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is conserved on entering the new grain, then, since the momenta
differ, scattering occurs.

Let us consider the influence of temperature. Suppose that the
reflection probability is proportional to the fraction of states
which are filled for an electron traveling in the 2 direction with an
energy such that momentum is conserved [i.e., Ey= (m1/ms)Es,
where 7; and m; are the effective masses associated with the 1 and
2 directions, respectively, and ms>mi]. If we suppose that the
Fermi surface is cylindrically symmetrical around the 1 direction,
then the total probability of the electrons being scattered from 1
to any other state is

/2 .
2 f 27 sm0d0 )
) exp{ ——1 +1

e

where 6 is the angle through which the crystallographic axes in
grain 2 are rotated relative to those in grain 1. The assumption
has been made that all values of 6 are equally likely. The ratio
my/ms of course depends upon 6, i.e., upon the detailed shape of
the surfaces of equal energy in k space. Suppose that

(ml/M2)E1= (1—(1 sinﬂ)El‘ (2)

In this case the equi-energy surfaces resemble an oblate spheroid.
Upon substitution and integration of Eq. (1) one obtains
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We shall assume that the resistance introduced is proportional to
the total probability of scattering of the electron most likely to
be scattered. Thus the grain boundary resistance for the special
case considered is given by Eq. (3) and decreases as the tempera-
ture increases. The particular dependence is in qualitative agree-
ment with the observations of Yntema? for copper. It should be
noted that the exact shape of the resistance versus temperature
curve will depend not only on the shape of the Fermi surface,
but also on the distribution of orientation changes at grain
boundaries.

If the resistivity at absolute zero is determined by a mean free
path which is of the order of the grain size, then

o=2mv/nel, 4)

where ! is the mean free path, # is the number of electrons per
unit volume, and v is the velocity of the electrons at the top of the
Fermi distribution. Blewitt states that his grain size is of the
order of a millimeter after recrystallization. Inserting values
appropriate for copper into (4), one obtains p=1.4X1071 ochm cm
which compares reasonably well with results obtained by ex-
trapolating Blewitt’s data linearly to absolute zero (i.e., pobs
=4.0X1071, 2.7X107, and 2.3X107 ohm cm).

The author would like to thank T. H. Blewitt for stimulating
discussions which led to the idea during a visit to Oak Ridge.
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XPERIMENTAL observations of thé¢ soft x-ray emission
from light metals! shows that, in general, the width of an
emission band corresponds closely to the maximum energy of the
TaBLE I. Excess band width due to exchange, for metallic sodium as a

function of B, and the ratio of the electronic specific heat C»to the
Sommerfeld value Co®.

B 0.5 0.6 0.7 0.8 0.9 1.0
Excess width inev  1.83 130 0.74 0.17 —0.43 —1.04
Co/Cr©® 0.77 0.83 090 095 1.0 1.05

THE

EDITOR

Fermi distribution of the conduction electrons as calculated by
the Sommerfeld free electron formula. According to Koopman’s
theorem, however, the width of an emission band should be
given by the difference between the eigenvalues of the Fock
equation for the lowest and the highest occupied states of the
conduction band. These eigenvalues contain a term arising from
exchange effects and are given by
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a=Fk/ko and %k, is the radius of the occupied sphere in momentum
space. Hence the width of an emission band is equal to {o+4-e2ko/,
when ¢ is the Fermi width for free electrons. The additional term
due to exchange amounts to 5.1, 4.1, and 8.0 electron volts for
Li, Na, and Al, respectively, and thus completely destroys the
good general agreement with the value of ¢,. This effect shows very
directly the need for some modification of the Hartree-Fock theory
as applied to the conduction electrons of metals. According tc the
theory of Bohm and Pines? the exchange effects should be calcu-
lated, not with the Coulomb, but with a screened potential. When
this is done the additional term in the band width due to exchange
is (e®ko/m) (1—B—p2/4), where B= (an’/n)}; n is the number of
electrons per unit volume and #’ is the number of plasma waves
per unit volume.

Table I shows the excess band width, due to exchange, for
metallic sodium as a function of 8. The last line shows the ratio
of the electronic specific heat C, to the Sommerfeld value C,©
which neglects exchange altogether. An expression for this ratio is
given by Pines? [Eq. (38)7]. The observed band width for Na is
rather less than the free electron ¢, and the observed electronic
specific heat is greater than C,©®. However it is perhaps open to
doubt whether the theory of Bohm and Pines is strictly applicable
when B is as large as 0.9 or 1.0.

It may be of some significance that the observed band width
for metallic Al s nearly equal to the free electron ¢, thus imply-
ing that here also a screened potential is operative for the whcle
conduction band of three electrons per atom, and hence that
plasma oscillations occur even in a conduction band where the
electrons move in a strong periodic potential.

Finally it may be noticed that if one uses a purely empirical
screened potential of the form ¢™»/r, the excess band width is

given by
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where y=MA/ko. In this case the excess band width decreases
monotonically to zero as vy increases and could not, therefore,
lead to a band width less than &o.
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OHNSON! has terpreted the measured? ionic mobilities in

nitrogen as being primarily determined by the quadrupole
interaction between ion and gas molecule. The purpose of this
note is to pcint out that the agreement between Johnson’s
roughly calculated mobility and the experimental value is for-
tuitous, the main defects in Johnson’s calculation being the neglect
of the polarization interaction and the overestimate of the quad-
rupole interaction. The interaction between the ion and induced
dipole of the molecule (polarization interaction) is V,= —}e2ar™,



