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A galvanomagnetic effect is described which is observed by measuring the induced voltage normal to the
direction of current flow as in the Hall effect but with the magnetic field in the current-voltage plane. The
measurements enable us to test the assumptions of spherical energy surfaces and spherical relaxation time
surfaces for semiconductors. If these assumptions are correct, the effect should be isotropic. Preliminary
room temperature measurements show this effect to be anisotropic in both p- and #-type germanium, m

agreement with magnetoresistance measurements.

I. INTRODUCTION

HE galvanomagnetic effect to be discussed here is
not new in the sense that it is based on new
principles, but is new because it apparently has not
been previously discussed and investigated. As will be
shown in the following sections, if a crystal carrying an
electric current is placed in a magnetic field, an electric
field will be induced perpendicular to the current in
the current-magnetic field plane. We call this field the
“planar Hall field” since the experimental conditions
are similar to those used in Hall experiments, except
that in observing the Hall effect the magnetic field,
electric field, and current are mutually perpendicular.
The electric field induced by the planar Hall effect
analytically involves the same coefficients (but in a
different arrangement) as does magnetoresistance. The
magnetoresistance effect, of course, is concerned with a
change in electric field parallel to the current direction.

II. GENERAL

In the absence of temperature gradients the electric
current carried by a crystal with cubic symmetry is!

i=goE+eEXH+BEHR*+yH(E-H)+-6ME, (1)

H2 0 0
M=1|0 H? 0 |,

0 0 H?

(1a)

where E and H are the electric and magnetic field,
respectively, and the subscripts 1, 2, and 3 refer to
the axes of cubic symmetry. Equation (1) is actually
an approximation obtained by ignoring terms contain-
ing E to a power higher than the first or H to a power
higher than the second. The coefficients in (1), o0, &, 8, 7,
and & are expressed in terms of integrals which can be
evaluated, in principle, if assumptions are made con-
cerning the statistics to be used and the dependence of
relaxation time and energy upon the wave vector k.
If 6 is nonzero, the presence of the tensor M complicates
this equation since the current passing through the
crystal in the presence of electric and magnetic fields
will be anisotropic, being dependent upon the orienta-
tion of the crystal.

1 F. Seitz, Phys. Rev. 79, 372 (1950).

Equation (1) gives the current density in terms of the
electric and magnetic fields. Since in an experiment it
is customary to fix the current and magnetic field and
to measure the resulting electric field, it is more useful
to have an equation of the following form?:

E=p[i+AixXH+BiH*+-CHG-H)+DMi]. (2)

Here we have the electric field as a function of the
current and magnetic field. If we substitute this equa-
tion for the electric field into Eq. (1), we can determine
the coefficients in Eq. (2) in terms of the coefficients in
the current Eq. (1).

po=1/ay, (3a)

= —apo, (3b)
B=— (8+pw?)po, 3¢)
C=—(y—poa®)po, (3d)
D= —dp,. (3e)

In obtaining Egs. (3) we ignore terms containing the
magnetic field to a power higher than the second.

If for a semiconductor we assume Maxwell-Boltz-
mann statistics for the carriers and a mean free path
independent of energy, and if we assume that the energy
and relaxation time surfaces in k space are spherical,
then we can integrate the coefficients of (1). If the
resulting values for oo, @, 3, v, and & are substituted into
Egs. (3), we have the following as the coefficients of (2)
for these assumptions:

po=1/neop, (4a)
A= —(3r/8¢c)(q/e0)u, (4b)
B=—C= (97/16¢%) (1—7/4)p2, (4¢)
D=0, (4d)

where
u=4e\/32rmkT)}

is the mobility, » is the carrier density, ¢ is the velocity
of light, X is the mean free path, and ¢ is the charge of
the current carrier, being +eo for holes and —eo for
electrons. Since for these assumptions, D is zero, the
field as given by Eq. (2) will be isotropic. The only

2 G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951).
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crystal parameter involved in the coefficients 4, B, or C
is the mobility so that these parameters should not
vary too much from one crystal to another of the same
type but of different resistivity, as long as we are con-
cerned only with relatively pure crystals. Thus, meas-
urement of 4, B, or C should enable us to calculate the
mobility. Essentially (4b) is used to calculate mobility
from Hall and conductivity measurements and (4c) is
used to calculate mobility from magnetoresistance
measurements. From (4c) we see that

pu=1.623B%, (Sa)
r=1.623(—C)3, (5b)

and, anticipating Eq. (13), it is found from (4b) that
(3m/8)u= Roo. (5¢)

The mobilities calculated from (5a), (5b), and (5c)
should be equal to the mobility determined from drift
measurements.? Since mobilities determined by (Sc) for
germanium do not agree with the mobilities determined
by drift measurements, the isotropic assumptions must
be incorrect for germanium. The correct set of assump-
tions must lead to the observed experimental relations
between Rogo, B, and C and must give the observed
value for D. If the correct assumptions enable us to
calculate the mobility from B, C, and Raq, the mobilities
obtained should equal the drift mobility. Experimental
values for B, C, and D will thus be useful in checking
assumptions made about energy and relaxation time
surfaces.

Experimentally it is convenient to set up a coordinate
system in a crystal which may or may not coincide with
the axes of cubic symmetry. If the axes we define experi-
mentally are x, y, and z, then the components of the
electric field in these directions are represented by

E.=po[ i+ A4 (1XH),+ Bi.H>+-CH,(i- H)

3 z z z
+Dz Z Z Z ir’asrasr’asr”asr”’Hr”Hr"’:]) (6)

s=1 r'=z r''=zx r'/'=2

where 7 may equal «x, y, or z and where the a,, are the
direction cosines of the x, ¥, z axes with respect to the
1, 2, 3 axes of cubic symmetry.

The coefficients B, C, and D can be calculated from
magnetoresistance measurements.? These measurements
give B directly, but C and D always appear in additive
combinations with B or with each other and B. Hence,
the accuracy of the values of C and D obtained from
magnetoresistance measurements will depend upon the
relative magnitudes of the three coefficients.

III. THE NEW EFFECT

If we use the experimental conditions that i=1,,
H,=1,=1,=0, i.e., the current is along the x axis and
the magnetic field is in the xy plane, we find from

3]. R. Haynes and W, Shockley, Phys. Rev. 81, 835 (1951).
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Eg. (6) that the field in the y direction is
E,=poCi,H H,~+poD iz[ (Z dsxgasy) H?
-+ (Xs: asmas,,s)Hf—l" 2H.H, (Zs: as:cza’syz)]' (7a)

If H,=0 and we define ¢ as arctan(H,/H,), then (7a)
may be written as

E,=HYG sin(2y+A)+¢], (7b)
where ‘
G=po{[3CH+ DL t:5%a5,*]?

F1DY 35 (astey— a:005,%) 1}, (7c)
g=3Dpo[ s (@0Ptey+sats®) ], (7d)
A= arctan[ZS (80’0~ 00400) ] (7e)

[AC+DY. tulan?]

It is the field given by Eq. (7b) that we wish to in-
vestigate. This field which has apparently not been
previously discussed or investigated, will be anisotropic
unless D=0, and measurements of it for crystals with
known orientations should enable us to calculate the
coefficients C and D.

If we use a crystal in which x, y, 2z coincide with the
(100) axes of cubic symmetry, (7b) becomes simply

E,=Gi,H?sin(2y), 8)
with
G=Cpy/2. )

If x coincides with the (110) axis, y with the (110)
axis, and z with the (001) axis, (7) again reduces to (8)
only for this crystal orientation:

G=(C+D)po/2. (10)

Equation (8) shows that the field should have a
maximum at ¥=45° for crystals with the two orienta-
tions mentioned above. G can be calculated by making
measurements at this angle and by using the relation,

G= (V,1/HT) X 10%, (11)

where ¢ is the sample thickness. Equation (11) follows
directly from (8). The factor 10 is used so that G and
hence C and (C+D) calculated by (9) and (10) will be
in laboratory units (cm®/joule sec) if the units of
Vy, {, H, and I are volts, centimeters, gauss, and am-
peres, respectively. '
Thus, this new effect enables us to calculate C directly
and D indirectly and enables us to check our assump-
tions of isotropy discussed in Sec. I. It should be pointed
out that crystal orientations other than those dis-
cussed above could be used in studying this effect. The
orientations discussed in this section, however, are
readily obtainable, at least for germanium, and also
lead to simple expressions for G, g, and A of Eq. (7b).
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IV. PRELIMINARY EXPERIMENTS

In order to investigate the effect described in Sec. I1I
several properly oriented samples of both #- and p-type
germanium were prepared. The samples had their «, y, 2
axes parallel to either the (100), (010), (001) axes or
the (110), (110), (001) axes. Several samples of both
orientations were cut from a single slice of a single-
crystal germanium ingot grown by the method of Teal
and Little.* By preparing the samples in this way it was
hoped to obtain a group of samples that had the same
characteristics except for orientation. Three groups of
samples were prepared from three ingot slices: 9.5 and
20.5 ohm cm p type and 13 ohm cm # type. Leads were
soldered to the samples as in a Hall measurement. For
the effect we wish to investigate (which we shall refer
to as the “planar Hall effect”) the magnetic field lies
in the xy plane, ie., the plane of the sample. The
voltage developed in the y direction may contain a
contribution from the Hall effect if the magnetic field
does not lie precisely in the xy plane. By proper
reversals of the magnetic field and sample current we
can obtain that component of the voltage in the y
direction which is a function of H? and I, thus elimi-
nating any Hall voltage.

All measurements were made at room temperature.
The planar Hall voltage was found to vary linearly
with the sample current and sinusoidally with 2y as
predicted by Eq. (7b). The dependence upon the angle
¥ is shown in Fig. 1. The coefficient G was calculated
by means of Eq. (13) and Fig. 2 shows the dependence
of G upon H?. The horizontal lines obtained from #-type
samples indicate that E, is proportional to H? The
finite slope obtained for the p-type samples indicates the
presence of an H* contribution to E, which is not un-
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F1G. 1. Dependence of the planar Hall voltage upon the angle
between current and magnetic field. The solid line fits the equation
V'=16.47 sin2(y+3°) —0.50. [Compare with Eq. (7b).]

4 G. K. Teal and J. B. Little, Phys. Rev. 78, 647 (1950).
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Fic. 2. Dependence of coefficient G on magnetic field for
germanium at room temperature. The numbers in parentheses
refer to the crystal orientation (see footnotes to Table I). The
letter before the parentheses indicates whether the particular
curve is for an #- or p-type sample and the number after the
parentheses is the resistivity in ohm-cm.

expected since our derivation has ignored higher-order
terms. (The values of G for # type indicate a very small
H* contribution which is not detectable in Fig. 2.) If we
consider the (100) p-type samples we see that for a
ratio of resistivity of 2.19 the G values have a ratio of
2.17 which is in good agreement with Eq. (9).

The G values for the two n-type crystals in Fig. 2
show a decided anisotropy. Not only the magnitude of
G but also its sign is dependent upon crystal orientation.
The anisotropy is also evident in the p-type samples.

The values of C and D obtained by means of (9) and
(10) from Fig. 2 are shown in Columns I of Table I.
In order to compute D it is, of course, necessary to use
data from two samples with different orientations.
Since the values obtained for C and D differed from
those obtained by Pearson and Suhl?* by magneto-
resistance measurements (Table IT), magnetoresistance
measurements were made on the same samples for
which the coefficient G had been measured. With these
data it was possible to obtain B and C from measure-
ments on single samples while D could be obtained by
combining measurements on the two samples with
different orientation. The results of these magneto-
resistance measurements are shown in columns II of
Table I. By combining planar Hall measurements with
magnetoresistance measurements it is possible to deter-
mine all three coefficients by measurements on a single
sample as shown in columns III. The values of B and C
for n- and p-type crystals and of D for n-type material
are fairly consistent for the different crystals and the
different techniques of measurement. The values of D
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TaBLE I. Measured values of the coefficients for germanium (room temperature).
(The units of the values given for B, C, and D are 107 cm*/volt? sec?.)

(I1I)

(I an Magnetoresistance plus av)
Orienta- 00 X104 Planar Hall effect Magnetoresistance planar Hall effect we (cm?/
Sample Type tion (ohm cm) (cm3/coul) C D B C D B C D volt sec)
33-2 7 (110)2 13.2 —4.44 —0.98 1.08 —0.98 1.93
Both +2.04 +1.82 + +
33-5 n (100)> 12.7 —4.36 —1.09 +1.14 +1.14 —1.09 +2.02 5400
9-7 » (110) 9.62 . —3.22 +4.62 —3.22 —0.88
Both —0.24 —0.84 .
9-9 D (100) 9.38 2.94 —3.86 +4.60 +-4.60 —3.86 -0.20 10 100
9-2 ?» (110) 20.3 5.56 —3.64 +5.23 —3.64 —1.22
Both —1.03 —0.70
9-6 ? (100) 20.5 5.60 —3.83 +4.97 +4.97 —3.83 —0.80 10 000

& The symbol (110) refers to a crystal whose x, ¥, z axes are parallel to the (110), (110), and (001) crystallographic axes.
b The symbol (100) refers to a crystal whose x, ¥, 2 axes are parallel to the (100), (010), (001) crystallographic axes, respectively.

for p-type material are not consistent. This may be due
to the fact that in computing D it is necessary to sub-
tract two large numbers in order to obtain a much
smaller number. For p-type germanium it would
apparently be better to measure the coefficient D by
the method proposed in Sec. V.

The mobilities as calculated by the isotropic formula
from the value of C obtained by the planar Hall effect
(columns I of Table I) are given in column IV of
Table I. These values are appreciably different from
those obtained from drift experiments or the Hall
coefficient. As pointed out in Sec. I, this indicates that
the assumptions used in evaluating the coefficients of
Eq. (4) are incorrect. Furthermore, the nonzero values
of D obtained for both #- and p-type germanium also
indicate that either the energy surfaces or the relaxation
time surfaces in k space or both are not spherical.
Seitz! has derived expressions for B, C, and D by
assuming that the energy surfaces are spherical and
that the expression for relaxation time as a function
of the wave vector k has a spherically symmetrical
term plus a term containing the simplest cubically
symmetric anisotropy. He finds that with these assump-
tions D and C should be of the same sign. Our experi-
mental results show this to be true for p-type germanium
but not #-type so that Seitz’s theory does not describe
the proper situation for electrons in germanium. It can
also be shown? from Seitz’s derivation that for his
assumptions the ratio (B4+-C-+31D)/(B-+C+D) should
equal 2.5. For our data of Table I we find this ratio
varies from 1.19 to 2.65 in p-type germanium. The un-
certainty in the ratio is due to the uncertainty in the
value of the coefficient D. Seitz’s theory, however, does
not (but should) explain the serious discrepancy in

TaBLE II. Values of the coefficients for germanium (room
temperature) obtained by Pearson and Suhl.® (Units are 107
cm?/volt? sec?.)

Type B c D
P 1.3 —1.09 0
n 1.03 —0.69 1.3

s See reference 2.

mobility between Hall and drift measurements for
p-type germanium.

V. A METHOD FOR DIRECT MEASUREMENT
OF COEFFICIENT D

As indicated in Sec. IV, it would be useful to have a
method for measuring the coefficient D directly. In this
section it will be shown that this can be done by obser-
vation of the dependence of the Hall field upon  H?.

The experimental conditions when measuring the
Hall coefficient arei=1,, H=H,, i.e.,1,=1,= H,= H,=0.
If our assumptions of Sec. I are correct, then (6) shows
that for these experimental conditions

E,= —Apoi.H,, (12)
and R, the Hall coefficient, is
= —Apo=apd®. (13)

There will be no terms quadratic in the magnetic field
in the expression for the Hall field. However, if the
assumptions are incorrect and D is nonzero then

Ey: —Apo?:;Hz‘*‘Dpo’l:tz2 (Z aszasyaszQ)- (14)
Thus for D><0 the Hall field will be anisotropic.® For

the #, v, z axes respectively parallel to the (211), (111),
(011) crystallographic axes the Hall field is

E,= — Api,H.+0.236Dpoi,H.2. (15)

Equation (15) shows that the coefficient D could be
obtained directly by a direct measurement of the H?
dependence of the Hall field. It should be possible to
measure this field dependence directly by using an ac
magnetic field and a dc sample current.

VI. SUMMARY

The coefficients C and D have been measured by
means of the effect described in Sec. IIT and the values
obtained agree with values calculated from magneto-

5 This anisotropy has been pointed out by Mason, Hewitt, and
Wick, J. Appl. Phys. 24, 166 (1953).
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resistance measurements except for the coefficient D
in p-type germanium. The coefficient D could probably
be evaluated most accurately by the method proposed
in Sec. V.
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The nonzero values obtained for D indicate that the

assumptions of Sec. I are incorrect, i.e., the energy
surfaces and/or the relaxation time surfaces are not
spherical in k space.
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Sawaguchi and Kittaka obtained the threshold field of PbZrOs;—that field necessary to change the
antiferroelectric to the ferroelectric phase—below the Curie temperature. The free-energy difference is the
difference between the area under the ferroelectric portion of the curve and that under the antiferroelectric
portion. An expression for free-energy difference has been obtained as a function of voltage, by eliminating
the temperature parameter. This experimental relationship is compared with the author’s theoretical
expression—one that involves the product of the constant spontaneous polarization (16X107¢ coulomb/cm?
in the ferroelectric phase), the threshold voltage, and the molar volume (43 cm?); the free energy so calcu-
lated is small—of the order of 4 calories/mole at 25 kv/cm. Equations are given for calculating the threshold
field-strength and free-energy difference as functions of temperature. The equation for threshold field-
strength resembles the Clapeyron-Clausius equation, with field strength analogous to pressure and spon-
taneous polarization analogous to volume. The threshold voltage versus the downward shift of the Curie
temperature is in good agreement with the experimental results of Sawaguchi and Kittaka.

I. INTRODUCTION

T is known that pure lead zirconate has an antiferro-
electric phase below and a paraelectric phase above
230°C, the Curie point. Sawaguchi and Kittaka have
shown that one can apply a field of the order of 10
kv/cm to pure lead zirconate ceramic and cause the
ferroelectric phase to appear below the Curie point.!

Below the Curie point the sample is normally anti-
ferroelectric; the dielectric constant e, is approximately
200, and has a positive temperature coefficient. At the
Curie point, the dielectric constant increases sharply
about twenty-fold.2

Figure 1 shows the experimental data obtained by
Sawaguchi for the threshold field of the antiferro-
electric-to-ferroelectric phase transition, as a function
of temperature.!

Figure 2(b) shows the point O, from which the
threshold field E; was calculated; the cross-hatched
area is proportional, essentially, to the free energy.!

The author intends to calculate the value of the
threshold field, and the free-energy difference AF,
between the ferroelectric phase and the more stable or
lower free-energy antiferroelectric phase, as a function
of temperature and voltage.

CALCULATION?

Sawaguchi and Kittaka have derived an expression
for the free-energy difference AF= (F;—F,) between

1 E. Sawaguchi and T. Kittaka, J. Phys. Soc. Japan 7, 336-337
(1952) ; E. Sawaguchi, J. Phys. Soc. Japan 8, 615-629 (1953).
( 2 S}Sirane, Sawaguchi, and Takagi, Phys. Rev. 84, 476-481
1951).
3 Background for this type of calculation can be found in the

the ferroelectric state F; and the antiferroelectric state
F,, in terms of the internal energy of the antiferro-
electric state U, and the internal energy of the ferro-
electric state U/

Ff(Tm)'“Fa<Tm)=U/(Tf)_Ua<Ta)- (1)

The temperatures of the antiferroelectric and ferro-
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Fic. 1. Relation between threshold field and Curie temperature.

field of low-temperature physics. See J. C. Slater, Quantum T heory
of Matter (McGraw-Hill Book Company, Inc., New York, 1951),
pp. 504-508; E. T. Jaynes, Ferroelectricity (Princeton University
Press, Princeton, 1953), pp. 70-80.



