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An examination of the validity range of the Shockley theory reveals that it is applicable to the emitter
and collector regions for all current values of interest, whereas it is valid in the base region only for very
small currents. In the present paper the treatment of the base region is extended so as to apply to arbitrary
injection level and to include the effect of surface recombination. Two predictions are made: (a) the surface
recombination velocity should increase with injection level; and (b) the alpha cut-off frequency for a
transistor with plane parallel junctions should increase with emitter current by a factor of two.

I. INTRODUCTION

SIMPLE physical theory of the junction transistor

~

~

was presented by Shockley in 1949.' This theo-
retical treatment had the unusual merit of preceding
by a period of two years the first experimental realiza-
tion and study of the device. ' In the course of reporting'
these experiments, the theory was somewhat further
elaborated. Since that time only minor extensions or
modifications of the physical theory have been pub-
lished; Steele' has restated the theory concisely with
slight modification of the treatment of the frequency
response; Early' has made the point that space charge
widening of the collector junction with collector voltage
has important consequences in the small-signal be-
havior; and Hall' has attempted to extend the theory to
cover power transistors. '

The simplicity of the Shockley theory follows pri-
marily from the restriction of the treatment to low in-
jection levels (i.e., levels for which the density of
minority carriers is much smaller than the density of
majority carriers) and to one-dimensional flow of charge
carriers. The first of these restrictions is presumed to
permit neglect of all conduction currents relative to
diffusion currents. The validity of this procedure is
examined in some detail in Sec. III, based upon a
general formulation ' of the problem of the injection
of minority carriers into a semiconductor (see Sec. II).
Our conclusion is that Shockley's procedure is indeed
valid provided that the dimension of the specimen is

large compared to the diffusion length of the minority
carrier, a condition fulfilled in the emitter and collector

' W. Shockley, Bell System Tech. J. 28, 435 (1949).' Shockley, Sparks, and Teal, Phys. Rev. 83, 151 (1951).' E. L. Steele, Proc. Inst. Radio Engrs. 40, 1424 {1952).' J. M. Early, Proc. Inst. Radio Engrs. 40, 1401 (1952).
5 R. N. Hall, Proc. Inst. Radio Engrs. 40, 1512 (1952).
' While this manuscript was in preparation a second paper by

J. M. Early appeared LBell System Tech. J. 32, 1271 (1953)]
dealing extensively with small-signal design theory. In general,
this treatment follows along the same lines as the Shockley theory
with some extensions in the directions of high-frequency and base
resistance effects. Also it has recently been called to our attention
that an extension of the theory to include high level injection
eiIects has been carried out by W. M. Webster. [Paper presented
at Transistor Research Conference, Penn. State College (July 6,
1953); Proc. Inst. Radio Engrs. (to be published)].' C. Herring, Bell System Tech. J. 28, 401 (1949).' W. van Roosbroeck, Bell System Tech. J. 29, 560 (1950).
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regions but not in the base. In the latter case the neglect
of the electric Geld is justified only for very small in-
jection levels. Moreover, on translating the injection
level conditions into electric current terminology, it
turns out that Shockley's theory is applicable to the
emitter and collector regions for all realizable values of
current, whereas it is applicable to the base region only
for extremely small currents. 9

In order to extend the theory to cover currents of the
magnitude commonly employed we present in Sec. IV
a steady-state solution in the base region for arbitrary
injection level subject, however, to the restriction of no
recombination. (An estimate of recombination effects
is deferred to Sec. VI.) In Sec. V the solution in the
base is combined with Shockley's solutions in the
emitter and collector regions to yield the steady-state
current-voltage relations of a p-n-p transistor, which
are then brieRy discussed.

Section VI is devoted to the problem of recombina-
tion in the base. First (paragraph A) we estimate the
recombination current by a perturbation method and
thereby learn that for carefully prepared base material
surface recombination is much more important than
volume recombination. Moreover, this calculation per-
mits us to account for the magnitude of alpha experi-
mentally observed as well as the initial increase in n
with emitter current' ""resulting from the buildup of
a field which aids the transit of minority carriers. The
decrease in e with emitter current occurring at still
higher values of the latter"" is attributable mainly to
a decrease in emitter efhciency as has already been
pointed out by Webster. Also, a secondary contribu-
tion to this decrease may result from an increase in
surface recombination velocity with injection level,
which is a consequence of a recent theory by Brattain
and Bardeen" of the surface recombination process.
Then in paragraph B we present a three-dimensional

theory in the spirit of Shockley s approach, which is

' It is worth mentioning that comparison between theory and
experiment (reierence 2) has been made with suiIrciently small
applied voltages so that the above condition applied.

"Law, Mueller, Pankove, and Armstrong, Proc, Inst. Radio
Engrs. 40, 1352 (1952)."D. A. Jenny, Proc. Inst. Radio Engrs. 41, 1728 (1953).

'2W. H. Brattain and J. Bardeen, Bell System Tech. J. 32, 1
(1953).
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Symbol
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~ +
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TAsLE I. Partial list of symbols used.

Meaning

Equilibrium hole density in a semiconductor, in an
w-type base region.
Equilibrium electron density in a semiconductor, in
an intrinsic semiconductor, in a P-type emitter re-
gion, in a p-type collector region.
Density of donor centers, of acceptor centers.
Diffusion length of holes in an w-type semiconduc-
tor, of electrons in a p-type emitter region, of elec-
trons in a p-type collector region.
Width of base region, length of side of square of
transistor cross section.
Volume lifetime for arbitrary injection of holes into
w-type material, of electrons into p-type material,
volume lifetime of minority carriers for low injec-
tion levels.
Combined surface and volume lifetimes for arbi-
trary injection of holes into w-type material, of elec-
trons into P-type emitter region.
Surface recombination velocity for arbitrary injec-
tion level, for low injection level.
Electron component of emitter current density, of
collector current density; hole component of emitter
current density, of collector current density.
dc bias potential relative to base on emitter, on
collector.
Emitter current, collector current, recombination
current in base.
Small-signal emitter current, collector current,
emitter voltage, collector voltage.
Conduction area, area available for surface re-
combination.

constant, b for the ratio of electron to hole mobility,
and q for the electronic charge; other symbols are
deined in the text as required.

A compilation of assumed numerical values of geo-
metric and material parameters, which have been used
throughout the paper for illustrative computation, is
given in Table II.

II. FORMULATION OF THE PROBLEM OF INJECTION
OF MINORITY CARRIERS INTO A SEMICONDUCTOR

The problem of the injection of minority carriers
into a semiconductor has been studied theoretically
by Herring7 and by van Roosbroeck. In this section
we shall recapitulate the main results of their formula-
tion in a form suitable for subsequent use in this article.

The equations governing the behavior of injected
minority carriers and the excess majority carriers
drawn in to neutralize space charge are as follows:

ap/at= —(p —pp)/r„q 'dtv —J„-
(continuity equation for holes) (1)

an/W = —(n no)/r„—+q 'div&„,-
(continuity equation for electrons) (2)

J„=qp~pE qD„gradp, —
(definition of current density of holes) (3)

applicable in the base region for plane parallel junctions
and for very small injection levels. This calculation
permits precise numerical evaluation of the diminution
factor P as a function of the surface recombination
velocity as well as an appraisal of the accuracy of the
results of the perturbation calculation under very low
injection level conditions.

Finally, in Sec. VII we take up the problem of the
frequency response to a very small sinusoidal signal in
the presence of either an extremely small or a large
steady injection level. In the first of these cases we
show that the injection factor, p, has a negligible
inhuence on the alpha cut-o8 frequency. In the second
case we first neglect the injection factor but take into
account the possibility of transit time dispersion result-
ing from surface recombination effects at high emitter
currents. For values of the surface recombination ve-
locity not exceeding a known upper limit this transit
time dispersion proves to be negligible. Under these
circumstances the alpha cut-off frequency should in-
crease monotonically with emitter current reaching a
limiting value at high currents just twice the low current
value. We then consider the possible eBects of the
injection factor and find that this might cause the cut-
oG frequency to decrease slightly with increasing emitter
current.

The scheme that has been adopted with respect to
notation is illustrated by the partial list of symbols
shown in Table I. In addition, the symbol p has been
employed for charge carrier mobility, D for diffusion

J„=qn„nE+qD„gradn,
(definition of current density of electrons) (4)

J=J„+J„, (definition of total current density) (5)

divE= (4trq/e) (p n+Xs—sV.)—
(Poisson equation for semiconductor

with completely ionized impurities). (6)

These six equations constitute an exact formulation of
the problem.

To simplify the problem it is assumed that:

(a) electrons and holes disappear by mutual re-
combination at identical rates, i.e.,

TAal.z II. Assumed values of geometric and material parameters
(appropriate to germanium) for illustrative computation.

m=5.0X10 ' cm
~= 1.76X10~ cm"

A =4~'=1.24X10 ' cm'
A, =8~~~='7.04X10 4 cm'
D„=44 cm'/sec
D =93 cm'/sec
w;= 2.5X10"/cm3
Py = 1.25 X10"/cm'
we= wc=4.0X10'/cm'
sp=400 cm/sec
T 0=5&10 ' sec
L,=L,=10 3 cm

a This seemingly weird choice greatly facilitates the determination of the
roots of Eq. (87).
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Bp/Bt=BN/Bt,

gradp =gradn. (10)

(Although Herrings has presented a convincing argu-
ment that the approximation represented by Eq. (8)
is an excellent one, it is perhaps useful to demonstrate
that divE is indeed negligible for each solution based
upon its use. )

It follows from the preceding equations that

(b) space charge neutrality is preserved at every
point,

p I—+Na N—,=0,

which has as a consequence".

III. VALIDITY RANGE OF SHOCKLEY'S THEORY

Shockley" has greatly simpli6ed the problem for
the case of low-level injection (P/Nq«1) and one-
dimensional Row of carriers by dealing only with Eqs.
(1) and (3) for injection into an I-type semiconductor
(or with (2) and (4) for injection into p-type material)
and by assuming that the conduction current is negli-
gible relative to the diffusion current, i.e., E=o. In
this case the resulting differential equation for p(x, t) is

BP/Bt+ (P—P,)/r, '= D,B'P/Bx', (16)

and the expression for the current density is simply

J„= qD„B—p/Bx. (17)

Although Eq. (13) readily reduces to (17) for the con-
dition p/ N~ &&1, this is not the case with respect to
Eq. (15), which does not reduce to (16) for this condi-
tion but rather to

divJ=O,

and also for an n-type semiconductor with E &&S~ that

J—qD„(b 1) gradp—
E—

qp~(p(b+1)+ bNg)

pJ qbD~(2p—+N&) gradpJ„=
p(b+ 1)+bNg

pJ qD~b(2p+—N&) gradp
= —dlv

q fp(b+1)+bNg)

(12)
BP P Po—
Bt r„'

(13) JBP/Bx+—qbD~NgB'P/Bx'+ qD~ (b 1) (BP/Bx—)'

qbÃdBP P Po-—+
Bt v~

(18)(14)

Indeed, Eq. (16) cannot be valid unless the terms in

(18) involving (Bp/Bx) are negligible. It therefore
becomes of interest to check whether Shockley's solu-
tions satisfy Eq. (18) to a good approximation without
the imposition of additional conditions.

For a semi-infinite (0(x(~) rs-type semiconductor
(representing either emitter or collector regions) and
for steady-state conditions the solution to (16) is

This last equation reduces for the one-dimensional
case to:

p p.= (pi- p, )-e- I", (19)
Here r~' is written instead of v ~ to take account of the
eGect of surface recombination in the one-dimensional
theory.

In general, the procedure is to 6nd a solution to (14)
or (15) satisfying the boundary conditions and to put
this back into (13) in order to obtain the current-voltage
relations. This is usually an extremely diKcult feat
owing to the nonlinearity of the diGerential equation
unless further simplification can be achieved with the
use of additional restrictions.

where pi is the appropriate boundary value of p at
x=0 and 1.„=(D„r~')&. Equations (17) and (19) yield

J,=qD„(pi —po)/I-„. (20)

The condition p/ zN«1 thus requires that

J~&&qN gD„/I.„. (21)

Now, trying (19) as a steady-state solution of (18), we
obtain

—(Bp/Bt+(p —po)/ „')=
qbN g(,1+p(b+1)/bNg)'

X(J(Bp/Bx qbD~iU~(1+—p (b+ 1)/bN &}

X (1+2P/N&) (B'P/Bx') qD (b 1—) (BP/Bx)—$ (15).

P Po J(P Po)/I—'+qbDP (P——Po)/I-'+qD. (b —1)((P Po)/1.}'—
Tp' phag

(22)

Thus, we find that (19) is indeed a solution of (18)
provided that

(b 1)(p po)/bNg—«1, — (23)

J«qbN, D„/I.„. (24)

Equation (23) is obviously satisfied by the low-level
injection condition; however, Eq. (24) represents a

more severe restriction than (21) owing to the fact
that the total currents Qowing through the emitter
and collector regions are much larger than the currents
injected from the base into the emitter or from the
collector into the base. Nevertheless, numerical evalua-
tion of (24) with the use of values of Nd and I~ appro-
priate to well-doped emitter and collector regions (see
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Table II) reveals that this condition is satisfied pro-
vided that the total emitter (or collector) current is
small compared to about 25 amperes. Hence, it is clear
that Shockley's treatment of the emitter and collector
regions represents a valid approximation for all realiz-
able values of current. That this is the case is in part
a consequence of the fact that the terms involving the

first derivative,
dp/dx = —(p pp)—/L „, (25)

are very small.
However, the situation in the base region is quite

different. For an m-type semiconductor of finite width
w the steady-state solution to (16) may be written in
the form

(p,—p,) sinh((w —x)/L„)+ (p2 —pp) sinh(x/L~)

sinh(w/L„)
(26)

where p2 is the boundary value of p at x=w. The
corresponding current density expression (evaluated
at x=0) is

J~= (qD„/L~)((pi —pp) coth(ip/L~)
—(p2 —pp) csch(w/L~) } (27)

—qD„(pi —pp)/L„(for w/L «1, pi))pp))p2). (28)

Thus, again the condition p/Nd«1 leads to condition
(21).

Now, trying (26) as an approximate solution of (18),
we find that the solution is valid provided that

J«qbNgD„w/L„', (29)

(b 1)(P po)—L.'/b ~—d~'«1. (30)

Both conditions require smaller current densities than
is called for by (21).Equation (30) is the more stringent
of the two conditions and implies that Eq. (26) can be
justi6ed only for extremely small injection levels such
that p/N~&&(w/L~)', corresponding to

J«qNgD„w'/L~'. (31)

The reason for this is that the terms involving the first
derivative,

dp/d*—:—(p —pp)/~, (32)

are no longer negligible when m becomes small com-
pared to the diffusion length I.„.

Putting numbers into (31) appropriate to relatively
pure base material (see Table II) we find that Shockley's
solution in the base is valid only for total emitter
currents small compared to about 4X10 ' ampere.
Thus, it is important that existing theory be extended
so as to apply to currents of the order employed
technically.

IV. STEADY-STATE SOLUTION IN THE BASE REGION
FOR ARBITRARY INJECTION LEVEL

NEGLECTING RECOMBINATION

It is clear from the fact that the current amplifica-
tion factor in junction transistors is quite close to unity
that recombination cannot be a very important process

divJ„=O,

div J„=0.

(33)

(34)

Furthermore, since neglecting recombination renders
the carrier flow strictly one-dimensional, Eqs. (33) and
(34) lead to

J„=constant, (35)

J„=constant. (36)

The value of J„is known immediately from the bound-
ary conditions to be

Jn Jne Jnc (37)

Since Shockley's theory is valid in the emitter and
collector regions, we may express (37) for p-type mate-
rial asi3

J„=qD„(ni m, )/L, +qD (ei —n,)/L. , (38)—
where the index i refers to boundary values at the
emitter-base and at the base-collector junctions, respec-
tively. Returning now to the fundamental equations it
follows from (3), (4), (8), and (10) that

J~+qD„dp/dx J„qbD~dp/dx—
E,= =-. (39)

q»p qbl .(P+N.)
Solving (39) for dx, we obtain:

qD„(2P+Nq)dp
J„p(1 J /bJ~)+Ng—

Direct integration yields

in the base region. If recombination is completely
neglected, then a solution to the steady-state problem
of the Qow of minority carriers in the base region may be
readily obtained for arbitrary injection level.

Although it is possible to derive the desired result
starting with the general equation (15), it proves to
be more convenient to return to the fundamental
equations (1)—(6) inclusive. With the neglect of re-
combination and for the steady-state case (1) and (2)
become

2qD„(1Vd+ p (1 J„/bJ„) 3'z 1n(N—d+ p(1 J—/b J„)} qD~N& 1—n(N&+ p(1 I„/bJ„)}-
x+E=-

J~(1 J./b J,)'— Jn(1 J-/b J.)- (41)

"The sign of the currents has been so chosen that a conventional current flowing from the emitter into the base or from the base
into the co11ector is considered positive.
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x=0, P=P =P e'v"r

x—w p
—

p
—p e qvclsT

(43)

Eliminating from (42) the expression for K obtained
in this manner, ve arrive at

D.N 2(p —p) )1+p/N. &x=- -in~ — ), (45)
J„ lV,( ( 1+p/iVd )

qD.A'~ 2(pi —ps) (1+pt/Nd)—ln~ (46)(1+ps/jVg)

Note that for small injection levels (P/Nq«1) Eq.
(45) indicates a linear dependence of p on x and Eq.
(46) reduces to

which is an equation for p(x) containing two unknown
constants J„and K (a constant of integration). Since
the equation is transcendental, it cannot be solved
directly for J„.We can obtain an approximate solution
by neglecting the term J„/b J„relative to unity, a step
which we shall justify later. In this manner we obtain

x+K (qD—~/V g/J„) ln(p+Ng)
2qD„(p—+Ns)/J„. (42)

The two constants may now be evaluated with the use
of the usual boundary conditions:

0.2—
~ p

d 0.8-

0.4

Equations (50) and (51) lea, d to the condition:

pt/1V d&&2qw (7rN g/ek T) ''. (52)

Since for relatively pure base material the right-hand
side of (52) is of the order of 20 (see Table II) and
since p/Nd((1 for this case, .condition (52) is well

ful611ed.
For p/Nd))1, Eq. (49) becomes

d E/dx kT/qw'—, (53)

which must be small compared to the total charge
density,

( )a=4~qp/'

0.l 0.2 0.5 0.4 0.5
X
W

Fzo. 1. Concentration of holes in sz-type base region as a func-
tion of distance for intermediate injection level, illustrating
largest deviations from linearity (see dashed curve).

J.=qD. (pi ps)/w— (47) Fquations (53) and (54) lead to the condition:

J„=2qD„(p —p )/w. (48)

We are now in a position to check the magnitude of
J„/bJ~. Equations (38) and (46) indicate that this
quantity is of the order of (1—p) and. therefore its
neglect relative to unity is well justi6ed.

Hence, Eq. (46) represents the desired result for the
J-V characteristics of the base region for arbitrary
injection level and should yield correct values of the
conductance parameters apart from a small error of
the order of (1—u).

There still remains the problem of demonstrating
that dE/dx 0 in accordance with—the assumption of
space charge neutrality [Eq. (8)$. For both low and
high injection levels, since P is a linear function of x
and since J is small, it follows from (39) and the
Einstein relation that

Similarly for high injection levels, p is again a linear
function of x and Eq. (46) reduces to

p/1V q»ek T/47rq'w' iV d.
- (55)

V. TRANSISTOR CURRENT-VOLTAGE
CHARACTERISTICS

A. General Relations

With the neglect of recombination in the junctions,
an excellent approximation for abrupt impurity transi-
tions, the total emitter and collector current densities
are given by

Since numerical evaluation of the right-hand side of
(55) yields the value 2X10 ' and since p/N, &&)1 for
this case, condition (55) is also well fulfilled.

For intermediate injection levels (i.e., p/Nz 1) the
dependence of p on x may be obtained by plotting Eq
(45). We thereby find (see Fig. 1) that at worst only
small deviations from linearity occur. Hence d'p/dx',
while no longer zero, is small and dE/dx will likewise

be small for this case as well.

dE/dx=k T (dp/dx)'/q (p+iV g)'. (49)
J,=J„,+J„.,
J,=J„.+J,.

(56)

(57)

p = 4irq/Vg/ c. (51)

For P/N~&(1, Eq. (49) becomes

dE/dx= k TP is/qÃd'w', (50)

which quantity must be small compared to the total
charge density expressed in appropriate units,

As we have shown in Sec. IV, the larger components of
these current densities are given to a good approxima-
tion by the expression:

qD.l~" 2(pi —ps) (1+pr/N~)—ln (46)(1+p2/Nd)
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where p2 p——~e&"'~r and p2= p~e &v'2r. Also, since
Shockley's theory represents an excellent approxima-
tion in the emitter and collector regions, the smaller
components of these current densities may be written as

duction area A, and neglecting all terms containing
e 'v'~2r since qV, /kT&&1, we obtain

(61)

(62)

2e g110e+gl22 c

c= g212 e+g22&eqJ„,=qD„(22'—24)/L, (58)
where

where ng=24e&~"r(1+pg/A g),

J„,= —qD„(22, 22,)//L—,
where e~——n,e ~ ' . Note that the boundary condition
at the emitter-base junction diGers from Shockley's
by a correction term which becomes important as the
injection level in the base region becomes high. Equa-
tions (56), (57), (46), (58), and (59) represent the
desired result for the J-V characteristics of the junc-
tion transistor. If emitter and collector regions are
well doped, these equations are applicable for any
values of emitter current realizable in practice. The
only essential feature missing from the simple theory
leading to these equations is the small amount of re-
combination in the base region, which we shall discuss
in detail in Sec. VI.

D22, ( 2pg
1+ ~qv, ikr

~

I (63)L( iV. )'
( Bw ) (AD„i

8V.) L.

X{2p~e&~'" —X~ In(1+ (p~/1V~)e'"'" )r), (64)

2Dnp~ Dnp~
g ~qVe/kT

kT

X( I
I. (65)

( 1+ (p~/Ã~)e2v. iver jB. Small-Signal Relations

The small-signal equations are readily derived from
the general J-V equations by differentiation. The im-
portant point made by Early, 4 namely that the base
width m is a function of the collector voltage owing to
space charge broadening, is readily introduced into the
theory at this point by noting that both J, and J, are
functions of m and that

(Expressions for the quantity (—Bw/BV, ) may be ob-
tained from reference 4.) Equations (61) and (62) are
the starting point for transistor circuit theory.

C. Current Amplification Factor

The current ampli6cation factor is de6ned by

q'A 2D„pg D~pg ( 1
(59) g

— pqvaikT

kT w w &1+ (pg/Ng)e&~~~"r&

(60)dw= (Bw/BV, )d V,+ (Bw/BV, )d V,
—(Bw/8 V.)d V..

(~ic) /'2c) gu
Q

~BI ) V COnst; (2 ) y 0 g2ge c e e
On carrying out the diGerentiation, converting from
current densities to currents with the use of the con- Thus, it follows from (63) and (65) that

(66)

2D„pg/w (D,pg/w) (1+—(pg/Xg)e '" ) '

2Dnp~/w (D.p~/w) (1+ (p—~/&~)&""") '+(D.22./L.)(1+(2p~/&a)&""')
(67)

For small injection levels, (67) reduces to

n {1+(D„n,w/D—„pgL,)) ',

which is just the injection factor,

v= ~~./(~n. +~-), (69)

factor,

0=~u./~y. ,

is of course equal to unity in this approximation.

VI. RECOMBINATION IN THE BASE REGION

(71)

similarly reduced for /p1V& ((1, qV,/kT»1, and qV,/kT
»1."For large injection levels, Eq. (67) becomes

a {1+(D„N.w/D„N—aL.)e'"'" } '(70)—
Thus n decreases with emitter current at high injection
levels because of a decrease in injection eKciency.

Since the theory of Sec. IV is based on the assump-
tion of no recombination in the base, the diminution

'4Shockley's interpretation of p as the injection factor and P
as the diminution factor in the equation o.=Pp tacitly involves
these same assumptions.

A. Approximate Solution for Arbitrary Injection
Level

The volume recombination rate (No./cm' sec) is
obviously given by the expression (p pq)/2„w—bile the
surface recombination rate (No./cm' sec) is represented
by s(p —pq). The total recombination current in the
base is then evidently given to a good approximation by

I.=q~.(~(p p)) +q~w((p p)l —)" (72)—
where the quantities in brackets are to be averaged so
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as to take into account the spatial dependerice of the
injected carriers. It should be kept in mind that both
s and v „may be concentration dependent.

%e shall base our estimate of I„on the solution in
the base region without recombination (see Sec. IV),
since the recombination process may be considered to
be only a small perturbation upon the main Qow of
minority carriers from emitter to collector. Thus, the
value of p to be put into Eq. (72) is that given by Eq.
(45). Note that to a good approximation (see Fig. 1
for the worst case) p may be taken to be a linear func-
tion of x, thereby simplifying greatly the task of
averaging.

Equation (72) may then be employed to obtain a
irst order correction to the hole current arriving at
the collector, as the latter current will be smaller than

the current injected at the emitter junction by the
recombination current, i.e.,

J~.=J~,—I,/A. (73)

Thus, Eqs. (72), (73), (45), (46), (58), and (66) permit
a calculation of the current ampliication factor in-
cluding the effects of recombination, provided that the
concentration dependences of s and r~ are known.

In order to bring out clearly the essential features
associated with alpha we shall 6rst compute its value
on the supposition that the surface recombination
velocity and the volume lifetime are independent of
minority carrier concentration and have their low
injection level values so and ro, respectively. It is then
readily shown with the use of the afore-mentioned.
equations that

s,A,P,/2A+wp, /2r, +(D„n,/L, )(1+(2P,/N„)es i& )
1 Q=

2D„ps/w (Dr ps—/w) (1+(ps/Ns)e' 'i" ) '+(D I,/L, )(1+(2ps/Xq)e&~~ls )
(74)

For low injection levels and for a well-doped emitter
region, (74) reduces to

D~s~R'SOA 8& 'N

+ +
2AD~ 2D~r p D~pbL,

(74a)

=5.7y 10-4,
2Dy7 0

=3.4X ~0-'.

the terms on the right-hand side evidently representing
contributions from surface recombination, volume re-
combination, and injection, respectively.

Numerical evaluation of the terms of (74a), with
the use of the values assumed in Table II, yields

to the decrease in injection eKciency, except for case 3
where the injection efficiency has been deliberately
taken to be unity in order to show just the Geld-aided
transit eGect. Curves 1 and 2 are suKciently similar to
those experimentally observed" "as to suggest that the
theory is adequate in its present simple form. It is of
some interest, however, to examine the consequences
of the concentration dependences of s and r.

The dependence of r~ on p has already been derived
by Shockley and Read" based upon a recombination
mechanism involving trapping states near the middle
of the forbidden band. They find an expression of the
form

where c and d are constants, the latter having the

It is evident that the surface recombination term is
much larger than the volume recombination term"
and is of the correct magnitude to account for observed
values of n at low levels.

Plots of 1/(1 —n) vs I„computed with the use of
Eq. (74), are shown in Fig. 2. Curve 1 was obtained
with the use of the values of the parameters assumed in
Table II; curve 2 results from increased doping of the
emitter region relative to case 1 by an order of magni-
tude; while curve 3 corresponds to such high doping of
the emitter that the terms arising from J„, may be
neglected. The initial increase in o, with emitter current
is a consequence of the buildup in the base region of a
6eld which assists the transit of minority carriers. At
higher emitter currents n passes through a maximum
and then declines with increasing emitter current owing

"The dominance of surface recombination relative to volume
recombination in carefully prepared, relatively pure germanium
base material is assured even for the smallest values of so that
have been thus far realized (see reference 12).
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Fzo. 2. Current amplification factor es emitter current. Curve 1&

assuming values of the parameters given in Table lI; curve 2,
increasing the doping of the emitter region by a factor of 10;
curve 3, assuming an injection efficiency of unity for all currents.

"W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 (1952).
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simple value 1/(eb+pb) i7 .For c(d, a condition which
is likely to occur in relatively pure material, the life-
time decreases monotonically with injection level. Al-
though this dependence tends to produce a decrease in

n, it is probably a very small e6ect relative to those
already discussed.

No published information appears to be available
concerning the concentration dependence of s. However,

-'it is interesting to note that a recent theory of the
surface recombination process by Brattain and Bar-
deen" leads to a decrease in s with injection level,
somewhat analogous to the case for r. Their theory is
based upon the assumptions that there exist donor-type
surface traps near the conduction band and acceptor-
type surface traps near the full band, that the recom-
bination rate is limited by the rate of trapping, and
that the traps are largely unoccupied (which restricts
the validity range to relatively low injection levels).
The following expression is derived for the surface
recombination rate U,

v=c(pn p,n, ), — (76)

where C is a constant involving recombination cross
sections, trap concentrations, etc.

YUe may rewrite Eq. (76) in the form

U=c& o+Po+(P P.)) (P P—o)—(77)

and then define an eA'ective surface recombination ve-
locity as follows:

s= Ul(P Po)— (78)

If the quantity,

= o(1+(P P)l& }. — (80)

1 r"
& (P-P ))"=- (P-P )d,

'N~ p

(81)

We thereby obtain an expression for s displaying a
marked dependence on injection level, namely,

s= C(nb+Pb+ (P—Po)). (79)

It is convenient to express Eq. (79) in terms of the low
injection level value of the recombination velocity sp,
for an n-type base region (79) becomes

B. Three-Dimensional Theory for Very Small
Injection Level"

For sufficiently small injection levels (see Sec. III),
the electric field and the m-type currents in the base

-region become negligible and it suffices to deal only
with Eqs. (1) and (3), which yield, for the steady-state
case,

div gradp —(P Pb)/D„~~= —0 (83).

I or convenience let us consider a rectangular parallele-
piped bounded by the planes x=0, x=w, y=&a,
s= &a. The boundary conditions are

@=0, P =Pi,

S=W, P=P2,'

~P/~verso(P Pb)/D. =o;—
z= aa, ap/asasb(p p,)/D„=0. —

(43)

(44)

(84)

(»)

tions that p is a linear function of x, qU, /kT»1, and
qU, /kT»1, one obtains

(s(P Pb—))All (sppi/2) (1+2pi/31vd). (82)

If (82) is used to evaluate the dependence of 1/(1 —n)
on I„ it is found that the computed curve displays a
maximum at much too small a value of current and then
falls well below the experimental curve even if an injec-
tion eKciency of unity is assumed for all values of I,.
This is a consequence of the fact that s is overestimated
by the above theory when the injection level becomes
appreciable. It is intuitively obvious that the traps
must become completely filled at sufficiently high injec-
tion levels so that s will reach a limiting value and will
not increase indefinitely with I, as is implied by Eq.
(80).

Therefore the possible importance of the concentra-
tion dependency of s on the n vs I, characteristic cannot
be assessed until experimental information bearing on
this point becomes available. The similarity between
the curves of Fig. 2 and the experimental data suggests
that it may play only a secondary role.

The solution to (83) satisfying these boundary condi-
is evaluated with the use of (80) subject to the assump- tions is

a', [(Pi Pb) sinh((w —x)/L;, )+—(P2—Pb) sinh(x/L„, )]cosP,y cosP,, z
P—Pb= Z

p sinh (ib/L;;)
(86)

where P,a= 8, are the roots of

and
P,a tanP;a= s /Dba„, (87)

1/ „=D.(P.'+P, ')+ 1/ „(88)
"It is worth mentioning that Hall's lifetime Ineasurements' as

a function of injection level for pure germanium may be well
fitted by Eq. {75)with c=8)&10 "cm'and d=2)&10 ' cm', both
of which values are entirely reasonable from the point of view of
the theory.

L;,= (D„r„)i,

4 sino, sine;
(90)a;;=

(8,+,' sin20, ) (0,+,' sin2-0,)-
"The argument of this paragraph represents an extension to a

semiconductor of finite width of the theory presented in Appendix
V of Shockley's paper {see reference 1).
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The current densities of holes may be determined TABLE III. Diminution factor es surface recombination ve-
locity and comparison of perturbation theory with three-dimen-
sional theory.

J"= —(qD./4a') (aP/ax), odydz
so, cm/sec som2/aDJ

—a -a

A j
=qD„pb Q —— (eq""" 1—) coth(

sq=o I,;, &L,,)
f ie't—(e

—»' ~"—1) csch( —), (91)

100
250
500

1000
2500
5000

3.10X10 '
7.86X10-'
1.54X 10-'
3.03X10 '
6.96X10 '
1.22X10 '

3 23X10 '
8.07x 10-3
1.61X10 '
3 23X10 '
8.07X10 '
1,61X10-'

~a &a

J„,= —(qD„/4a-') ) (ap/ax), dydz
—a —a

t'~ )
=qD„p, P —(e t"'—1) csch~

z, , j'=0 I„,, EL,,)

where

(w)—(e «~""-1) co—th
(
—), (92)

4 sin'8; sin'0,
A t

—— — . (93)
0,20/[1+ (sin20, )/20, )[1+(sin20, )/20;]

Note that for so ——0, 0;=0, A;, =1, v,,=7-» and hence
Eqs. (91) and (92) reduce properly to the well known
expressions of the simple theory. ' '

The diminution factor is given approximately
(qV./kT&)1, qV,/kT)&1)" by

time dependent case. The reason for this is that in the
latter case Eqs. (1) and (2) become

aplat= —
q

' divJ„,

an/at=q 'divJ„-.

(95)

(96)

A. Very Small Injection

Hence, it is no longer true that J~ and J„are constants
and as a consequence we are confronted with the
formidable differential equation (14) or (15).

We shall content ourselves with a solution to the
problem of the alpha cut-oR frequency only for the
limiting cases of very small and very large injection
levels in a transistor with plane parallel junctions. Since
it may readily be shown that the magnitude of the field
in the base region varies monotonica1ly with injection
level between zero and a value of the order of kT/qw,
it is to be expected that the alpha cut-oR frequency
should also vary monotonically between che values
found for these limiting cases.

2 (A*i/L'i) csch(~/L*i)
i,j =0

Q (A;,/L;;) coth(w/Lg)
i,j =0

For sufficiently small injection levels (see Sec. III)
(94) the field and the n-type currents in the base become

negligible, and Eqs. (1) and (3) yield, for the one-
dimensional case (including recombination),

Equation (94) has been evaluated numerically for
various values of so with the results shown in Table III.
In these computations 7„has been taken to be infinite
in order to permit comparison with the surface recom-
bination term of the perturbation theory [first term of
(74a)j, which for the particular geometry considered
here, assumes the form sow'/aD~. It may readily be
seen from the table that the one-dimensional per-
turbation theory yields quite acceptable results for
values of P encountered in present day practice.

VIL FREQUENCY RESPONSE

Despite the fact that it is usually a valid procedure
to neglect recombination" in the base region in com-
puting the response to a periodic signal of varying fre-
quency, nevertheless an enormous simplification similar
to that resulting from omission of the recombination
term in the steady-state case does not occur in the

'9 Unless s becomes too large at very high injection levels; see
paragraph 8,

a'p/ax' —(p pt)/L '=D 'ap/a—t (97)

If it is assumed that the voltage applied at the emitter
consists of an extremely small sinusoidal signal super-
imposed on a very small steady bias,

V = V.+V.e'"' (V.«kT/q), (9g)

the boundary condition for the base region at x=0
becomes

p =pt, exp[(q/k T) (V,+U,e'"))
~p +Pei rat

where Pi ——Pi,e« t"r [by Eq. (43)) and

P=qV,pi/kT. (100)

Since we are interested only in computing alpha, the
short circuit current amplification factor, the boundary
condition at x=m remains simply

p p p e qv~/kT—



E 0 MUND S. RI TTNER

The solution of (97) satisfying (44) and (99) is The solution to (110) is g= 1.103 which leads, with the
use of (107), to a cut-oB frequency" "

(pi —pp) sinh((w —x)/L„)+ (ps —pp) sinh(x/L~)

sinh (w/L~)

happ

——2.434D„/w'.

This approximate root permits the evaluation of 1 at
the cut-off frequency; one finds that

sinh( (1+iair„') fw/L„) f=0.462D„n,w/D, p pL.

ni n,ep——v's", Q= qV „ni/kT. (103)

Since we are interested only in the ac component of
the currents, it is unnecessary to consider the steady
electron current in the collector and the first term on
the right in each of Eqs. (101) and (102). The resulting
expressions for the ac current densities are

J,( ) =Pe'"'(qD, /L ) (1+ious„') &

Xcoth( (1+irpr~') &w/L„}

+Qe'"'(qD /L, ) (1+io)r,)&, (104)

~.(-)=P.'"'(qD./L.)(1+'
&&csch( (1+ioir„')&w/L„) (105).

Evaluation of n from (104) and (105) yields

(1+zppr ')&w
]

D„n,L (1+soir,)&

G = cosh' +L„l DppzL. (1+i~or„')&

(1+so&r„')'*w
iXsinh (106)

For frequencies approaching the cut-o6 value it is not
a very good approximation to expand the hyperbolic
terms for small arguments; however, we may neglect
unity relative to iaido„' (which is equivalent to neglect-
ing recombination) and iid7, relative to unity.

On defining the following quantities:

g=( /L. )( .'/2)', (107)

1 = (D n.L~)//D~psL, (2cvr„')&, (108)

expanding the hyperbolic products, collecting terms,
and extracting the modulus, we find that cutoff occurs
when

2= (coshg cosg+f sinhg cosg+1 coshg sing)'

+ (sinhg sing+ f coshg sing —f sinhg cosg)'. (109)

We shall derive an approximate solution to (109) by
neglecting the f terms since f' is obviously a small

quantity, thus obtaining

The analogous solution in the emitter (—po &@&0)is

n n,—= (n, n—,)eet'
+Qe'"' exp/(1+ippr, )lx/L. j, (102)

where

=-2X |O-'.

Since all of the other terms in (109) are of the order
unity, neglect of the f' terms is justifiable to an excellent
approximation, which means that the influence of the
injection factor on the cut-o6 frequency is negligible.

J„qbD~ gr—adp

qft n(p+Ns)
(112)

J qbDa(2+—Na/p) gradp

b(1+N g/p)
(113)

For a high steady injectiori level (P/Nd»1), Kqs.
(112) and (113) become

I qbD~ gradp-
8=—

q».p
(114)

J„=J„/b 2qD„gradp—

——2qD p gladp, (115)

since as shown in Sec. IV, J„/bJ~&&1
Consider now the superposition on the high-level

steady bias an extremely small ac signal. This will not
have a significant influence on the electric field (114),
but it will introduce a time dependence of p. Combining

(1) and (115) we obtain

2D~ div gradp —(p pp)/r„= Bp/—Bt, (116)

an equation which will be employed in the three-
dimensional form in order to take into account possible
transit time dispersion effects due to surface recom-
bination, since s may become large at high injection
levels. The boundary conditions are given by Eqs.
(99), (44), (84), and (85) with sp replaced by s.

The solution to (116) satisfying the boundary condi-
tions contains two terms, a dc term given by Eq. (86)

B. High Steady Injection Level

It follows from Eqs. (3), (4), (8), (10), and the
condition X (&Xq that

2 =cosh'g cos'g+sinh'g sin'g

= (cos2g+ cosh2g)/2.
(110)

"This result, which has already been obtained by Pritchard
(reference 21), is 22 percent higher than the commonly cited
value (see references 2 and 3).

sz R. L. Pritchard, Proc. Inst. Radio Engrs, 40„1476 (t932).
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plus an ac term represented by the expression

Pgimt

a,; sinh{ (1+ipir, i) (w —x)/L, ,}cosP,y cosP, sX,(»7)
sinh((1+i&or g) &w/L;;}

where the symbols are defined by Eq. (87) with sp

replaced by s and by Eqs. (88), (89), and (90) with D„
replaced by 2D~.

Since the influence of the injection factor on the fre-
quency response will be small, we shall defer for a
moment consideration of the analogous solution in the
emitter. Also we need be concerned only with the ac
component of the current density at the emitter and
collector junctions, which may readily be derived from
(117) with the use of (115).Thus, we obtain finally

P (A;,/L;, ) csch((1+ipir;, )'w/L;, }
~,j =0

(118)

Q (A,,/L;~) coth{ (1+ipir;.;)'w/I. ;,}
i,j =0

a=sech (ipiw'/2D„) ~, (119)

with A;, defined by (93).
For values of s which are not too high (i.e., up to

s=2500 cm/sec for the cross-sectional area assumed in

Table II) the quantity i&pr;, will be much greater than
unity for all of the terms of the series that contribute
significantly to the sums. In this case Eq. (118) re-

duces to

which leads to a cut-oB frequency,

ppp =4.868D„/w', (120)
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just twice the value found for very small injection.
If the asymptotic value of s at very high emitter

currents proves to be much higher than the above limit,
then (118) must be evaluated numerically and the cut-
o6 frequency may become somewhat smaller than the
value indicated by (120).

A somewhat more important correction to ~0 is likely
to result from a fall-oft in injection eKciency at high
currents. Neglecting three dimensional eGects in the
base, it may readily be shown that an expression for n
results given by Eq. (106) except that D„becomes
multiplied by 2, L„by v2, and n, by the factor

1+Ppe'~'"r/Nd

The cut-oG frequency may then be obtained from this
equation by the method outlined in paragraph A. I'he
result for pip is the value given by Eq. (120) slightly
diminished by a correction factor which increases with
increasing emitter current.


