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For these processes it was found that for small
accelerations the only effect produced by the meson
fields is a change in the effective mass of the particle. It
appears that it is this changed mass which has to be
identified with the mass as determined experimentally,
and thus for any processes involving only small ac-
celerations there is no distinction between the pre-
dictions of the two classical points of view. In particular,
this will always be the case for the motion of a charge
in the macroscopic electromagnetic fields available in
practice. However, there is such a distinction in
the case of scattering of electromagnetic radiation for
frequencies comparable to or higher than x, although
for such high frequencies the approximations used in
deriving Eq. (35) are not very good. Here, as well as
in all other cross sections calculated in Secs. IV and V,
the two points of view differ only in the terms M- g% P.
The values for Q and the angular distribution of any
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mesonic radiation emitted, although different for the
vector and the scalar case, do not introduce any dif-
ference between field and action-at-a-distance theory.

If the electromagnetic radiation damping terms are
neglected, our results for meson scattering [Eqs. (54)-
(56)] agree with those obtained earlier by several
authors from both points of view.® The radiation
damping due to mesonic (and also to electromagnetic)
radiation has the effect of producing a maximum in
these as well as in all other cross sections calculated in
this paper. This maximum occurs at energies too high
to agree with that observed for photomeson production;
however, much better agreement appears to be possible
if other forms of meson theory are used. This will be
discussed in the second part of this paper.

2 These are summarized in Table I of MH; however, a factor
2 was omitted there erroneously in all cross sections for incoming
longitudinal mesons.
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The employment of the ingoing wave modification of plane waves in final states is justified by a general

argument.

HE fact that the calculation of transition prob-
abilities by means of matrix elements with
modified plane waves should be made employing the
ingoing rather than outgoing wave modification of the
final state has been known for some time and proofs are
available in special cases.! This fact has assumed more
pronounced importance in connection with recent work
on bremsstrahlung.? In the last-mentioned publication
there is an indication of a way of understanding the
reason for employing the ingoing wave modification in

* Assisted by the joint program of the U. S. Office of Naval
Research and U. S. Atomic Energy Commission and the Air
Research and Development Command of the U. S. Air Force.

L A. Sommerfeld, Atombau und Spekirallinien (F. Vieweg and
Son, Braunschweig, 1939), Vol. 2, pp. 457 and 502; N. F. Mott
and H. S. W. Massey, Atomic Collisions (Oxford University Press,
London, 1949), second edition, pp. 111-113; also first edition
(1933) pp. 82-84; Rose, Biedenharn, and Arfken, Phys. Rev. 85,
5 (1952), see Sec. III, p. 9. One of the authors (GB) would like to
thank Dr. L. C. Biedenharn for a helpful and stimulating discus-
sion of the last reference. General arguments resulting in employ-
ment of ingoing waves along lines differing from those of the
present note have been given by K. M. Watson, Phys. Rev. 88,
1163 (1952) as well as by M. Gell-Mann and M. L. Goldberger,
Phys. Rev. 91, 398 (1953). Watson works out the probability of a
spin direction by means of Wigner’s time reversal transformation.

2 L. Maximon and H. A. Bethe, Phys. Rev. 87, 156 (1952);
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terms of a temporal sequence of events. The present
note is a presentation of relations which give a general
reason for the choice of the final state function.

The related and simpler case of scattering by a central
field has a sufficient bearing on the problem to justify
a preliminary brief discussion. In this case it is cus-
tomary to employ the boundary condition that at large
distances from the center 7 the time-independent wave
function ¥ have the asymptotic form

Yer~er+ f(0)e™/r, 1
with 6 and k standing, respectively, for colatitude and
propagation vector. Among the various ways of justi-
fying the outgoing wave modification represented by
the last term in Eq. (1), the one closest to that used
below for the main problem consists in the consideration
of a wave packet for a time-dependent . At the time
t=0 this wave packet will be supposed to be moving
along the z axis toward the scattering center. The time-
dependent function can be represented as

V= ka?,bke_iE”hdk, 2
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where E is the energy corresponding to % so that non-
relativistically E=7%%k?/2m, where m=mass. Since for
1< 0 the wave packet has not yet hit the field, it behaves
like a free space packet and can be made to look as in
“Condition I” of Fig. 1. On the other hand, after the
collision with the scattering field there is also a scattered
wave as in “Condition F” of Fig. 1.

The wave packet is taken to be so far from r=0 at
t=0 that the difference between plane and spherical
wave fronts in the packet is negligible. Similarly, for
condition F the time ¢ is taken so large that the same
condition obtains. For (=0 the coefficients Cyx can be
found by Fourier-analyzing the preassigned ¥, and
first constructing the packet out of plane waves e*s*
rather than out of the Y. The coefficients so found may
be identified with the Cx as may be seen by explicit
construction in special cases or from the following
argument. Before the packet hits the field there can be
no scattered wave. Therefore the presence of the second
term in Eq. (1) cannot matter in this epoch. Hence

[awtrrmac=o, (<. @)
Since for {<0, 2<0 one has
kr=—Fkz, (t<0), @)

which shows that as one goes along z through the packet
the phases change in opposite ways for the two terms
of Eq. (1). This circumstance accounts for the difference
in the behavior of the two terms, one of which repro-
duces the plane-wave packet while the other gives zero
by destructive interference. On the other hand for
1>t the signs of 7 and 2z are the same so that con-
structive interference occurs in the same locations for
both terms of Eq. (1). If one used ¢ % in the second
term the relative phase relations would reverse them-
selves and the process described would not be the
intended one.

It is now possible to visualize the actual problem. It
is supposed that one deals with solutions of

ho
(— ——+Ho)\1’0=0, (3)
1 0t

where H, is the Hamiltonian of a scattering problem.
In Eq. (3) there may be variables additional to the
space variables such as the spin coordinate. The func-
tion ¥, is taken to be a wave packet such as that of
Eq. (2). The problem is now modified through the
introduction of a perturbing Hamiltonian H’. The latter
may be caused by the incidence of a plane light wave,
coupling to radiation oscillators, emission of a nuclear
v ray, etc. The wave equation is

%
(—. ——+H0+H’)\If=0. @

1 0t

It is convenient to introduce time-independent solu-
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Condition I , t<O0

Condition F , t>t,

Fic. 1. Illustration of scattering conditions. In condition I the
incident train of waves (wave packet) has not yet reached scat-
tering center 0. In condition IT the train has passed over 0 and has
produced scattered waves S.

tions of Eq. (3) by means of
(Ho—Ej)’I/tj,s:O, (5)

where the subscript s enumerates the continuum of pos-
sibilities for solutions at a fixed energy E;. It covers the
possibilities of waves having different propagation
vectors and spin specifications, and in more complicated
problems it could be made to enumerate additional
variables such as internal excitation quantum numbers.
The normalization of the functions #; , may be chosen
so that

f f s (r )ty o (¢ ) djds= 5,8t 1), (6)

where u is the spin coordinate. In the region of discrete
levels the integrals in the above formula are understood
to be replaced by summations. By means of Eq. (6)
one can solve Eq. (4) to first order in H’ obtaining

A4 (r,u,t) =¥, (r,y.,t)

—-; f i f f djds (s (€ ),
H( ) expliES(0—0) /i o (), (7)

where the () indicate the scalar product involving
integration over t’ and summation over . In the speci-
fication of the #; , the boundary conditions at large »
were left unrestricted, the only essential requirement
being that of completeness as expressed by Eq. (6). One
can satisfy this relation by having the %, , be asymptotic



890

at large 7 to either (a) plane+outgoing wave or (b)
plane+ingoing wave. Either modification gives a
complete set of functions.

The completeness of the set can be verified as follows.
The distorted plane waves for no spin may be repre-
sented in the form

=201 QL+ 1)PL((k-1)/kr)F 1 (kr)/ (kr), (8)
where outside the region of action of H,
Fr= (FL COSBL+GL sinéL) exp (:i: 151,) 5 (9)

the + sign corresponding to outgoing and the — sign
to ingoing waves, and a standard notation of regular
and irregular functions F and G being used. Inside the
region of action of H, the function F, is the continuation
of the free-space functions by means of the radial
equation. Applying the summation theorem for spherical
harmonics to P, in Eq. (8), one sees that polar coor-
dinate solutions

Yo (x/r) 1 (kr)/ (kr) (10)

are connected with ¢y by a unitary transformation, the
coefficients of which are to within a constant factor

V¥ (k/k)dQx.

Here the Y™ are normalized spherical harmonics of
order L and magnetic quantum number » and dQy is
the element of solid angle in the direction of k. The two
arguments of the spherical harmonics are indicated by
specification of the unit vector defined by the polar
angles. If the functions of Eq. (10) form a complete set,
then the ¢x do also as a consequence of the unitary
character of the transformation. It is immediately
obvious that in field-free space the functions of Eq.
(10) form a complete set. Establishing H, adiabatically
the set remains complete as long as for every L the
radial equations have no discrete spectrum. In order
to keep it complete when there is a discrete spectrum,
all the discrete-level functions must be included among
the #; ; and the integration must be supplemented by a
summation. The extension of the above proof of com-
pleteness to the Dirac equation is readily made by
observing, in analogy to a similar contact transforma-
tion used by Dirac?® in his introduction of the two
Dirac-Darwin radial functions, that the transformation
to the two radial functions from the four-component
spinor is a contact transformation. The Y™ are now
replaced- by column matrices containing the ¥ 1™ and
the single radial function § is replaced by a column
matrix having for elements two radial functions. In
order to keep the set complete negative-energy states
have to be included but, on account of the fact that the
physical problem with Dirac’s equation is concerned
with an infinite number of electrons, the negative-
energy solutions are removed from the first-order
answer by the exclusion principle.

In the above sense one may use Eq. (7) with the u; ,

3P. A. M. Dirac, Proc. Roy. Soc. (London) Al118, 351 (1928).
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being either ingoing or outgoing wave modifications of
plane waves, the choice of sign in Eq. (9) being imma-
terial for the unitary nature of the transformation.

If the outgoing wave modification is employed, then
in the region of large positive k- r for r along k the #; ,
contain terms in ¢*” coming from e**'* and also terms
in ¢*” coming from the outgoing wave as in the second
term of Eq. (1). In (7) the second term represents the
first-order effect of H' in the form of a superposition of
the u;,,. For large ¢ standard considerations show that
there is a selection by interference arising in f'd¢ of
narrow-energy regions corresponding to conservation of
energy for inelastic processes such as photon absorption
in inverse bremsstrahlung. The inelastically-scattered
electron wave in each energy region is represented as a
superposition of the #; ,. Since in the direction of k,
each #; ; contains two terms with the same phase, they
both contribute to the wave packet of inelastically-
scattered particles. It might be thought at first sight
that et and e®"/kr contribute amounts of different
order at large . This is not the case, however, as may
be seen from the fact that e’** when analyzed in
Legendre functions of angle consists mainly of terms
in e*/kr and e~%/kr. In fact it is interference of the
outgoing wave parts of Eq. (1) with the unscattered
wave packet that accounts for the reduction of intensity
of the primary beam due to the existence of particles
scattered out of the beam in connection with Eq. (2).
One cannot neglect, therefore, the outgoing wave part
of u;, in the calculation of the inelastically-scattered
wave packet. The calculation by means of Eq. (7) in
terms of distorted plane waves with outgoing wave
modifications is thus possible but not directly inter-
pretable in terms of a differential cross section.

On the other hand, if the u; ; are taken to be distorted
plane waves with ingoing wave modifications, then in
the direction of each k, the phases of the ingoing waves
are just opposite to those of the plane wave pasts. For
the ingoing wave part one has, accordingly, destructive
interference as in Eq. (2’). The second part of Eq. (7)
gives, therefore, a representation of the inelastically-
scattered wave packet in terms of undistorted plane
waves and is consequently immediately interpretable
in terms of the number of particles. The coefficients,
given by the scalar products in Eq. (7) must of course
be calculated by means of distorted wave functions
since in the matrix element the wave function is needed
at small values of #/, within the interaction zone, so
that the mere knowledge of the asymptotic behavior
does not suffice. The transition to undistorted plane
waves occurs on account of the vanishing of contribu-
tions from the ingoing part of the u;, ; outside the matrix
element. It is clear that Eq. (7) gives the standard
formula for the transition probability in terms of
squares of matrix elements and it follows, therefore,
that for the usually desired application to the calcula-
tion of the flux of particles in a given direction, one
should use the ingoing wave modification.



