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Effect of Screening on Solute Diffusion in Metals*
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A simple atomistic theory of solute diffusion in metals for cases of negligible chemical concentration
gradients is discussed. Calculations are made, using a Thomas-Fermi approximation, of the in6uence of the
presence of impurity atoms on the Fermi electrons of the lattice. The results are applied to the case of dif-
fusion of Sb in Ag, and indicate that the screening terms are sufBcient to explain the magnitude and direction
of the observed deviation from self-di6'usion in Ag for a vacancy mechanism for diffusion.

INTRODUCTION

'HE recent work of Sonder, Slifkin, and Tomizuka'
on the diffusion of Sb"' into pure monocrystalline

Ag has demonstrated conclusively that the solute Sb
atoms diffuse at a rate markedly different from the rate
of self-diffusion of Ag under conditions of negligible
chemical concentration gradients. The magnitude of
the effect proved much smaller than that previously
reported. ' The previous work had been the basis for a
considerable amount of speculation on the nature of
the solute diffusion process, and a number of mech-
nisms4 had been proposed to explain the large differences
between the rates of solute diffusion and self-diffusion
in metals, which required the assumption of strong
coupling forces between a diffusing solute atom and a
lattice imperfection.

It is apparent from a consideration of the kinetics of
the diffusion process' that the true diffusion charac-
teristics of relatively isolated solute atoms in a lattice
can easily be masked by large unidirectional currents
of imperfections which result from gradients in chemical
composition. Such currents give rise to the measurable
volume changes and porosity associated with the
Kirkendall effect. Since all of the original work on
solute diffusion' was done under conditions of strong
chemical gradients, the interpretation of much of the
old data is open to question.

In the present paper, an attempt is made to adopt an
atomistic approach to the diffusion problem, in contrast
to some of the current thermodynamic theories, ' in
order to account quantitatively for the observed effects.
The computations are conhned to a consideration, using
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a Thomas-Fermi model, of the effects of screening of
the solute ions on the Fermi electrons of the solvent
lattice. The additional terms arising from this inter-
action are evaluated and applied to the particular case
of Sb diffusing in Ag.

CALCULATIONS

In order to form a simple atomistic theory for solute
diffusion, a number of assumptions have been made
dealing with I, the nature of the diffusion process, and
II, the nature of the solute atom, as follows:

I. (A) Diffusion is presumed to occur by means of
imperfections, either vacancies or interstitials; the
probability of an elementary diffusion jump I'D is then
related to the probability of existence of an appropriate
imperfection at an adjacent lattice site I'z and the
probability of jump of the diffusing atom into the
imperfection Pz by the relation Pn= (PJ,) (Pg).

(8) Thermal equilibrium is presumed to be estab-
lished at all stages of the diffusion process, the formation
and destruction of imperfections being effected at dis-
locations or surfaces by mechanisms not of immediate
concern which represent an infinite potential reservoir
of imperfections. One may then assume that the above
probabilities may be treated using Boltzmann statistics,
and that the difFusion process is adequately described
by the relation

D=rp'v expL —(Eq+E )/kT j,
where D is the diGusion coeKcient, ~0 the interatomic
distance, v the vibrational frequency of the atom in the
lattice, Ey the energy required to form an imperfection
(analogous to Pz), E the energy required for motion
of an atom into an adjacent imperfection (analogous to
P~), k Boltzmann's constant, and T the absolute tem-
perature.

II. (A) The assumption is made that a solute atom
may be represented as a solvent atom differing only in
nuclear charge and numbers of valence electrons, that
is inserted into the lattice in place of a solvent atom.
The limitations of this assumption are considered later.

(8) It is assumed that the change in energy of the
lattice resulting from replacement of a solvent atom by
an isolated solute atom is small compared to the binding
energy of the solvent atom in the lattice. This assump-
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and the total excess charge density is e(Ep Ã). —
Poisson's equation can be written as

PP= —one(Eo —1V) =nL(P+Po)'* —Atj,
where n = 2'"'m'eP"eo"/3h'.

Under the conditions p((fp, the expression can be
expanded to first terms only. Then,

where q'= 4me'(3Xp/or) &/O'. Solving, one obtains a value
for y(r),

Ze
4 (r) =—eR (—qr)

r

Using this value of the electrostatic potential, one
may estimate the additional Coulomb energy, E„con-
sidering dipole terms only, as

E„(r)=~(r)- exp( —qr). (2)

E, is a repulsive contribution to the total lattice
energy, so that the change in energy of formation of an
imperfection at the nearest-neighbor distance ro will
be given by

DEg ——&E,(rp), (3)

where the positive sign applies to formation of an inter-
stitial and the negative sign for formation of a vacancy.

In evaluating the change in energy of motion E it
will be assumed that this barrier can be represented
entirely in terms of the elastic shear strain energy
involved during the jump of the difFusing atom into the

'
¹ F. Mott, Proc. Cambridge Phil; Soc. 32; 281 (1936);

tion is shown to lead to self-consistent results. The
calculations will therefore be con6ned to a consideration
of the changes in the various quantities of Eq. (1) by
insertion of the solute atom into the lattice.

The procedure follows that developed by Motts in a
calculation of the efFect of impurities on electrical
resistivity. The solvent atom is assumed to be mono-
valent, while the solute atom has 1+Z valence elec-
trons. The limits on the electrostatic potential g(r)
around the solute atom are

~Ze/r as r-+0,
0 as r becomes infinite.

A Thomas-Fermi model is assumed, the density of
the electron gas being given by

1V'(r) = (8or/3h')52meQ+gp))&,

where ePp is the maximum energy of electrons in the
Fermi gas

&o= (ho/2m) (3A p/Sm) '.
The density of the negative charge is then

D= Do exp( —B/RT), (7)

where the frequency factor Do and enthalpy or heat of
activation H are assumed to be temperature-independ-
ent, and E is the gas constant. This relation is obeyed
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imperfection site. Following the method of Fuchs, "two
shear deformations will be considered. The first of
these is equivalent to an equal and opposite tension and
compression on two orthogonal axes of the unit cell,
such that the volume of the cell remains unchanged.
The modulus of this deformation, A, is related to the
macroscopic (110) shear modulus p(Crr —Crp) by

+/ Vo (C11 C12) y

where Vo is the volume of the unit cell. The second
deformation is the familiar "pure shear, " the atomic
modulus 8 being related to the macroscopic (100) shear
modulus by

8/V p
= -', C44.

The atomic moduli A and 8 are defined in the usual
way in terms of the second derivatives of the lattice
energy E with respect to the appropriate shear strain,
evaluated at ro, the equilibrium interatomic distai. ce.
They can be written for a face-centered cubic lattice in
terms of derivatives with respect to distance as

A = ~or'O'E/dr'+ (7/2) rdE/dr,

28= rpr'd'E/dr'+ (3/2)rdE/dr. (4)

The changes in these moduli due to the additional
term E,(r) dined by Eq. (3) can be calculated by
substitution of E, for E in Eq. (4). Then

AA, = ,'E, (q'r' Sqr —5), — —
AB,= o'E, (q'r' —qr —1).

For many metals, and in particular for Ag, the (110)
shear modulus p(Crr —Crp) is much smaller than the
(100) modulus C44. For such materials one may assume
that the strain energy of motion E arises almost
entirely from (110) strains, and that E should be
about equal to A/2 (the factor of 2 entering because
Fuch s moduli are energies per ion pair). Using experi-
mental values of the elastic constants for Ag, E for
self-diffusion in Ag would then be 0.84 ev/atom, which
is about the value expected from other theoretical con-
siderations. "

For such anisotropic materials, one may then directly
relate hA, with AE„, the change in energy of motion, by

hE —~Ad, .
In estimating the other factors which would be

expected to change for difFusion of solute atoms com-
pared to self-diGusion, one must consider the usual
thermodynamic expression for the difFusion coefFicient
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rp(BAEf/Br) r —(qrp+1)E, (r——p),

«(BaE /Br), = —-', E,(«)L2qsro —Sqr,
—(qro+1) (q'ro' —Sqrp-5) j.
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(13)

experimentally to high precision, any residual tem-
perature dependence of D being, negligible within the
limits of error. In correlating Eq. (7) with the atomistic
diGusion Eq. (1), it is obviously sufhcient to define

(E +Ef)=H/Np+Td(E +Ef)/dT,
Dp rp'v e——xpL d(E—+Ef)/kdT j, (8)

where Eo is Avogadro's number. Higher derivatives of
E and E~ with respect to temperature are assumed
negligible because of the observed consistency of the
experimental measurements with Eq. (7).

One must consider the energies E and Ef as functions
of temperature both explicitly and implicitly through
the distance parameter r, as shown in previous work"
on a study of the variation of elastic constants of cubic
materials with pressure. The derivatives in Eq. (8) may
then be expanded as

d(E +Ef)/dT= $B(E +Ef)/Br7&dr/dT
+LB(E-+Ef)/BT1' (9)

The second term on the right of Eq. (9) is not amen-
able to analytical solution without a complete knowledge
of E(r,T), but might be presumed to arise from the

,variation in amplitude of the lattice vibrations with
temperature. Such a variation might be expected to
produce a large eGect in E but a negligible change in
E~. It will be assumed 'that the explicit temperature
dependence of E is proportional to the implicit term,
as indicated by the high-pressure measurements for
shear moduli. Then, the temperature variation ma, y be
written as

d(E +Ef)/dT= r"prz/(BEf/Br)r+C(BE /Br)z j, (10)

where 0. is the linear thermal expansion coefficient and
the constant C will be evaluated from the observed
value of Do for self-diffusion.

In evaluating C the assumption is made'that the
dominant terms in (BE/Br) r for self-diffusion arise from
the closed-shell repulsion energy, W„, given by the
Born-Mayer approximation

W, (r) = k exp( —r/p),

and, as above, that E will be equal to A/2, as defined

by Eq. (4) with W„ in place of E. Then

ro(BE/Br) r rp(BEI/Br) r = rpE——/p. (12)—
The value of the constant C can now be estimated by
comparison of the observed value of Do for self-diBusion
with that de6ned by Eq. (8). Using the same value for
C for the case of solute diGusion, one can then easily
compute the change in Dp, from Eqs. (3), (5), and (6),
since

RESULTS AND DISCUSSION

By substituting appropriate parameters for Ag and
Sb, the changes in Do and II for di8usion of Sb in Ag
compared with self-diffusion in Ag can now be.."'cal-

culated. The following values are assigned to the
parameters:

rp= 2.88A (from x-ray data),

i =0.9&&10"sec ' (from ratio of velocity of sound to rp),

q= 1/0.58A (from Mott' ),
p= 0.345A (from Fuchs"),
n= 1.9)&10 ' deg C ' (from Handbook of Chemistry and

Physics),

Dp(self-diffusion of Ag)=0. 72 cm'/sec (from reference
2),

H(self-diffusion of Ag) =45.5 kcal/mol (from reference
2).

The excess valence of Sb, Z, is taken as 4, and E for
self-diffusion in Ag is taken as 0.84 ev from the (110).
shear modulus. The constant C, from Eqs. (12) and (8)
and the observed value of Do for self-diffusion, is evalu-
ated as 3.

If a vacancy mechanism for diffusion is assumed, AEf
is defined by using the negative sign in Eq. (3), and the
calculated expression for diQ'usion of Sb in Ag is

D„i,——0.16 exp( —38 100/RT) cm'/sec,

while the experimental value' is

D, „=0.167 exp( —38 320/RT) cm'/sec

If an interstitial mechanism is assumed, the calcu-
lated value of H is 44.7 kcal/mol, in substantial dis-
agreement with the observed value.

The extremely close agreement between the cal'-

culated and observed results can only be regarded as
fortuitous, particularly in the case of the Do term,
where a considerable approximation has been made in
estimating the numerical constant in the exponent.
However, it is noteworthy that the screening eGects
alone appear to be suKcient to explain the magnitude
and direction of the measured eBect, without requiring
the introduction of any detailed models.

The derived dependence of the terms Do and H of
Eq. (7) on the excess valency Z and screening parameter

q is given by:

nE,
Do(solute) =Do(solvent) exp — $(qrp+ 1)

k
f

+ (-', C) (—q'rp'+6q'rpo+Sqrp+5)],

H(solute) = H(solvent) —
I

1——,
' (q'ro' —Sqro —5)JÃpE. ,

where E, is (7e'/rp) exp( —qrp).
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The functional form of these relationships is strongly
influenced by the approximations made in the Thomas-
Fermi model. Friedel" has recently shown by a more
exact Hartree-Foch calculation of screening that the
Thomas-Fermi model is approximately correct for large
even values of Z, but that a relatively larger screening
eBect would probably be observed for 8= 1, and pos-
sibly also for Z=3.

One of the most questionable approximations made
in the present treatment is II(A), concerning the nature
of the solute atom. One can estimate the magnitude of
terms neglected by ignoring the possible diRerence in
closed-shell radii of solute and solvent atoms by writing
the closed-shell repulsion energy as

where r~ and r~ are radii of the solvent and solute ions,
respectively. The calculated value of AE~ will be ap-
proximately unchanged since the exponent vanishes for
r=r~ in a close-packed lattice. The calculated value of
hE, however, will be modified. by the addition of a
repulsive term hA „given by

(rs)L(&2 rt)/p j(s sits 7/2). —

The sign of this term is that of r,—rr, since re/p) 7/2.
For an atom such as Sb of intrinsically larger size than

Ag, AA„might be presumed to be small and positive,
tending to decrease the magnitude of the calculated
value of hE .

In considering the motion of the solute atom into the
imperfection site, the degree of randomness of the
process must be evaluated, as shown by Bardeen and

"J.Friedel, PhiL Mag. 43, 153 (1952).

Herring. "It will be sufhcient here to consider the dif-
ference in probability of return P„of the atom to its
initial position after a second jump for self-diffusion and
solute diBusion. For the former case, P„ is of the order
of the reciprocal of the number of nearest neighbors.
For solute diffusion, one must consider as especially
favored in the second jump both the solute atom and
the solvent atoms which are nearest neighbors of both
the imperfection and the solute atom. The energy
required for motion of any of these atoms will be changed
by an amount hE because of the symmetry of the
Coulomb potential. Thus for a face-centered cubic
lattice the probability of return P„ is of the order
b/S (1+9), where b= (5/7) expL —(AE /kT) j. For the
case of Sb in Ag, this probability is about 0.16, which is
only a factor two larger than that for self-diffusion. The
increase in correlation arising from the change in P„
should be expected to change the calculated effect by
only a few percent, and can be neglected in the present
approximation.

It is also evident that a solute-vacancy complex, in
the sense of the Johnson mechanism, 4 is not expected to
play an important role in the solute diffusion process,
since the probability that a vacancy will remain as a
nearest neighbor of the solute atom after a second jump
is b/(1+5) = 0.8 for the present case. The mean lifetime
of the complex is thus only about 5 jump times. How-
ever, this effect should produce an appreciable change
in the rate of self-diffusion of the solvent atoms if the
solute is present as an impurity of the order of one
percent concentration.

The author wishes to express his sincere thanks to
Professor D. Pines, Professor F. Seitz, and Professor
L. Slifkin for several stimulating conversations.
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