 5.55 0.83 11.1
1.75 5.15 6.15 0.84 10.8
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total number of secondaries produced is proportional to
E . For such primary energies then (as long as x,<x;),
the yield should according to (2) be proportional to E .
For MgO this seems to be approximately the case up
to Ep=2400 ev, according to the results of Johnson and
McKay. The importance of yield measurements in the
low primary energy region is primarily that they may
be used to study possible changes in the electron
affinity of a crystal, because the latter determines in
part the escape probability. For example, at present it
is not known whether a stoichiometric excess of oxygen
in the MgO crystals as a whole is correlated with a
change in electron affinity.

A tentative indication about the electron affinity of
MgO may be inferred from the first crossover point
(6=1) which for the sample under consideration occurs
at a primary energy of 32.8 ev. Primaries of this energy
may be expected to produce about two secondaries,
indicating that f(0)=~0.5. Now, the probability of
escape of an electron at the surface with an energy e in
the conduction band is 0.5[1— (X/e€)¥], where X is the
electron affinity. Although this formula cannot be
applied immediately to the case under consideration,
the implication seems to be that X<, i.e., X is prob-
ably only a fraction of an ev.

3. THE HIGH PRIMARY ENERGY RANGE

Beyond the maximum in the yield curve, the range of
the secondaries #, is smaller than the penetration depth
of the primaries. It will be assumed that, at any rate
over the secondary range, the primaries move essen-
tially along straight lines. Also, it will be assumed that
the number of secondaries produced per unit depth is
proportional to the energy loss per unit length of the
primaries. As is well known, the primaries lose energy
in accordance with the equation?

dE, 1 2E,
———=const— log—, (2)
dx E, €

where € represents an excitation energy. Over a limited
range of E, this expression may be approximated fairly
well by Whiddington’s law :

dE, A
———=—, or

dx E,

E,(x)= (Ep’—24x)% 3)

For the yield at large values of E, one is in fact only
interested in the production of secondaries over a depth
range over which the primaries have lost only a fraction
of their total energy, because the function f(x) decreases
rapidly beyond a certain value. From (3) it follows
that

1 dE,(x) /AN\! 1
n(x)=—— = (—) —, 4)
e dx 2/ e(xp,—x)*

3See A. J. Dekker and A. van der Ziel, Phys. Rev. 86, 755
(1952).
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Fic. 1. The function (x,—x)"% versus x/x, which determines
the production of secondaries as function of depth for a Whid-
dington law.

where ¢, is the average energy required to produce a
secondary and x,=E,?/24. Thus, as long as the range
of the secondaries is small compared with x,, the pro-
duction of secondaries is practically constant over this
range and equal to

n(x)~A/(e.E ), (%)

as may be seen from Fig. 1. For a primary energy of
3 kev, for example, x,/x,~0.1 in MgO; and for 5 kev,
xs/%,~0.04. From (1) and (5) we thus obtain for the
yield at high primary energies,

A
b=—o/,

éeE 0

with f= fxpf(oc)dxzfoo flx)dx. (6)

The integral f is determined by the crystal under con-
sideration and depends on its temperature, electron
affinity, density of electron traps, etc. However, if these
quantities are fixed, the product £, should be constant
according to (6), in agreement with the findings of
Johnson and McKay. It also shows the importance of
yield measurements for primary energies far beyond
the maximum, because such measurements provide
direct information about the integrated probability of
escape. One example is the influence of temperature on
the secondary yield for high primary energies, discussed
below. In a similar fashion, the influence of electron
traps may be studied and models for the escape mecha-
nism may be checked. Unfortunately, most yield
measurements have been carried out too close to the
maximum yield to allow a quantitative interpretation
because in such cases one is not permitted to employ
the simplifying assumption made here.

4. THE TEMPERATURE DEPENDENCE OF THE YIELD
AT HIGH PRIMARY ENERGIES

As a first step it seems reasonable to attempt an
explanation of the temperature effect on the basis of
electron-lattice scattering alone, neglecting possible
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trapping, - etc. It seems that indeed this provides al-
ready a quantitative interpretation of the results ob-
tained by Johnson and McKay, as shown below. From
the theory of electron-lattice scattering (see appendix)
in ionic crystals it follows that per collision a secondary
loses on the average an amount of energy

— (de/dx)N=hv/ (2n,4-1) = a(T), )

where N represents the mean free path and » the fre-
quency of the longitudinal optical vibrational modes.
The quantum numbers #, are given by

n,=1/[e"*T—1]. (8)

From the optical dataton MgO one finds that 2»~1300%,
where k is Boltzmann’s constant. It should be noted
that «(7) in (7) is a function of temperature alone and
independent of the energy of the electron. If for sim-
plicity it is assumed that all secondaries are produced
with the same energy e, it follows from (7) that the
energy of a secondary after V collisions is equal to

e(N)=e— Na(T). 9)

Moreover, the mean free path of the secondaries may

be written as
A=Nee/ (2n,+1), (10)

where for the energy range of interest Ao is approxi-
mately constant as indicated in Fig. 2. According to
the last two equations, the mean free path as function
of the number of collisions suffered by the secondary
after its birth is

=[N/ (2n,+1)J(es— Na). (11)

For the escape mechanism the following, admittedly
simplified, model will be adopted: on their way to the
surface the secondaries carry out a one-dimensional
random walk perpendicular to the surface, with steps
decreasing in accordance with (11). Furthermore, it
will be assumed that secondaries that have lost an
energy e’ do not take part in the secondary emission
process any longer. In other words, the life of the
secondaries is limited to a maximum number of colli-
sions N, given by

(12)

Two remarks may be injected at this point. From (7)
it follows that the energy lost per collision at room
temperature and 740°C is respectively

«(298°K)=0.108 ev, «(1013°K)=0.063 ev.

Na= €.

In other words, the energy loss is smaller at the higher
temperature. This by itself would lead to an increase

4See H. Frohlich, Theory of Dielectrics (Oxford University
Press, Oxford, 1949), pp. 155 and 158. [The maximum optical
absorption (transverse waves) has been observed at 17.3X10A.
For longitudinal waves the frequency is larger by a factor
(K/Ko)t where K and K, are, respectively, the static and high-
frequency dielectric constant. For MgO these constant are K=<10
and K,==3, leading to hv=21300k.]
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in yield with increasing temperature and the observed
decrease must thus result from .a decrease in A which
swamps this effect. In this connection it is interesting
to consider the requirement (12) for the hypothetical
case that the secondaries move in straight lines towards
the surface, rather than in a random walk fashion.
Under these circumstances the secondary range would
be equal to N..{(A\)a, where (\)s represents the average
mean free path during the life of the electron measured
in numbers of collisions. It follows immediately from
(7), (11), and (12) that N,.(A\)a is independent of tem-
perature. One thus concludes that the observed tem-
perature effect is essentially determined by the zig-zag
nature of the paths of the secondaries.

Continuing now with the random walk model, one:
can readily show that the mean square displacement
corresponding to NV steps, the length of which decreases
with a fixed amount for each collision in accordance
with (11), is given by

(@ =N N)n, (13)

where the average of \? is taken over IV collisions. If
N=N,, the corresponding quantity (x*s will be con-
sidered as the square of the secondary range x, in the
model adopted here. According to (11) and (13) the
range of the secondaries for a given temperature is
then equal to

1

N 2 2
Xy= [Nm 0—~-—(e02+a2<N2>Av—Zewz(N)Av] , (14)
(2n,+1)?

where the average value of NV is V,,/2 and where for
N,>>1 one may write

Nm
<;V2>Av = f
0

By employing (7) and (12), expression (14) may then
be written as

NN 1
—=-N mzo
N,

(15)

%= const (2n,~+1)7%,

(16)

AinA

Fic. 2. The mean free path A as function of energy in magnesium
oxide as calculated from (26a) and (26b) for T=300°, T=600°,
and T=900° absolute.
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Hence, as T increases, #, increases and the range of the
secondaries decreases. Now, for high primary energies
the number of secondaries produced at a depth « is
given by (5) so that the yield is proportional to

(A/ €E po)s. ¢Y))

For a given value of E, the ratio of the yields at two
temperatures 7'y and 7', will thus be given by

61/52=[(271«,,2"*‘1)/(2%,,1‘!‘1)]*. (18)

The fact that §;/8. is independent of the primary energy
far enough beyond the maximum in the yield curve is
in agreement with the observations of Johnson and
McKay. Also, for the ratio corresponding to 7,=1013°K
and T,=298°K (18) yields §:/6.=0.76, in good agree-
ment with the experiments. It may be noted that (18)
is also in agreement with the observations of Johnson
and McKay in so far as é is approximately a linear
function of 7" over the range between room temperature
and 740°C.

One may raise objections to the one-dimensional
model employed here. In view of the fact that only the
ratio of the ranges of the secondaries at the two tem-
peratures is involved, it would seem, however, that a
three-dimensional treatment would lead to the same
result because both (11) and (12) retain the same form
so that the temperature dependence of (A, is the same
as in the case treated above. The simple model em-
ployed here thus gives a quantitative interpretation of
the observations.

APPENDIX

A summary of the theory of interaction between
slow electrons and lattice vibrations in ionic crystals,
initiated by Frohlich,® may be found in a paper by
Seitz.% Let Ze be the charge per ion, M the effective
mass per ion pair, @ the shortest interionic distance,
# the number of ion pairs per unit volume, » the fre-
quency of the optical vibrations, ¢ the wave vector of a

5 H. Frohlich, Proc. Roy. Soc. (London) 160, 230 (1937); 172,

94 (1939).
8 F. Seitz, Phys. Rev. 76, 1376 (1949).
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particular vibrational mode, and E the energy of the
electron. The mean free path between collisions may
then be shown to be given by

1 wmZ2%* 2n,+1

q
S - (19)
N 2nuMathy E q

The lower limit of the integration over ¢ is equal to
27muv/hk, where k is the wave vector of the electron.
The maximum wave vector of the phonons is about
equal to m/a and this value may be employed as the
upper limit as long as 2k2>w/a. If, however, 2k<7/a,
the upper limit must be taken as 2k. For MgO the mean
free path has been plotted in Fig. 2 as function of the
energy of the electron for three different temperatures,
assuming (19) to be valid. This shows that \ is approxi-
mately a linear function of E over the energy range of
interest and thus justifies Eq. (10). It must be admitted,
however, that because the mean free path turns out to
be small, it is -doubtful whether the perturbation
method employed by Frohlich is valid.” On the other
hand, the treatment by Seeger and Teller® leads to a
similar energy dependence of A and it would seem there-
fore that (10) is formally correct.

Although the loss of energy by an electron per unit
time is an essential quantity in calculating mobilities,
the energy loss per unit path length is essential in the
escape mechanism. One can show on the basis of the
ideas developed by Frohlich that

dE wmZ%* 1 dg
—= — | — (20
dx 2nMa® E q

Equation (7) then follows immediately from (19)
and (20).

The author wishes to acknowledge the interest of
Drs. W. G. Shepherd and A. van der Ziel in this
problem.

7 See F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 534.

8 R. Seeger and E. Teller Phys. Rev. 54 515 (1938); 56, 352
(1939).



