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The second virial coefficients of He' and He4 have been calculated at closely spaced temperatures over
the range 0.3'K to 60'K using the Lennard-Jones 12—6 potential with constants determined by de Boer
and Michels. The necessary phase shifts were calculated on a high-speed electronic digital computer. The
resulting He4 second virial coefficients agree very well with the available experimental data. They also
join nicely at 60'K with the coeKcients calculated from the high-temperature. classical equation with
quantum corrections. The second cross virial coefficients for He3, He4 have also been calculated. The devi-
ation of a gaseous solution of He3 and He4 from an ideal solution is comparatively small at temperatures
above about 2'K, while at very low temperatures pronounced quantum solution imperfection appears.

I. INTRODUCTION good representation of the experimental results, we
decided to recalculate these coe%cients for He4 and He',
using constants given by de Boer and Michels' for the
Lennard-Jones potential, for two reasons: (I) to estab-
lish how much of the small deviation of the previous
work. ' from the experimental data is due to the potential
and how much is due to accumulated numerical error,
and (2) to extend the temperature range of the calcu-
lated second virial coeKcients. In addition, we have
calculated the cross He', He4 coeKcients using the
same Lennard-Jones potential.

II. THEORY

The equation of state of a gas may be expressed in
either the pressure or the inverse volume expansion:

Pv= RT+BP+CP'+
I's =RT (1+B'/n+ C'/vs+ (2)

where B=B' is the second virial coefficient (CWC',
etc.). In this section the method used to obtain B will
be briefly developed inasmuch as the several aspects of
this theory have not been consolidated in the earlier
literature. In Part (a), an expression for B in terms of
the density of energy levels for an ideal gas relative to
that for a real gas is derived from the statistical me-
chanical relationship for B. In Part (b), the potential
energy between the two particles is inserted into the
radial wave equation from the solution of which one
obtains the relative energy density. In Part (c), the
results of the quantum-mechanical operations are
introduced into the formula for B.

(a) Transformation of the 8 Equation

The statistical mechanical expression for 8 is given
by'

B= —N V (Zs —rsZts)/Zts, (3)

$ Work performed under the auspices of the U. S. Atomic
Energy Commission.

*Department of Chemistry, The Rice Institute, Houston,
Texas.

'H. S. W. Massey and R. A. Buckingham, Proc. Roy. Soc.
(London) A168, 378 (1938);A169, 205 (1939).

s Buckingham, Hamilton, and i4assey, Proc. Roy. Soc. (Lon-
don) A179, 103 (1941).' J. de Boer and A. Michels, Physics 6, 409 (1939).

4 de Boer, van Kranendonk, and Compaan, Phys. Rev. 76, 998
(1949); 76, 1728 (1949); Physica 16, 545 (1950).

where X is Avogadro's number, Z& is the partition
function for one molecule, and Z2 is the partition
function for two molecules. This expression is correct

s J. de Boer and A. Michels, Physica 5, 945 (1938).
s J. E. Kilpatrick, I. Chem. Phys. 21, 2'?4 (1953).
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HK second virial coeScient of He4 at low temper-
atures has been calculated by Massey and

Buckingham' and by Buckingham, Hamilton, and
Massey, ' from several intermolecular potentials, the
constants of which are theoretical or semitheoretical
in origin. A similar calculation has been made by
de Boer and Michels' with the Lennard-Jones 12—6
potential. The constants of this equation were de-
termined empirically by fitting the high-temperature
statistical equations (with quantum corrections) to
experimental (above 50'K) virial coefficient data. Qf
these several calculations, that of de Boer and Michels
best fits the experimental low-temperature virial co-
eflicient data. The same Lennard-Jones potential
has also been used by de Boer, van Kranendonk, and
Compaan4 to calculate the second virial coefficients of
He'. There are as yet no experimental data in this case.

The most difficult and lengthy part of such a calcu-
lation is the determination of the very large number of
phase shifts needed to describe the binary atomic
collision. Most of the phase shifts given by de Boer
and co-workers' 4 were determined by numerical inte-
gration of the one-dimensional radial Schrodinger
equation with the Lennard-Jones potential. Relatively
few details are given of the numerical technique used,
so that it is dificult for one to judge the probable
accuracy of the calculation. However, it is safe to
assert that at least a lifetime of work on a desk calcu-
lator would be needed to achieve moderately high
accuracy in the results. This problem obviously calls
for the use of a modern high-speed digital computer.

Although one observes that the second virial coeK-
cients of de Boer and Michels' for He' are a pretty
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both quantum-mechanically and classically. Z& is given
by

where'
Zi= (2s+1))( 'V,

X2= hs/22rr)skT

and s is the nuclear spin. '
In the following discussion we shall use the term

"ideal" to refer to a hypothetical gas identical with the
real gas except that the potential of interaction is zero
for all distances. Properties of such a gas will be denoted
by attaching an asterisk to the appropriate symbols.
It is convenient to divide 8 into two parts, 8* and
8 8*.Equa—tion (3) then takes the form

2 "21V)(2 Ms (Z2 —Z2*)
B=w

2s+ 1 (2s+ 1)'V
(6)

The sign of the first (ideal gas) term is negative for a
Bose-Einstein gas and positive for a Fermi-Dirac gas.
In general

Z2 2 e Z2(trans) ' Z2(rel) 2*)( V ' Z2(rel) t (7)

where the prime on the summation indicates it is to be
taken over all quantum states, Z2(~„„,) is the partition
function of the translatory motion of the center of
gravity of the two-molecule system, and Z2(„&):is the
partition function of the two-molecule system summed
over only the quantum states due to the relative
motion. We can then write Eq. (6) as

2 ( M, 2~N)t (Z2(, i)
—Z ( i)*)B=~

2s+ 1 (2s+ 1)'
(8)

The only term in Eq. (8) that offers any difliculty is

Z2(„~)—Z2(„~)*. Its value depends principally upon the
difference in density of the energy levels of relative
motion between the two cases.

tZ2 l ()+1)i22
——(&0')"+ &0+ V (&)&0 =&rA

2p 2pf

where p is the reduced mass and V(r) is the actual
intermolecular potential for the real pair of molecules
and is identically zero for the ideal pair. It is convenient
to reduce Eq. (9) to a dimensionless form by the

'Values of the fundamental physical constants used in this
paper were obtained from F. D. Rossini et al. , J. Am. Chem. Soc.
74, 2699 (1952). The values employed for the isotopic masses
were obtained from C. W. Li et al. , Phys. Rev. SB, 512 (1951).

We assume a monatomic gas since this theory is of interest
principally for helium.

(b) The Quantum-Mechanical Relations

The energy levels of relative motion are the eigen-
values of the radial wave equation

substitutions
R= r/p,

U(R) = (2./~ )"V(),
q'= (2)t/)22) p2E,

Rf(R) = re (r).

(1o)

(11)

(12)

(13)

(c) Final Expression for 8
We may divide Z2~„~) into two sums, one extending

over the discrete negati~~ states (if any) and the other
extending over the positive states. Since the positive
levels are so very close together no appreciable error is
introduced into Z2(„&~ by replacing the sum over all

' L. Gropper, Phys. Rev. Sl, 1108 (1937).
ts E. Beth and G. E. Uhlenbeck, Physics 4, 915 (1937).
"The error is only in the very minor shape-of-container effect

upon the equation of state.

Here we introduce the symbol p, rather than the usual
0-, to emphasize the fact that in the above expressions

p is an arbitrary parameter, whereas the 0- in the
Lennard-Jones potential (see further on) has special
signi6cance; for this potential it is convenient to let
p=o.

We then obtain
—(Rp)"+(—qs+l(1+1)R 2+U(R)]Ref =0. (14)

The energy levels fall into two classes: (1) a finite
number (possibly zero) of negative levels for the real
pair of molecules (there are never any negative levels
for the ideal pair) whose contribution to Z2 can be
directly summed, and (2) an infinite number of very
closely spaced positive levels for both the real and the
ideal pair. The relative density of these two near-
continua can best be treated by the method of phase
shifts, introduced for this problem by Gropper' and by
Beth and Uhlenbeck. "

For values of R large enough that l(1+1)R '+U(R)
is negligible,

RP= sm (qR 22r1+—2)() (15)
The phase shift t)( of course is zero for the case U(R) =0.
Kith very little loss in generality" we can set a bound-
ary condition of RQ=0 at R= I., a fairly large number.
The possible values of q for the two cases )real U(R)
and ideal U=—Oj are given by

qJ.—~22rl+r)i ——22)r, (16)

gL—2m'l= sg, (17)

where e is a positive integral quantum number and is
equal to the number of zeros of the wave function
(excluding the one at the origin). The difference in
density of the energy levels between the real and the
ideal cases is obtained by taking the variation of these
two equations and rearranging:

(fi)2/hq) (bn/bq)—*= (1/rr) (()2)(/()q). (18)

This difference in density then is measured by the rate
of change of the phase shift gg with the energy parameter
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quantum states by an integration with respect to n.
We then convert to an integration with respect to q
and obtain

Zp(„i) =P' exp( —E„,( /kT)+Q' exp( E„—, r+/kT)

= QQ(s, l) P exp( —E„,i—/kT)
n

f de
+ exp( —q'/qo') —dq, (19)

~ q=p Ig

where Q(s, l) gives the appropriate quantum weighting
factors, the summation in e is over all negative energy
levels of the system, and E„,&+ has been replaced by
its equivalent according to Eq. (12), so that

qp' ——2pp'kT/Ilr= 2mp9 '. (20)

The corresponding expression for Z2(„&)* may then
be combined with Eq. (19) using Eq. (18) to obtain
Z2(„i)—Z2(„~)* in terms of the phase shifts q~.

The degeneracy Q(s, l) of a particular energy level
depends on the statistics of the two atoms, their
nuclear spin, and the value of the angular-momentum
quantum number. For a pair of identical Fermi-Dirac
atoms, each with nuclear spin s, the weight is
(s+1)(2s+1)(2l+1) for 1 odd and s(2s+1)(21+1) for
l even [the factor (21+1) arises from the spatial
degeneracyf; these two weights are interchanged for a
pair of Bose-Einstein atoms.

We may now write for a pair of Fermi atoms, for
example,

Z& (rel) Z2 (rel)

= (s+1)(2s+1) P (2l+1) P exp( —E„,i /kT)
l odd

t dg~
+— ' exp (—q'/q, ') dq

'r4
q—p dg

+s(2s+1) P (2l+1) P exp( —E„,i /kT)

were

s+1 $
(Q) = Q (21+1)rl(+ — Q (2l+1)r)(. (23)

2s+1 ( e&d 2s+ 1 i even

Again, Eqs. (22) and (23) apply to a pair of identical
Fermi atoms. The nuclear spin weighting factors s+1
and s are to be interchanged for a pair of Bose atoms.
The Boltzman factors arise directly from Z2, but the
associated minus unity comes from the integration by
parts of the phase shift integral. Phase shifts in general
are arbitrary to the extent of any integral multiple of x.
They are made definite by the convention that (1)
))(=0 for all q and l when U(R)=—0, and (2) rl( be
continuous for all q and l as U(E) varies. This con-
vention necessitates that g~=me~ for q=0, when e~ is
the number of discrete negative energy states associated
with the angular quantum number l.

If the same analysis' that led to Eq. (3) is applied
to a gaseous solution such as a mixture of He' and He,
the following equation is obtained for the second virial
coeKcient:

B=N pPB p p+2N pN4B p4+N4'B44. (24)

III. NUMERICAL SOLUTION OF EQUATIONS

The mole fractions of the two components are S3 and
E4 833 and 844 are the second virial coefficients of pure
He' and pure He'. 834, the second cross virial coeKcient
of the mixture, is defined by

2B34 N V (Z (3, p4) Zi(3)Z)(4))/Zi(3)Z, (4), (25)

where Z2(3, 4~ is summed over all of the states of a
system composed of an He' and an He4 atom. The
initial ideal gas term of Eq. (22) is exactly zero since
the two atoms are distinguishable. The sum (P)
=-', P(21+1)t)i is taken over all values of l and the
nuclear spin weighting factors cancel identically.

With the exception of some preliminary, exploratory
calculations that were performed on an IBM CPC
computer, all of the numerical calculations of this work
were carried out on the MANIAC, the Los Alamos
electronic digital computer. This is a single address,
binary, 6xed decimal machine with electrostatic storage.
The access time of a word in storage is about j.0 psec,
and the multiplication time of two forty place binary
numbers (approximately twelve decimal places) is
about 1000 psec.

The radial wave equation in the reduced form of Eq.
(14)'was integrated by a method given by Milne. "
This method is quite advantageous in that it requires
relatively few operations, only two starting values, and
has the same error term as the more commonly used
three-point closed double integration formula. We used
the integration pattern E=0.625 (1/128) 1.5 (1/64) 4
X(1/32)8, since it was necessary to use a finer inte-

l even

1 " dt)(
+— exp (—q'/qp') dq . (21)

Integration of Eq. (21) by parts, insertion of the
resulting expression into Eq. (18) and re-arrangement
with the aid of Eq. (20), yields the final expression for B,

Emzp' 8/X zp'
8—

2 (2s+1)qp'

$1
qp'

+ — P (2l+1)[exp(—E„,i /kT) —1]
2s+ 1 i even

16%x&p' p"
Jl (Q) exp (—qP/qps)qdq, (22)

(Gtp p
n W. E. Milne, Amer. Math. Mon. 49, 96 (1942).

XQ Q (2l+1)[exp(—E„,i /kT) 1J-
2s+1 ««
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gration interval when R was small. This choice was
made after considerable experimentation in order to
determine the eGect of integration interval pattern
upon the phase shifts. The numerical procedure was so
arranged that the integration interval was doubled
automatically at the preselected values of R.

The potential term was so coded that with relatively
little work any new potential function, even one given
in the form of a numerical table, could be easily substi-
tuted. The Lennard-Jones potential used has the form

RP= exp( —pR 4/5). (28)

For the Milne integration formula the first-order error
per cycle is oe(RQ)/240. To obtain accurate phase
shifts, it is necessary in solving the wave equation to
preserve accuracy in RP or in (Rior)'/Rior. Whereas a
prohibitively small integration interval would be neces-

sary in the region of small R to obtain Rf exactly,
only a moderately coarse interval (DR= 1/128) is

sufficient to preserve accuracy in (Rior)'/Rf. Further-
more, the phase shift in the wave function (determined
at large R) is pretty nearly independent of the particular
starting values of RP used in the neighborhood of
R=0.6. For example, the phase shifts for He' for q=1
and l=0, 1, 2, 3, etc., were determined using the
following arbitrarily chosen starting values: Ro and

R,=0.625 and 0.625+1/128; (Rf)p and (Rit)i= (1) 2 "
and 2~; (2) 2 4 and 2 '; (3) 2 4 and 2 4'. The phase
shifts for each value of l were the same to at least six
significant (decimal) figures in all three trials.

It, would be necessary to integrate out to a prohibi-
tively large value of R in order that RiIr be given
accurately by Eq. (15). For much smaller values of R
Lnamely, when U(R) is negligiblej an expression in

half-integral Bessel functions may be used,

RQ=ARVt+s(qR)+BR' t;(ttR), (29)

(30)

To obtain 8/A, two equations of the form of Eq. (29)
were solved simultaneously, using values of RP corre-
sponding to two values of R separated by two inte-
gration'intervals. In the course of our exploratory work

we observed a smooth systematic trend in the apparent
value of fait (determined in the region of some particular
value of R) as R increased. This error in rtt, due to
stopping at a 6nite value of R, wah shown to be

rt t (tuue) —ii i(apparent) =p'/10''+ ~ . (31)

The two parameters were determined from the state-
ment of de", Boer et al.4 that for helium e/k=10. 22'K
and Tao=10.06 CC.

The reduced Lennard-Jones 12—6 potential may be
written as

U (R)=p'(R "—R '), (27)

where p= tr and p'= 8tteo'/tt'. ln the region of small R,

This error expression is the 6'rst term of an asymptotic
series. The integration proceeded until the error term
was less than 0.0001 radian, at which point rtt (ap-
parent) was obtained. This value of rtt was corrected
by means of Eq. (31).The proper quadrant for rtt was
determined automatically by a series of discriminations
upon the trend in the apparent value of sit from Eq. (30).

The Bessel functions of Eq. (29) are simple algebraic
functions in qR, sinqR and cosqR. Since according to
Eq. (31) the same stopping point in R for a particular
value of q can be used for all l, it was possible to have
the computer first generate the necessary trigonometric
functions and then higher-order Bessel functions by
recursion as they were needed.

The over-all pattern of operation was as follows.
Starting with some particular value of q, the 6rst
integration would be carried out with l=0; the phase
shift would be calculated; the necessary Bessel func-
tions for the next higher value of l wouM be generated,
I advanced by unity (by two in the case of He') and
the next integration begun. At the end of each inte-
gration the following information was printed out: q, l,
(21+1)rtt and the running sum of (21+1)rtt (over even
and odd 1 separately). Whenever (21+1)rtt reached a
predetermined small value, q was advanced by hq
= 1/16, 1 set to zero, the paper spaced and a new series
begun at once. The running time required per phase
shift was about 7 seconds.

The phase shift rtt was probably determined (for a
given value of q) to the same number of decimal places
accuracy for all l. It is the sum with respect to l of
(2l+1)rtt that is needed. For each value of q a value of
l was soon reached at which it was better to use phase
shifts calculated from the Born approximation in
preference to those determined by numerical integra-
tion. The Born approximation" becomes good whenever
1 is several times g in magnitude. The definite integral
can be evaluated in a simple form by means of equations
given by Watson'4 to yield

st t= 3srP'g'/(Pl+5) (2l+3) (21+1)(2l—1)(21—3), (32)

where p' is interpreted as the coefficient of R 4 jn U'(R).
The repulsive term contributes essentially nothing.
For each value of q the summation over / of (2l+1)sit
was extended until (21+1)rtt(0.00001 radian.

A curious relation was observed between the phase
shifts computed by numerical integration and those
obtained from the Born approximation. For sufficiently
large values of l these two series always agreed very
well in the mean. However, although itt(Born) is a
smooth function of f, rtt(num. int. ) continued to oscillate
about rtt(Born) with a wavelength of perhaps ten units
in l. This eGect is peifectly real and was not affected
by drastic changes in the integration pattern or in the

Sc»&, Q«artt«ns Nechawecs (Mc''Graw-Hi11 11oog Com-
pany, Inc. , New York, $949).' G. N. Watson, Ttteory of cresset F«actioas (Caroiiricige
University Press, Cambridge, j.952), p. 396.
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value of R at which qi was determined. It probably
contributes very little error to P(2l+1)rii.

To obtain p(21+1)rl~, for a given value of q, the
procedure was to join

l ~ ~ ~

P (2l+1)rii(num. int. ) to P (21+1)si~(Born)
l=o L=l0+d

at a value of /= ls when rii(num. int. ) was very nearly
equal to ri~(Born). For example, for He', q= 10,

l0=34 sits(num. int. )=0.09215;

silo(Born) =0.09206; g (21+1)sl~———63.6064.
l=o

The values of lo chosen were roughly proportional to q.
Phase shifts and the sums p (21+1)sli were calculated

directly at intervals of Aq= 1/16 from q = 1/16 to q= 10.
From q=10 to q=15, numerical integrations were Fro. 2. Z(2l+1/i esrssss q for He'.

I

+
N 0

DE BOER
PRESENT WORK

one. Our value of p in this case is 22.049. The critical
value for the appearance of a negative level is 22.37
according to calculations of Kilpatrick and Kilpatrick. "

The phase shift integral of Eq. (22) was evaluated
numerically by both Simpson's and %eddie's rules.
At all temperatures between 0.1' and 60'K results
were very nearly the same.

IV. RESULTS

I !
2

Fzo. 1. Z(2l+1)gi verses 9 for He4.

performed at intervals of dq=0.5 and the values of
p (2l+1)sl& at intervals of 1/16 determined by interpo-
lation.

A total of about 15 000 individual phase shifts were
calculated by numerical integration in the course of
this work, with an even larger total calculated from
the Born approximation. Fortunately this tremendous
mass of numbers did not have to be handled in detail
by hand; the computer tabulated the final sums
p(2l+1)slq in a form convenient for examination and
checking. Periodically, detailed spot checks were run
on individual phase shifts.

It is dificult to make an estimate of the accuracy of
our final values of (P) Las defined in Eq. (23)7. In the
region around q=1 they are probably good to better
than 0.0005 radian. The accuracy decreases as q
increases until at q=10, the error may be as large as
0.05 radian.

The radial wave equation for a pair of He' atoms
certainly has no discrete negative energy levels. The
He' system, with the Lennard-Jones potential we used,
almost has a negative level but clearly just fails to have

The results of our phase shift calculations are pre-
sented graphically. In Fig. 1, Q,LQ(21+1)rig summed
over even 17 for He' is plotted against q. The sums
calculated by de Boer and Michels' are shown as solid
circles. The agreement is fairly good. In Fig. 2, P,
and P. for He' are plotted. against q. De Boer's' sums
are shown in squares and circles. The agreement in
certain ranges, particularly for large q is not so good.

Fn. 3. He' phase shifts.

rs J. E. Kilpatriek a+ M. F. Kilpatrick, J. Chem. Phys. 19,
930 (1931).
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FIG. 4. He' phase shifts.

In Fig. 3, ri~ (for 1=0, 2, 4 and 6) for He' is plotted
against g. Figure 4 shows gg vs q for He'. Figure 5 shows
the relation of our calculated second virial coeKcients
for He4 to the available experimental data and to
de Boer and Michels" calculated points. In the case
of He', there is no experimental data. The agreement
between our calculations and those of de Boer et at'. '4
is fairly good. This was surprising, since for He there
is considerable disagreement in the phase shifts. The
small disagreement between de Boer and Michels' He'
calculations and the experimental data appears to be
almost wholly accumulated numerical error. Here our
curve gives a somewhat better representation of the
experimental data.

In Table I we give our final virial coeScients at
closely spaced temperature intervals. They probably
represent the second virial coefficient (for the exact
potential used) correct to the number of figures given.

Between 40'K and 60'K it was necessary to add a
small correction to our virial coefBcients, due to the
fact that we directly determined phase shifts only up
to q=15. This correction was evaluated by Qtting a
quadratic expression in q to the values of (P) from
q=10 to 15 and then integrating the phase integral
analytically from q= 15 to infinity. This correction had
a maximum value of 0.19 cc/mole for He' at 60' and
of 0.03 cc/mole for He' at the same temperature.

The Boyle points of He' and He4, interpolated from
our $33 and 844 tables, are 19.64'K and 23.18'K,
respectively. By means of de Boer's" quantum theory
of corresponding states we extrapolate a value of
T(Boyle) for He' of 19.9'K. The agreement is satis-
factory considering the uncertainty in the extrapolation
curve.

The theory of corresponding states does not include
the eGect of nuclear spin or of statistics. We thought
it would be of interest to calculate the second virial
coeKcients of a hypothetical He with zero spin and
Bose-Einstein statistics but with a mass exactly that
of He' for comparison with the normal He'. The
appropriate values of P«~,~(2l+1)ri were already on
hand. There was practically no di6'erence between the
two except at very low temperatures. The difference
amounted to 0.003 cc/mole at 8', 0.4 cc at 4', 2.0 cc
at 3, 22 cc at 2', and 107 cc at 1'. It can easily be
shown that in order for these two He' molecules to
have the same second virial coeKcients, it is necessary
for P,qq

—P, ,„=s./8. For q&5, this is true within

0.02 radian from our data for He'. Therefore essentially

t I I l I till I l l ll t I t I (ill
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Pro. S. Low-temperature second viria1 coeKcients for He' and He4.

's J. de Boer, Physics 14, 139 (1948): J. de Boer sod B. S. Blaisse, Physics 14, 149 (1948): J. de Boer snd R. J. Lunheck,
Physics 14, 320 (1948).
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TABLE I. Second virial coeflicients of He and He' and the solution
imperfection as a function of temperature.

ii09

0.3
Q4
0.5
0.6
0./
0.8
0.9
1.0
1.1
1.2
13
1.4
1.5
]..6
1.7
1.8
1 9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
4.0
4.1
4.2
43
44
4.6
4.8
5.0
5.2

5.6

+44
cc/mole

—2715.4—1712.8—1203.2—906.6—717.6—589.0—497.2—428.9—376.5—335.2—302.0—274.6—251.7—232.34—215.69
—201.25—],88.58—177.39—167.41—158.47—150.39—143.06—136.38—130.26—124.62—119.42—114.60
-110.13—105.96—102.06—98.40—94.98—91.75—88.71—85.84—83.12—80.55—78.11—75.79—73.58—71.48—69.47—65.72—62.29—59.14—56.22—53.53—51.03

&aa
cc/mole

—375.1—348.6—320.0—293.5—269.9—249.1—230.7—214.4—200.0—187.08—175.53—165.13—155.73—14].21—139.45—132.36—125.86—119.89—114.38—109.29—104.57—100.18—96.10—92.28—88.72—85.38—82.24—79.29—76.51—73.88—71.40—69.05—66.83—64.72—62.71—60.80—58.98—57.25—SS.S9—54.01—52.49—51.04—48.32—45.81—43.49—41.34—39.34—37.48

cc/mole

352.6
1/5.0
95.3
54.8

]94
11.5
6.6
3.5
1.5
0.2-0.6—1.1-1.41—1.61—1.71—1.76—1.76—1.74—1.71—1.67—1.62—]..56—1.51—1.46—1.41—1.36—1.31—1.26—1.22—]..19—1.15—1.12—]..08—1.OS—1.02—0.99—0.97—0.95—0.92—O.90—Q.88—0.84—0.81—0.77—0.74—0.71—0.69

ToK

5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.5
9.0
9.5

10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
]4.5
15.0
15.5
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0

B44
cc/mole

—48.70—46.53—44.50—42.59—40.80—39.12—37.53—36.03—34.61
33127—31.99—30.78—28.00—25.53—23.32—21.34—19.54—17.90—16.41—15.04—13.79—12.63—11.55—10.56—9.63—8.77—7.96—7.20—5.82—4.60—3.51—2.53—1.65—0.85—0.12

0.54
1.15
1.71
2.23
2./1
3.15
3.57
5.25
6.49
7.43
8.16
8.74
9.20

&aa
cc/mole

—35.74—34.11—32.57—31.13—29.78—28.50—27.29—26.14—25.05—24.02—23.04
2241 i—19.95—18.04—16.31—14.75—13.34—12.05—10.87—9.78—8.78—7.86—7.00—6.21—5.46—4.77—4.12—3.51—2.40—1.41—0.52

0.28
1.00
1.65
2.25
2.79
3.29
3.76
4.18
4.58
4.94
5.28
6.67
7.70
8.47
9.07
9.55
9.93

cc/mole

—0.66—0.64—0.62—0.60—0.58—0.56—0.55—0.53—0.52—0.50—0.49—0.48—Q.45
-0.42—0.40—0.38—0.36—0.34—0.33—0.31—0.30—0.28—0.27—0.26
-0.25—0.24—0.24—0.23—0.21—0.20—0.19—0.18—0.17—0.16—0.15—0.14—0.14—0.13—0.12—0.12—0.11—0.11—0.09—0.08—0.07—0.06—0.05—0.05

all of the difference between 833 and 844 above 4 I is
a mass rather than a statistical effect.

It is of interest to compare our virial coeKcients
with those calculated from classical theory corrected
by de Boer and Michels' " for quantum effects. The
most convenient temperature for this comparison is
61.32'K (corresponding to a reduced temperature of
T*=kT/e= 6). From de Boer's equations we calculate

B44= 6.804—0.147+2.756—0.457= 8.96 (33)

B33——6.804+0.139+3.662 —0.805= 9.80, (34)

B34 6.804+0.000+3.13——7—0.592= 935. (35)

The erst term is from the high-temperature, classical
equation; the second is the (ideal-gas) nuclear spin—

"J.de Boer and R. B. Bird, University of Wisconsin Report
CF 1509-A, 1952 (unpublished), Chap. 6.

B=NBB3g+N4B4g+2NSN45,

B84 $(B33+B44) ~

(39)

(40)

statistical term; and the third and fourth, the erst two
quantum deviation terms. The next quantum correction
term is positive, so these results are low by a few tenths
cc. Our data (Table I), extrapolated to 61.32'K, yield

844= 9.34, (36)

833= 10.04, (37)

834= 9.64. (38)

The agreement is within the probable magnitude of the
missing terms of Eqs. (33), (34), and (35).

For an ideal solution of He' and He', B34———,'(B33+B44)
and Eq. (24) becomes B=NSB33+N4B44 Equation (24)
can therefore be written in an alternate form
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TABLE II. The eGect on 84& of varying u and 6.

ToK
p2 =22.049

foal, C1

B44 CC/mOle
p2 =22.300

0'1~ eg 02, el

0.5
1.0
1.5
2.0
3.0
4.0
5.0
6.0
8.0

10.0
15.00

—1203.2—428.93—251.72—177.39—110.13—78.ii—59.14
46.53—30.78—21.34—8.77

—1245.2—441.54—258.57—182.03—112.91—80.07—60.67—47.76—31.66—22.05—9.21

—1244.6—442.27—259.40—182.73—113.36—80.36—60.85—47.87—31.67—22.00—9.08

The quantity 6 (tabulated in Table I) is a good measure
of the deviation of the solution from ideality. 6 ap-
proaches plus in6nity at very low temperature, passes
through zero at about 1.33'K, and stays small and
negative at all higher temperatures.

Our data, extrapolated to 61.32'K [Eqs. (36), (37),
and (38)j give a value for d of —0.05 cc/mole. Equa-
tions (33), (34), and (35) yield 6= —0.03. This latter
value of d is more accurate than the individual values
of the virial coeKcients from which it is derived since
the eGects of the missing higher terms tend to cancel.

We also considered it of interest and importance to
determine what eGect changes in the potential constants
~ and 0. would have on the low-temperature values of
844. To accomplish this, we erst obtained phase shifts
for He' using a value of p'=22.300 instead of 22.049
and then carried out the quadratures for two cases,
both corresponding to the new p'. (1) o.

g
——2.571&(10 '

cm, es ——1.428)(10 " erg; (2) o.s= 2.557X10 cm,
eq=1.411&&10 " erg. (The subscript 1 refers to the
parameters as used in the original potential. ) A brief
summary of the results is given in Table II, where some
original values of 844 are repeated for easy comparison.

Several points are worthy of mention. First, it is
seen that for the two cases corresponding to p'= 22.300
the 844's are nearly the same; but curves representing
the two sets of points cross at about 0.7'K and at 8.5'K.
Next we observe that a 8o. (e constant) of 0.6 percent
or a 8e (o. constant) of 1.2 percent may change 844 by
about 3 percent and that the eGect on 8« is nearly
temperature independent (up to 15'K). Simultaneously
changing o- and e within the above limits and subject
to p'=22. 300 would introduce no larger variations in
844. Thus the values of 844 computed with this p'
would adequately fit the existing experimental data
but not quite so well as those computed with the
original p'.

A similar analysis, employing only the classical
Lennard-Jones treatment, shows that the above vari-
ations in 0- and e may produce variations in the high-
temperature values of 844 as great as 5 percent; but
this too is within experimental error. We may therefore
safely conclude that de Boer and co-workers have
chosen parameters for the Lennard-Jones potential
which best fit experimental values of the second vir-
ial coeKcient for He4 for the temperature range up to
400'K.

Mason and Rice" have recently obtained constants
for a Slater-type potential which give a fit for the
experimental second virial coeBRcients of He' from 40
to 1500'K as good as or better than the Lennard-Jones
(12—6) potential. In addition, the three-constant po-
tential gives a clearly superior representation of the
observed viscosity and thermal conductivity of He'
above 100'K. It is therefore of considerable interest to
investigate the low-temperature virial coeKcients and
transport properties calculated from this new potential.
Such an undertaking will be the subject of a forthcoming
paper from this Laboratory.

"E. A. Mason and W. E. Rice, J. Chem. Phys. 22& 522
(1954).


