
PH YSI CAL REVIEW VOLUME 94, NUMBER 5 JUNE 1, &954

Solution of the Schrodinger Efluation in Periodic Lattices with an
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The problem of solving the Schrodinger equation in a periodic lattice is studied from the point of view
of the variation-iteration method. This approach leads to a very compact scheme if the potential V(r) is
spherically symmetrical within the inscribed spheres of the atomic polyhedra and constant in the space
between them. The band structure of the lattice is then determined by (1) geometrical structure constants,
characteristic of the type of lattice and (2) the logarithmic derivatives, at the surface of the inscribed sphere,
of the s, P, d, . . . functions corresponding to V(r). By far the greater part cf the labor is involved in the
calculation of (1),which needs to be done only once for each type of lattice; (2) can be obtained by numerical
integration or directly from the atomic spectra. Although derived frcm a different point of view, this scheme
turns out to be essentially equivalent to one proposed by Korringa on the basis of the theory c.f lattice
interferences. The present paper also contains an application to the conduction band of metallic lithium.

1. INTRODUCTION

~&~[NE of the central problems in the band theory of
solids is to find the propagating solutions of a

Schrodinger equation,

[—Vs+ V (r) —Efib (r) = 0, (1.1)

in which the potential has the periodicity of the lattice
under consideration. Exact solutions of this problem are
in general not possible, and so a number of approxi-
mation methods have been used in the past. ' The
present paper deals with the application of the vari-
ation-iteration method to this problem, a method
which has in recent years been found to be a very
useful tool for the approximate solution of the wave
equation in nuclear and electromagnetic theory and
whose practicability in solid state physics is just
beginning to be explored. ' '

A straightforward application of this method was
used by one of us [W. Kohn (unpublished); see refer-
ence 3$ to find the ground-state energy (k=o) of
metallic Na. While the result was very satisfactory,
the labor involved discouraged him from calculating
the rest of the band in this way.

Dank and Callen4' have proposed a technique based
on repeated iteration. Apart from orthogonality ques-
tions, not yet fully clarified, which arise from the fact
that the wave functions of interest in band theory do
not correspond to the lowest eigenvalues, their method
has the advantage of being a general and systematic
technique. It involves, however, a major computational

* Supported in part by the U. S. Office of Naval Research.
Preliminary reports were given at the 1953 Durham and Rochester
meetings of the American Physical Society, Phys. Rev. 91, 234
(1953) and Phys. Rev. 92, 847 (1953).

f' Ngw at Armour Research Foundation, Chicago j.6, Illinois.
' See, e.g. , W. Kohn, Phys. Rev. 87, 472 (1952) where many

references are given; also C. Herring, Phys. Rev. 57, 1169 (1940).
D. S. Saxon and R. A. Hutner, Philips Research Repts. 4, 81

(1949).' R. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950).' M. Dank and H. B. Callen, Phys. Rev. 86, 622 (1952).
~M. Dank, Ofhce of Naval Research Report, University of

Pennsylvania, December, 1952 (unpublished).

e8ort for each physical problem, requiring the assistance
of large scale computing machines.

After our original attempts we noticed that under
two conditions the whole problem simpli6ed enor-
Inously, namely when the eGective potential was
spherically symmetrical within the inscribed spheres of
the atomic polyhedra and constant in the space between
them. Both of these are rather well satisfied in many
solids. If necessary, small deviations from these condi-
tions can be taken into account by a perturbation
calculation.

The most attractive feature of the scheme which then
emerges is that by far the greater part of the work of
calculating energy bands consists of the calculation of
certain geometrical "structure constants" which must
be calculated once and for all for each type of lattice.
Beside these, the only other information required are
the logarithmic derivatives 1.~, at the surface of the
inscribed sphere, of the s, p, d, . . . solutions of the
Schrodinger equation with the given V(r) These c. an
be easily obtained either by numerical integration or,
in some cases, directly from the atomic spectra' without
explicit introduction of V (r).

It should be emphasized that in spite of the assump-
tion of a spherical V(r) the method is not equivalent
to the spherical approximation of Wigner and Seitz in
which also the atomic polyhedron is approximated by
a sphere. The present method takes the actual shape
of the polyhedron exactly into account.

We have used this method to calculate the filled part
of the conduction band of metallic lithium (Sec. 5). On
the basis of our experience with this calculation, we

believe that once the structure constants are tabulated,
the method affords a very convenient way of calcu-
lating energy bands when the potential satisfies approx-
imately the aforementioned conditions.

A program of preparing systematic tables of the
structure constants for body- and face-centered cubic

' T. S. Kuhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950).
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lattices has been started, and the results will be pub-
lished when available.

When this work was completed, a paper by Korringa'
was brought to our attention' in which an essentially
equivalent scheme was developed from a diGerent point
of view. We have felt, however, that a presentation of
our work in substantially its original form was ad-
visable, since it brings out a number of new points
which did not appear in Korringa's work.

2. RESUME OF GENERAL THEORY

Consider a monatomic lattice of nuclei at the equiva-
lent positions,

r, =siei+sses+sses, s,=0, &1, &2, , (2.1)

consider the solution of (2.4) and (2.5) in the central
polyhedron only.

We now introduce the Green's function G(r, r') defined

by
(—V' —E)G(r,r') = —3(r—r'),

and, for conjugate boundary points r and r'
(2.6)

G(r', r') = exp(ik e,)G(r,r'),
2.7

c)G(r' r')/cin'= —exp(ik e,)c)G(r,r')/i3m.

Let K„be the vectors of the reciprocal lattice defined by

~,=2 re (integer), i=1, 2, 3. (2.8)

Then G can be written as

1 exp[i(K„+k) (r—r') j
G(r,r') = ——P (2.9)where the z; are three fundamental translation vectors

of the lattice. Let V(r) be an effective potential with
the periodicity property:

(K„+k)'—E

V(r+r, )= V(r).
where r is the volume of the atomic polyhedron.

(2 2) Alternatively, G can be expressed in the form,

We shall look for the "propagating" solutions,

li (r+r, )= e'"'V(r),

of the Schrodinger equation,

[—r +V(r) —E]P(r)=O. (2.4)

f(r') = exp(ik. ~,)P(r),
r)P(r')/r)N'= —exp(ik e,)8$(r)/r)e,

(2.5)

where k is the wave vector of the solution, r' and r are
conjugate points on the surface of the polyhedron, and
z, is the fundamental translation vector joining them.
(See Fig. 1.) From here on, it will be sufhcient to
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These solutions satisfy the following boundary condi-
tions in the central polyhedron, which surrounds the
origin:

x=+QE, E)0,

=+i+(—E), E.&0.
(2.11)

The correctness of (2.9) and (2.10) may be verified by
direct substitution. Equation (2.9) is the standard
expansion of a Green's function in terms of the eigen-
functions of the homogeneous boundary value problem
and (2.10) can easily be derived from it. (See Appendix
2.) The Green's function has the hermitian property,

G(r', r) =G*(r,r'), (2.12)

as is apparent from (2.9).
To replace the boundary value problem (2.4), (2.5)

by an integral equation, we multiply (2.4) by G*(r,r'),
and the complex conjugate of (2.6) by P(r), subtract
and integrate over r in the interior of the polyhedron.
This leads to

1 exp[is ~r—r' —r,
~ j

G(r, r') = ——p -- exp(ik r,), (2.10)
4ir ~ ir —r' —r,

i

where

P(r') =,t G*(r,r') V(r)P(r)dr, (2.13)

which, by (2.12) is equivalent to

/
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I
/

/I
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FIG. 1. Conjugate boundary points.

' J. Korringa, Physica 13, 392 (1947).
We are greatly indebted in this connection to Drs. K. M.

Baroady and R. J. Harrison of the Batelle Memorial Institute.
We understand that Drs. Harrison and Trefftz are engaged in
applications of Korringa's method which are similar to the work
reported here.

(2.14)

Our further considerations are based on this equation. '
s The final secular equation (3.17) is derived in the following

from a variational formulation, which shows that the energy
calculated from it will have an error of the second order compared
to that of the trial function. A briefer, nonvariational derivation
is given in Appendix 1. The reader who wishes to omit the varia-
tional discussion should proceed from here to the beginning of
Sec. 3 up to (3.7) and then to Appendix 1.



SCHRODINGER EQUATION IN PERIODIC LATTICES

(2.15)8A.=0,

The integral Eq. (2.14) is equivalent to the varia- The conditions,
tional principle:

8A/8 = BA/Bb =0 '=0, 1, n, (2.26)

where which follow from (2.15), give the linear equations

A—= f*(r)V(r)P(r)d~ PA;, ,c;=0, i=0, 1, . e, (2.27)

&*()V()G(, ) V(')C(")d d ',

DetA;, ;=0. (2.28)

as may be directly verified. It should be noted that bA

vanishes for arbitrary variations of P, in particular also
such as do not satisfy the boundary conditions (2.5).
This allows one much greater freedom of choice of the
trial functions.

The variational formulation has considerable practi-
cal usefulness. For let P be a solution of (2.14) corre-
sponding to k and E (the latter enter through G);
then, clearly,

Ag, k,E)=0. (2.17')

If now f& is a trial function,

A=4+~x,
where c is a parameter of smallness, then by (2.15),

A Q g,k,E)= O(e'). (2.18)

Hence if for given k we calculate E& from the equation,

then clearly,
Ag„k,E,)=0,

E,—E=O(e')

(2.19)

(2.20)

i.e., the error of the energy is of the second order
compared to that of the trial function. Similarly, if we
considered E given and calculated k, from

Since, for given functions p;, the A;.,; are functions only
of k and E, Eq. (2.28) gives the required stationary
connection between k and E.

If desired, the coeKcients c, can be determined from
(2.27) after (2.28) has been solved.

3. SIMPLIFICATION FOR A CERTAIN CLASS
OF POTENTIALS

While the method described in the preceding section
does formally represent a solution of our problem its
practicability depends on whether the A;, ; (2.24) can
be evaluated with a reasonable eGort. Unfortunately
this is in general quite a formidable task, involving first
of all the calculation of the Green's function for various
k and E but then also the evaluation of the 6-dimen-
sional integrals occurring in (2.24); the latter is made
harder by the fact that the Green's function is singular
for equal arguments, and that the region of integration
is the rather complicated atomic polyhedron.

A great simplification can be achieved if one confines
oneself to potentials V(r) with the following properties:

V(r) = spherically symmetrical,

r(~;=radius of inscribed sphere; (3.1)

we would have
A. (&(,k),E)=0,

ki —k= 0(e')

(2.21) V(r) = Vo= constant, r &r;.

In that case we can first of all shift our zero of energy
to make

P=Q cq;, c;=e+ib;,
0

and substitute into (2.16). Calling

(2.23)

The variational principle (2.15) lends itself to an
application of the Rayleigh-Ritz technique. We use a
trial function of the form:

V0=0, (3.2)

and can therefore restrict our discussion to potentials
which vanish for r&r;. We then notice from (2.16)
that the contribution to A come only from the spheres
r&r;, r'&r;.

Now for r&r; the true solution of our problem, for
energy E, can be expanded in spherical harmonics,

A.;.,;—=) y; (r)V(r)y;(r)dr co

Z E GiWi(r)I'i (~,v),
lMm l

(3.3)

h R (r) is defined bg, J,,
where A;.,; is Hermitian, we have

A= Q c;*Ay, ,'cg.
i, jM

(2.25)
(3.4)

1 d d l(l+1)———r'—+ +V(r) ERi(r) =O, —
r Lk dr r
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we 6nd

Bit e(r) 8
ds, ds' —Pe(r)—

4 7&r,-2e ~ rr&r;-e Bt' Br
which is normalized to unity:

21/1 (1—(tm()! &

Y( (8,q) = Pg!"!(cos8)e'~r (3.5) r

(1+~~~)! A, =

p 271

d8 dy~ Y~„(8,y) ~' sin8=1.
"0 40

(3.6)

(3.7)

which satis6es the wave equation exactly.
To deal properly with the singularities of G we mus(

use a limiting procedure in evaluating A. We set

It is therefore natural to use as trial function a 6nite
series of the form (3.3),

&& f(r') G(r, r') —G(r, r') P(r') . (3.12)
Bf &91'

j((x)= (~/2x) Vs+..(x),

N)(x) = (m/2x)V r;(x);"
(3.14)

Now it is shown in Appendix 2 that, for r&r'&r;,
G can be expanded in the form

G(r,r') =P P $A)„(j., )(~r)j( (Icr')
l.ts ll.mr

+~8u 8„„.j,(ar)rs)(~r') j
)& Yi (8,p) Y*g (8', p'), (3.13)

e-+0

where

ding* (r) V (r)
~ r&r,—2e

f
X y(r)—J„.

h.= limA„ (3.8)
8, p and 8', q' are polar angles of r and r', relative to
some Gxed system of coordinates; and the "structure
constants" A~, , ~, which are functions of E and lt

are characteristic for the lattice under consideration.
They are explicitly given in the form of infinite sums
(for details see Appendix 2).

When (3.13) and (3.7) are substituted into (3.12)
and the limit e—4 is taken, one obtains for the matrix
elements of h. :

With the trial function (3.7), the volume integrals in

(3.9) can be transformed into surface integrals by using
the wave equation (2.4) satisfied by the trial fand—
(2.6) satisfied by G. Thus,

P(r) dr'G(r, r') V—(r')P(r')
r'&rr', —e

=f(r) t dr'G(r, r'—) (9"+E)P(r')
J 7'&7&—e

t

ds' G(r,r') f(r')
~ r'-rs-e 8~

8—P(r') G(r,r') . (3.10)

Substituting into (3.9) and noting that, for «&«',

degas(r) V(r)G(r, r')
r&rs—2e

Al l' ' (Lj'lL jl )[(~l ip 'j p +«8l«8 'rsp )
—(A (,( j( +~Su 8 rsp)L(. j, (3.15)

where
dR((r)

R((r)

dj, (~r)
Jl = etc.

(3.16)

In deriving (3.15) we have used the normalization
R~(r;)=1. Before equating the determinant of (3.15)
to zero, we divide each row by (Lj&&

—j&'), and each
column by (L&j E jp') which gives the—secular equa-
tion,

ng —egl. g

Det A(, p +~8gpb„„,
,j lLl

(3.17)

This equation contains the required connection between
E and k. It is shown to be equivalent to Korringa's
Eq. (19)r in Appendix 3.

In practice, (3.17) may be used as follows:
(1) The structure constants A~~, p~ are tabulated

once and for all, for each type of lattice, as functions
of Eandk.

Wt.st:l
~~ For expIicit expressions in "terms of sin@ and cosx see, e.g. ,G(rP' ) ll' (r) ~ (3-1-) L. I. Sch!8, Qtserstura Mechuescs (McGraw-Hill Book Company. ,J r r~ se 4 8« -8« Inc, , New York& 1949), Grat edition, 77.
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(2) For the first few l, the logarithmic derivatives Li
are obtained as functions of the energy. LIt is under-
stood here that the energy zero has already been
shifted to make V(r) = 0, r &r;.j This may be done by
numerical integration of (3.4) or directly from the
observed term values of the atomic spectrum. '

(3a) If the energy is required for general k's (i.e., k's
which are not invariant under any of the symmetry
operations of the lattice), the most convenient way of
solving (3.17) is to fix E (and hence )() and to find
those k's which make (3.17) vanish. Note that k enters
only through the A' s.

(3b) Certain points in k space are invariant under
some of the symmetry operations of the lattice. The
procedure (3a) does, of course, still apply to such
points, but in general (3.17) can now be factored and
it is advantageous to perform this factorization in
advance.

Suppose then we know from group-theoretical con-
siderations" that the wave function must have the form,

f=Q Ci(')Ri(r)Q i (')lr, (g, q), l=l„ l„ (3.18)

where the o.~
('& are given by group theory and may be

chosen so that
4 (i){ii ( j) (3.19)

Substituting (3.18) into (3.12) and demanding that
bh./i)C((') =0 gives, in the limit e~,

Il +lL(L
Det Bi,, i,+({bivb,,

j&'—j&L&

=0,

l = li, l2, , (3.20)

~ ~ ~

Wa.ve Functions

For some purposes one requires, besides the energy
Z(k), also the wave functions f),. As usual, these can
be obtained from the set of linear equations (2.26),

"F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947).

~i;;& ~= ~ im Aim;&mo't m
O(s) a (j)

m, m'

The order of this secular equation equals the number of
independent functions (i.e., the number of Ci('&) intro-
duced in (3.18).

If the energy is wanted at an isolated point of high
symmetry, e.g. , k=0, then (3.20) must be solved by
varying E. If however the energy is required on a
symmetry axis or plane, e.g., along the axis k = k„=0,
along which the o.~

(') remain constant, it is simpler to
fix 8 and solve (3.20) for k,.

For defjInitions of the A ~ ., ~ see Appendix 2.

after the secular equation (3.17) or (3.20) has been
solved.

For a "general" k, the coeKcients Ci in (3.7) are
given by

( Ni N(I i—$P
~
Ai., i„+){b)ib„„ IC(.„.=0,j i' j&L—() (3.21)

Ci =Ci /(ji' j(Li—).

Similarly, for a symmetrically located k, the coeKcients
Ci(" in (3.18) are given by

rig —'BiL($
Q

~

Bi;,i.;+){biibg ~C) ('=0,' j i' j(Li&— (3.22)

C (')=Ci( )/(j i' j'(L)

One should remember, however, that in a variational
procedure such as the present one the accuracy of the
wave function is much poorer than that of the energy.

4. USEFULNESS AND LIMITATIONS

In this section we shall try to appraise the advantages
and limitations of the method just described.

In cases where an effective potential is given which
has the properties (3.1) to a sufhcient degree of approxi-
mation we believe that the present method ofFers an
extremely convenient way of calculating the energy
bands. By far the greatest part of the work consists of
the calculation of the structure constants A~ ., ~,
which are characteristics of the geometry of the lattice
and whose computation is well suited for high-speed
calculating machines.

The only other ingredients necessary for obtaining
the band structure are the logarithmic derivatives of
the radial functions, which are easily obtained.

The convergence of the procedure is very good, as
illustrated in the application to metallic lithium which
is described in the following section. Very accurate
results for the energies are obtained there with as few
as 2 or 3 trial functions. There are three factors which
favor rapid convergence:

(1) The secular equation results from a variational
principle so that the error of 8 (or k) is of the second
order compared to the error of the trial function.

(2) As a rule, variational principles based on the
integral equation, as the present one is, give much more
accurate results than those based on the differential
equation. '

(3) The trial function is required only inside the
inscribed sphere. In this limited region a smaller number
of partial waves will give a good approximation to the
correct function than is needed. to describe the wave
function in the entire polyhedron.

The chief limitation of the method is, of course, its
restriction to potentials of the class (3.1). When the
actual potential violates these conditions radically the
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r
(atomic units)

0.02
0.04
0.06
0.08
0.10

. 0.12
0.14
0.16
0.18
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.68
0.76
0.84

—rV
(atomic units)

5.727
5.544
5.450
5.351
5.253
5.157
5.058
4.960
4.862
4.762
4.563
4.360
4.1584
3.9463
3.7360
3.5429
3.3797
3.2417
3.1209
3.0138
2.8342
2.6881
2.5662

r
(atomic units)

0.92
1.00
1.08
1.16
1.24
1.32
1.40
1.48
1.64
1.80
1.96
2.12
2.28
2.44
2.60
2.76
2.92
3.08
3.24
3.40
3.56
3.72

TAmE I. The lithium potential.

—rU
(atomic units)

2.4242
2.3766
2.3058
2.2458
2.2035
2.1661
2.1350
2.1090
2.0697
2.0466
2.0325
2.0288
2.0292
2.0228
2.0124
2.0065
2.0031
2.0015
2.0008
2.0004
2.0002
2.0001

V(r) = V(r) —Vs, r&r;,
(5.3)

and the eGective energy was

E=&—Vo.

The lattice parameter (cube edge) was taken as

u= 6.5183uo,

where ao is the Bohr radius.
At k=0, we used the trial function,

Q=Css(4m) 'Es(r),

which, when substituted into (3.17), gave

(5.4)

(5.5)

(5.6)

Figure 2 shows that this replacement is not likely to
introduce an appreciable error, an expectation borne
out by the calculation.

In the subsequent work the energy zero was shifted
to Vo, so that the eGective potential in our calculation
was

If'„= —0.6832 ry. (5 7)
procedure is not suitable. In many cases, however, the
deviations from these conditions are small. One can
then write

V(r) = V&@(r)+V&"(r), (4 1)

where Vi'& satisfies (3.1), and V&'& is small. Thus for
r &r, one might take for V "&(r) the angular average of
V(r), and for r&r; the average value of V(r) in the
space between the inscribed sphere and the polyhedron.
One then solves the problem with V ('), and adds to
this a erst-order perturbation correction using the
wave functions determined by (3.21), (3.22).

This agrees to four figures with the energy calculated
in the spherical approximation. ' Since it is known that
for k=0 the spherical approximation gives very accu-
rate results for the alkalis, this agreement represents a
good check on the validity of replacing V by U', Kq.
(5.1).We may also note that E, the value of E relative
to Vs, is very small (—0.0203 ry) for the ground-state.

Next the energy was fixed at E= 2(es/a)' ry and the
corresponding k along the (1,0,0) direction was deter-
mined. As trial functions we used

S. APPLICATION TO METALLIC LITHIUM O'= Z &B'(r) Vio(&, f'), (5.8)

As a 6rst test of this method we have calculated the
6lled part of the 2s conduction band of metallic lithium.

As potential we took that which was used by Seitz"
in his original calculation, but due to an error was not
correctly printed in his published paper. It is correctly
listed in Table I.

This potential, while spherically symmetrical, is not
strictly constant outside the inscribed sphere. Ke have
therefore replaced it by the potential:

V'(r) = V(r), r&r;,
= Vo, r&r;,

(5 1)

where Ve was chosen as the average value of V(r) in
the space between the inscribed sphere and the bound-
ary of the polyhedron:

00 .6 7
I

vo

with the Vis referred to the (1,0,0) direction. To test
the convergence, l was taken as 1 and 2 (2 and 3 trial
functions). The results are listed in Table II.

Finally E was taken as 10(ap/a)' ry (near the Fermi
level) and the corresponding k's were found along the
(1,0,0) and (1,1,1) directions. The trial functions were
again of the form (5.8) with the F'Q referred to the

Vo= —0.6629 ry. (5.2)
"F.Seits, Phys. Rev. 47, 400 (1953). In Table II of the paper

by Seitz, the quantity rUII was obtained from rVI incorrectly by
adding a small corrective potential with the wrong sign. Thus the
correct rUzz can be obtained from the rUz given by adding the
difference (re —rVn) derived from Table II to the value of re
given in the table.

-5

FIG. 2. The potentials V and V'.
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(1,0,0) and (1,1,1) directions, respectively. The results
are listed in Table II.

It will be seen that the convergence is very rapid.
With 2 trial functions the error is less than 2 percent,
so that with 3 functions it is presumably quite negligible.

Adopting the three values of
~

k~ calculated with l=2
and the E for k= 0 $Eq. (5.7)j, we can fit an expression

~0
E2
+40)
jV4(2)

Spherical approximation

—0.6832
0.7270—0.029
0.000

Present method

—0.6832
0.723
0.039—0.033

TABLE III. Expansion coefficients of the energy, Eq. (5.9).

E=Es+Esk'+E4"'k4
(in the end s—4). Then (2.14) becomes

+ (5E (sl) (k sk 2+k sk 2+k zk s rk4) (5 9)

to these points. (The smallness of E4&" and E4"' justifies
the use of this form, which is strictly correct only for
small k s.) The result is listed in Table III, where it is
also compared with the corresponding result obtained
in the spherical approximation. '

As was to be expected, the band is not strictly
spherically symmetrical in k space, i.e., E4&'&&0. (In
the spherical approximation the band has, of course,
spherical symmetry. ) However, the smallness of both
fourth order coeKcients is quite remarkable. It means
that the entire 611ed part of the band is very nearly
parabolic, although the top of the filled region is quite
close to the boundary of the Brillouin zone.

From a physical standpoint the Z4&" and E4&" terms
are too small to be taken very seriously. "We believe,
however, that the present method is useful when the
band shape diQ'ers considerably from spherical sym-

metry as a result of the nonsphericity of the poly-
hedron. Such deviations from spherical symmetry, when

substantial, play an important role in the theories of
the Hall coe%cient and of magnetoresistance.

We should like to express our thanks to Miss Alice
Carroll for her expert assistance with the numerical
calculations.

lt (r) = " G(r, r') V(r')l( (r')dr'.
r'(r —e

(A1.2)

Now consider an r for which r=r;—2e, and use (2.4)
and (2.6). This gives

0=&(r)—) G(r,r') (V"+ E) tl(r')dr'
7'(ri—S

r'=r; —eJ
8 8

G (r,r') iP(r') P(r') G (r,—r') ds'. (A1.3)
Br Br'

In this equation, we substitute (3.1.3) for G and (3.3)
for lt, multiply by Yi *(8,p) and integrate over the
sphere r= r;—2e. Finally, we let e—4 and obtain:

where the symbols are explained in (3.13), (3.14), and
(3.16). These linear equations lead at once to the
compatibility condition (3.17).

2 jit &i;v (ji Li —ji')
ll, ml

+xiii 3 „(Ni L, i
—Ni '))Ci „=0, (A1.4)

APPENDIX 1. NONVARIATIONAL DERIVATION OF
THE SECULAR EQUATION 3.17

Let us consider a potential V (r) with the properties:

V (r) = spherically symmetrical, for r&r; s-
(A1.1)=0 for r&r;—e

APPENDIX 2. EXPANSION OF THE GREEN'S
FUNCTION

Vile begin by setting down three standard results
which will be used in what follows:

Addi ti orI, Theorem:

E (c/ao) 2

(n) (a,o,o)

TABLE II. Three points of the energy band. 4~
Ei(cosO) = Q Yi (8,p) Yi *(8',to'), (A2.a)

21+1 m i=
+ 2.0

+10.0

/= i:0.3026
&=2 03037

/=1 0.5757
l= 2:0.5844

)= 1:0.5845
)=2:0.5920

where 0' is the angle between the directions (8,y) and
(8', y') and the Yi are defined in (3.5).

Expafisioe of I'/arne Wave:

e'x'a =4s Q sij i(ER) Y& (8rr, q n) Yi *(8rc,p&), (A2.b)
"A very rough estimate shows, for example, that the neighbor-

ing iona contribute a small term of the form c(x'yz+ysz'+z'x' ——,'r4)
to the potential which gives rise to an B4"& whose order of magni-
tude (probably within a factor of 5) is —0.006. Furthermore,
it is very doubtful if the band picture can be trusted for such
Gne effects.

where j& is defined in (3.14), and 8ir, equi and 8rr, ex are
the polar angles of K and R relative to some fixed
coordinate system.
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Expansion of Free Space Green's Fgnction:

~~~I r—r'l

=K p ji(«)Lnt(«') —ijt(«'))
M Ir r'I—

X Yt-(0, 9 ) Yt-*(~',~ ') (A2.c)

for r(r', and a symmetrical expression when r'&r.
We now turn to the expansion of the Green's function

in spherical harmonics. For this, either (2.9) or (2.10)
can be used as a starting point, leading to alternative
expressions for the expansion coeKcients.

We begin with (2.9),

1 exp[i(K„+k) (r—r'))
G(r r') = ——2

(K„+k)-'—E

1x~~: ji(x) -- sinI st l-
g & 2&'

(A2.6)

the sum in (A2.5) is absolutely convergent.
Apart from the Hermitian relationships (A2.4) the

A's are not all independent but are derivable from a
smaller number of independent constants. It may be
noted that G is a function only of the single vector,

R= r—r'. (A2.7)

where tt„, y„are the polar angles of K„+k relative to
the fixed coordinate system. The right-hand side is of
course independent of the particular choice of r and r'.
It shouM be noted that in view of the asymptotic
behavior,

and introduce

D(r, r') G(r, r'}—Gs(r, r'),
where

1 cos(itIr —r'I)
Gs(r, r') = ——

4n
I
r—r'I 1 expLi(K„+k} R)

G(R) = ——2—
(K„+k)'—E'~ Pj t(«)nt(«') Yi„(0,q) Yi„*(0',p');

l, m

r(r',
(A2.2)

s Q nt(«)j &(sr') Yt„*(8,p) Yt„(8',y');

r'(r,

1 cosKR
+ P Dr„~j r. (lt~) Yr.jr(OP),

4~ E

for R&r, (s= 1, 2, ), (A2.8)

We shall now show how the 2's can all be expressed in

(A2 1) terms of the expansion coefficients of G relative to R.
Proceeding exactly as before, we find that 6 can be

written in the form

Lsee (A2.c)) and satisfies the same inhomogeneous wave
equation as G(r, r') for r, r' inside the atomic polyhedron.
Consequently D satisfies the homogeneous wave equa-
tion in r and r', and hence for r, r&r; must have an
expansion of the form

D(r, r') =E Z &i; v j i(«)j i («')
i,m &r, m

X Y& (&, q) Y& *(8',q'). (A2.3)

where 8, C are the polar angles of R. The Dl., ss are
given by

4m.

Dr„sr= ——i [jt(~R)) '

jy, (I K„+k I R) Yr,sr*(8„,p„)xp
(K„+k)'—E

Together with (A2.1) and (AZ.2), this gives the form
(3.13) for G. The Hermitian property of G, (2.12),
implies the relationship Dr„sr= (—1)'Dr., sr*

+ 8i,stirs cot—sR,
4x

(A2.9)

(A2.4)

Explicit expressions for the A's can be obtained by
expanding each of the factors expI i(K„+k) r) and
expL —i(K„+k) r ) occurring in (2.9) in spherical
harmonics and comparing the result with the expansion
(3.13).Thus one finds

(4m.)'
At, i = — i&' '&I j&(«)jt.(«')) '

where 8„, q„are the polar angles of (K„+k).
The infinite sum in (A2.9) converges, but only

slowly. A convenient practical scheme of evaluating
this sum is based on Ewald's method. "We consider

j I.(I K„+kIE)Ytsi*(8„,q„)
S(g) =Q

(K„+k)'—E

Xexp(IE —(K +k)')/U) . (A2.10)

j t(I K.+kIr) jp(I K„+kIr')Yi (8„,p„)Ytxp
n (K„+k)'—E

ni(«')—~Rgb 8 ~, r (r'(r;,j t(~r)

We require S(~). Now Kwald has shown that S(i1)
(t n Pn) —S(~) approaches zero exponentially as i1—+~ . Hence,

by choosing for ~1 a sufliciently large value (which in
practice turns out to be remarkably small), we can
without appreciable error evaluate S(rt) instead of

(A2.5) "P.Ewald, Ann. Physik 64, 253 (1921).
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=5 (K„+k- K), (A2.17)

S(~). This is a great practical advantage since the purpose we use the standard results:
sum for S(rt), because of its exponential factor, con-
verges much more rapidly than that for S(0v).

The A~, ~
~ are expressible in terms of the Dr„sr. exp i „+k—

p dg

Comparing (3.13) with (A2.8), we see that

E Dr. , zrjr. («)Yrzr(O, C')
L,M

=2 2 A i-; ~, - j~(«) j~ («')
l m l'.m'

1
—P exp(zK„p) =g b(p —r,), (A2.18)

1 t exp[zK (R—r,)]
X Y, (&,q) Y,.„.(S', z '). (A2. 11) d'~ (2zr)'& E' (E+—ze)

Now by a double application of (A2.b),

j.( ~)Y-(O,W

i
exp(zu R) Yr,~(e„,q„)dQ„

4~&~

1 "exp(zu r) exp( —iu r') Yr,zr(e„y„)dII.
4+i~~

4x=—2 Zz" "ji(«)i~(«')Y~-(e, )e

Then,

1 exp(AIR —r, I)=+- (A2.19)
4v.

I
R—r, I

QE, E&0

iQ E, E(0—.

1 exp[z(K„+k) R]
G(R)= lim —-Q

' +' r (K +k)' —(E+zc)

ZL l'ml 'm

where

~I M; hn; l'm'

X Yv *(0',z ')CAM;l~-; ~, (A2 12)

YLM(e, y)Yt *(e,p)Yt - (e,v)dII (A21 )

1 t exp(iK R)= lim ——P ~ 5(K„+k—K) dK
r n 0 Xz—(E+ie)

= lim ——. P exp[i(K +k—K) y], (2)z„g J

exp(zK R)
dydK

X'—(E+ie)
Substituting (A2.11) into (A2.10) and comparing
coel5cients of Yg~(tt, y) Y~ ~ (II', q'), gives

1
A,„)~. 4zrzt' .'& Q——Dr„Cr. —', i~;v " (A2. 14)

L 2'L

Here we have used the fact that

= lim — P exp(ik r,)
(2zr)z s

~exp[iK (R—r,)]
XI

Zz —(E+ze)

Cr, zr;i, ;i, =0, Mgtn —zn'.

The sum over I.runs only over the values,

(A2.15) exp(ill R—r, I)= ——P exp(ik r,)
s IR—r, I

(A2.20)

L= II—l'I, ll —l'I+2 ".II+I'I, (A2 16)

as, by (A2.13), the C's vanish for other L's.
In summary, the structure constants A~, ~

~ in the
secular equation (3.17) are given either directly by
(A2.5) or in terms of the smaller number of constants
Dr„zr by (A2.14, 13 and 9). A practical method for
evaluating the sum in (A2.9) is indicated in connection
with (A2.10).

If ~ had been chosen negative, then for E&0, ~ in
(A2.20) is replaced by —~. Both of these expressions
are correct since their difference is evidently a solution
of the homogeneous problem and hence zero. Thus,
instead of (2.10) we can also write

cos(»Ir —r' —r, I)
G(r,r') = ——Q exp(ik r,)

4m s r—r' —r,

Alternative Definitions of Structure Constants L&0, (A2.21.)

As already mentioned, the Green s function can also which, in contrast to (2.10), is manifestly Hermitian.
be expanded by starting from the expression (2.10). If (A2.20) is expanded in spherical harmonics relative

We begin by deriving (2.10) from (2.9)." For this to R, using (A2.c), the following alternative expression
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Convergence of the Green's Fssnction Expansion

It has already been remarked that D(r, r'), (A2.1)
has an expansion of the form (A2.3) which converges,
provided both r and r' are inside the inscribed sphere
of the polyhedron. On the other hand, a consideration
of (2.10) shows that the expansion does not converge
for all other r and r' inside the atomic polyhedron.
This must be borne in mind when one considers appli-
cations of the integral equation method to potentials
which are not constant outside the inscribed sphere.

APPENDIX 3. CONNECTION WITH THE VfORK
OF KORRINGA'

Consider the scattering in free space by the potential

at an energy E.Let R~ be the radial part of the solution
corresponding to angular momentum 1, which for r &r;
satisfies (3.4) and for r) r; has the form

&(r)=~1j~(«)—tann«~(«)3, (A3.2)

where p& is the phase shift. An elementary calculation
shows that if I.~ is the logarithmic derivative of R at r;,
then

n('(«~) n)(irr~) L)—
(A3.3)cotg~ ——

j,'(«;) j,(«;)L, —

is found for the coe&cients Dr„sr of (A2.8):

Dg„sr ~ Q exp(ik r,) [eL,(ar,) sj—r, (irr.)]&I.sr*(e„p.)
s+P

ZK

,4ohlo, (A2.22)
(4v)'

where O„y, are the polar angles of r, . It may be noted
that this series converges exponentially for E(0 since
nr, (ix) ij r, (—ix) e */x f-or large x. Hence it Provides a
good check on evaluations of Dz„sr by (A2.9).

Det Gg„, ( „+8(p8„.— — =0,
sing~

(A3.5)

which corresponds to Korringa's Eq. (19). Equation
(3.17) appears to be slightly more convenient than
(A3.5), as its elements are Hermitian for positive and
negative E, and as it involves the logarithmic deriva-
tives which are the quantities directly obtained from
numerical integration or extrapolation of atomic data. '

1Aie added sn Proof.—Recently a calculation of the
lithium conduction band was published by B. SchiG."
This author used a potential which divers from that
constructed by Seitz, on which previous calculations
by Seitz, "Bardeen, "Silverman and Kohn, ' as well as
the present work were based.

The results of SchiG for the position of the lowest
level in the conduction band, relative to the ionization
energy of the atom, and for the width of the 6lled part
of the band, diGer from the results of the other authors
by 13 and 23 percent, respectively. However, the
cohesive energies are in good agreement.

This discrepancy is presumably due to the difference
between the potentials used. According to the theory
of Kigner and Seitz the potential should be the best
effective potential for the valence electron in the free
atom. The potential of Seitz does indeed reproduce all
atomic energy levels with great accuracy. SchiG's po-
tential is substantially weaker than that of Seitz in the
vicinity of the nucleus, in places by as much as 15 per-
cent. As a result his calculated ionization energy for the
atomic 2s electron is 8 percent smaller than the observed
value, while the Seitz potential gives agreement with
experiment within a fraction of a percent.

"B.Schiif, Proc. Phys. Soc. (London) A67, 2 (1954).
"Bardeen, J. Chem. Phys. 6, 367 (1938).

When this is introduced into (3.17), together with the
constants,

(A3.4)

(3.17) becomes


