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II. EXPERIMENTAL RESULTS
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FIG. 2. An enlarged plot of the lo e ow Geld region of Fig. 1
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in the low field region, but at some higher field the
susceptibility becomes field dependent. As the tem-
perature is lowered below 175'K, the susceptibility
becomes Geld dependent in progressively lower fields.

Below 110'K the magnetization curves for dys-
prosium as shown in Fig. 1 are much the same as those
of gadolinium, ' and are nearly typical of a ferromagnetic
substance. It is observed that the element is very
magnetically "hard" in comparison to iron, or even
gadolinium, and is far from saturation in a field of
18000 oersteds. One also notes that below 103'K,
dysprosium becomes rapidly temperature saturated,
i.e., temperature has little eGect upon the magnitude
of the magnetization.

Of particular interest is the fact that the 20.4'K and
the 4.2'K data fall below the 31.2'K isotherm.

The anomaly observed by Trombe is quite evident
in Figs. 2 and 3. The general shape of the curve in Fig.
3 is not unlike the corresponding curve for an antiferro-
magnetic substance in the neighborhood of its Neel
temperature. '

In order to discuss the magnetic behavior of dys-
prosium, four temperature regions or magnetic states
may be distinguished. The Grst state A occurs above
176'K where the element appears to be truly para-
magnetic. The second state (hereafter called state 8)
occurs in the temperature range bounded by the
anomaly at 176'K and by the ferromagnetic Curie
point at 92'K. (The Curie point determination is
discussed below. ) The magnetic behavior of dysprosium
in this temperature range is characterized by the Geld
dependence of the susceptibility, and the apparent lack
of spontaneous magnetization.

The third magnetic state of dysprosium (hereafter
called state C) occurs below about 92'K. Here the
element appears to be in a true though abnormal
ferromagnetic state, characterized by spontaneous
magnetization, saturation effects, and hysteresis eGects.

The fourth magnetic state for dysprosium (hereafter
called state D) is in the temperature range below about
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FIG. 3. The initial susceptibility of dysprosium in
the temperature range from 110' to 200'K.

~ F. Trombe, Compt. rend. 236, 391 (1953).
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25'K as indicated by the anomalous behavior of the
isotherms in this temperature region.

The difGculty encountered in attempting to obtain
the Curie point from spontaneous magnetization data
may be seen from the magnetization curves (Fig. 1).
In order to determine the Curie point by this method
it is necessary to obtain spontaneous magnetization
curves above and below the Curie point. Because of
the strange behavior of dysprosium immediately above
its ferromagnetic Curie point (i.e., in state 8), it was
found impossible to obtain spontaneous magnetization
data which were complete enough to allow an accurate
determination of the Curie point by this method.
Consequently, the Curie point for state C was obtained
from measurements in an applied Geld of 1200 oersteds
by extrapolation of the linear portion of the magnetiza-
tion squared ~s temperature curve to the temperature
axis. The value of the Curie point determined by this
method was found to be 92'K.

Figures 4 and 5 are plots of the magnetic moment
vs 1/H for several of the isotherms of Fig. 1. These
curves diGer considerably from the corresponding curves
of gadolinium. The curves in the neighborhood of
100'K are nearly linear above 5000 oersteds. At
temperatures above 100'K, the curves are concave
downward. The curves below 80'K seem to consist of
two nearly straight intersecting lines although it is
also possible that the upward trend of the data at
higher fMlds (low 1/B) might continue. Both of the
linear sections of the curves below 80'K have been
extrapolated to infinite fields to estimate the saturation
moments.

In Fig. 6 the saturation moments obtained from
Fig. 5 are plotted as a function of T& to obtain the
absolute saturation moment. The saturation moment
at absolute zero for dysprosium appears to be about
299&5 cgs units if one uses saturation moments from
the high Geld extrapolations, and about 273&3 cgs
units, if one uses the low Geld extrapolated saturation
moments. These moments correspond to 8.7 and 8.0
Bohr magnetons, respectively.
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Fzo. 4. Representative curves of the isothermal variation of
the magnetic moment of dysprosium with 1/H in the temperature
range 103' to 168'K.
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It is noted that these absolute saturation moments
were obtained using data from the temperature range
of 31'—80'K only, and therefore only attempt to point
out what the approximate magnitude of the saturation
moment at absolute zero would be assuming no
anomalies between 0'—31 K. The magnitudes of the
standard deviations cited are estimates based on
attempts to fit various straight lines to the experimental
data.

III. DISCUSSION

The nature of the magnetization data for dysprosium
particularly in the temperature range below 30'K
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FIG. 5. Representative curves of the isothermal variation of
the magnetic moment of dysprosium vrith 1/H in the temperature
range 31' to 80'K.

FIG. 6. The saturation magnetic moment of dysprosium as a
function of T&, open circles are values obtained from high 6eld
extrapolations and crosses are values obtained from low 6eld
extrapolations.

might indicate ferromagnetism with two sublattices
accounting for the decreasing saturation magnetization
with decreasing temperature. On the other hand, it
is also possible that a decrease in temperature could
cause a change in the population of split 4f electron
states of diferent magnetic moments.

The high magnetic moment of dysprosium is of
considerable signi6cance. Magnetic moments have been
measured of the order of 245 cgs units. Such a magnetic
moment corresponds to about 7 Bohr magnetons.
The spectrographic state of the dysprosium ion is
a 'B»~2, and from the paramagnetic theory of Hund
and Van Vleck. , one would expect an absolute saturation
moment of 10 Bohr magnetons. These data indicate
that the absolute saturation moment of dysprosium
is probably not this large, which may be interpreted
as meaning that the 4f electrons are not completely
free from the inQuence of neighboring atoms. On the
other hand, the measured values of the magnetic
moment are much larger than the 5 Bohr magnetons
expected on the basis of spin only.

While the above data suggest interesting modiica-
tions in the present theories of magnetism, we feel more
data must be obtained before an attempt is made in
this direction. We are therefore leaving the interpre-
tation of the data for later papers.
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