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The U operator, which connects state vectors in interaction representation for different times, can be
applied meaningfully to asymptotic values of state vectors ®(Z ) if these limits exist. The conditions
for this occurrence are stated for the simplest case. If the restriction resulting from the definition of the
asymptotic values is respected, all U operators are unamblguously unitary. A more general operator w
which can act on all state vectors, can be defined, but it is not unitary.

HE operator U(t7), defined in interaction
representation by
®(1)=U(tn)®(n), 1

is known to be unitary for finite times ¢, 7, but some
doubt and disagreement exists concerning the limits
U(t,—») and U(w,7).12 It will be shown that these
operators have, by their definifion, a severely restricted
domain, but that they are unambiguously unitary if
this restriction is respected.

- U(t,— ») is defined by

()= (t,—=) lim 2 () @
and U(«,) by
Th_)rg (r)=U(w ) (). 3)

U (t,— «) has meaning only if its domain is restricted to
those state vectors which tend to a limit at — o, and
U(,f) only if its range is restricted to such ®’s which
tend to a limit for 0.

Let the Hamiltonian be H= K-V, where V is the
interaction term. If ®(d4-) are to have limits, the
corresponding Schrédinger wave functions must behave
asymptotically like

\II:;Z e~k (x), 4)

where ¥, (x) is time-independent. This will happen
only if ¥ is entirely outside the range of interaction for
the distant future (past), for then

lim V¥ (¢)=0,

t—to00
and the Schrodinger equation leads to the form (4).
The explicit conditions for this behavior will now be
indicated.

If ¥ is represented as a wave packet,

¥ (2 f) = f C(EWs(x)e P, ®)

1S. T. Ma, Phys. Rev. 87, 652 (1952).
( zMj Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
1953).

where ¥ 5(x) are eigenfunctions of K4V, then in virtue
of well-known properties of the Fourier integral,
W (x,f) tends to zero in any finite region of x as ¢ becomes
=+ oo if C(E)¥g is absolutely integrable, and in particular
contains no delta function belonging to bound states.
Hence, in the distant past and distant future this wave
function will be entirely outside the range of the
potential. The essential limitation for the domains and
ranges U ({,— «) and U(,t) is, therefore, the absence
of an admixture of bound states.

Since the ranges and domains of the two operators
U(t,— ) and U(,t) are identical, it is legitimate to
extend the well-known relation

U(tytﬁ) = U(tyt,> U(l,,to) (6)
to
S=U(w,—®)=U(x,0)U(0,—=). ()

Since the operators for infinite times differ in their
action only infinitesimally from operators for large
times, the unitarity of the U and .S operators can be
now inferred from the known property of these operators
for finite times, as long as the restriction on domain is
respected. To express the U operators in terms of time-
independent solutions of the Schrédinger equation, one
can follow the same procedure as Ma,! keeping in mind
that with respect to the domain considered, the
positive-energy solutions ¥, form a complete system.
Hence,

f IFiN=1, ®)

and the unitarity of the U operators is thus confirmed.
An entirely different operator is defined by

W (o0 ,t)=1lim U(r,t),

9
W(ty-oo)zrl_i}?w U(tﬂ-)) ( )

with a range (domain) containing all squared-integrable
functions. One will require that W should be identical
with U within the restricted domain, but otherwise the
manner in which limits for indefinitely oscillating
matrix elements are defined, is arbitrary. There seems
to be no real necessity for defining such an operator,
but we can see two motivations for doing so.
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(a) The replacement of oscillatory functions by their
asymptotic mean value is a procedure often used in
physics and very successfully applied by Gell-Mann
and Goldberger for explicit evaluations.? This can be
done in the present case either by formal handling of
“conditional equalities” or by an explicit prescription
‘which is equivalent to a “‘dc filtering”” of the asymptotic
values.?

(b) One can think of situations where the initial

state is a linear combination of bound and positive-

energy states, i.e., an atom the nucleus of which under-
goes instantaneous conversion : immediately afterward,
the state of the electrons is a mixture of bound and
free states of the Hamiltonian describing the nucleus
with altered charge. In this case, one would decompose
the Schrodinger wave function ¥(0) into ¥uouna+ ¥ireo
and the asymptotic form is

W—— ¢ K (0 ,0)Wtre0 (0)+ e~ # NN 1a(0). (10)
t—o0
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It is advantageous now to define an operator W (e ,0)
so that it annuls the bound state part of ¥(0), i.e.,

W(OO ,0)\I’bound= 0, (11)

because it is then unnecessary to decompose ¥(0) and
one obtains immediately the scattered part of the wave
function

\I/w:—» e KV (0 ,0)T (0). (12)

It is remarkable that the additional requirement (11)
leads precisely to the same operator as the one obtained
by the limiting procedures discussed under (a), although
the motivation for its introduction is entirely different.

It should be noted that these remarks, as well as
most of the previous work on the time-dependent
scattering, applies only to the simplest case where the
incident system is identical with the scattered one.
Different considerations are required for multichannel
processes.



