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In gas discharge plasmas with very low charge densities, the charged particles diffuse freely in directions
perpendicular to the applied electric Geld because the space-charge Geld is negligible. At high charge den-
sities, the space-charge Geld saturates and gives rise to a combination of diffusive and mobility How termed
ambipolar. The transition between these limits is examined theoretically for the case of plasmas main-
tained through ionization by electron impact. The ionization frequency per electron, one of the principal
parameters of the transition, can be re-expressed in terms of an effective diffusion coe%cient; it falls from
a high value at the free diffusion limit to a low value at the ambipolar limit as the electron density increases
over many orders of magnitude. The transition is accompanied by changes in the charge distributions and
by the development of a positive ion sheath. The current equations determining the process are examined,
and approximate solutions are obtained. Second approximations are obtained for the case where the ratio
of electron to ion energies is much greater than unity. Machine solutions are presented both for the above
case and for an isothermal plasma in which this ratio equals unity. An application to the afterglow is shown.

I. INTRODUCTION

HIS paper deals with the spatial distributions of
the charged particles, space-charge fields, and

voltages in certain types of gas discharge plasmas and
with the rate of ionization necessary to maintain the
plasma in a steady state. Speci6cally the problem to
be investigated is as follows: the electrons and ions
created by electron collision tend to diffuse out of the
plasma, and, since the electrons are faster, a positive
excess develops. Thus a space-charge field is built up
which assists the ion and retards the electron currents.
In the steady state, the two currents are equal. At the
same time, each electron must have, on the average, one
ionizing collision in the plasma before escaping in order
to maintain the steady state. Since the space charge
field reduces the electron escape rate it also reduces the
required ionization rate per electron per second. This
ionization frequency is one of the fundamental pa-
rameters of the plasma; it is large at low densities
where the space-charge field is small and smaller at
high densities.

The limiting cases of very low charge density (free
diffusion) and very high density (ambipolar diffusion)
are well known. The transition between them involves
nonlinear processes and has not been investigated in
sufhcient detail. The present paper describes this transi-
tion as it occurs in certain simple plasmas; expressions
will be derived for the ionization rate, charge densities,
space-charge 6eld, and other quantities; and the nature
of the plasma sheath will be discussed.

We state the basic definitions and assumptions:
(1) the plasma contains electrons and ions in concen-
trations cV and P respectively; (2) these charges a,re
produced by collisions at the rate vS per unit volume,
where v is the frequency of ionization by an electron;
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(3) the pressure of neutral gas is suKciently high for the
mean free paths to be small compared to all relevant
dimensions. The mean motions of the charged particles
will then be determined by diffusion and mobility, with
coefficients D, D+, p, p+., (4) the applied electric
field does rot accelerate the charged particles toward
the walls, but the space charge field E will in general
draw the ions toward the walls and repel the elec-
trons; (5) the electrons and ions stick to the walls
when they reach them and recombine there, there being
no volume recombination or attachment; (6) for mathe-
matical simplicity it is assumed that the mean energy
of each kind of particle is uniform throughout the
plasma so that all the coeS.cients are constants. The
ratio D /p is approximately equal to koT /e, where ko
is Boltzmann's constant, T the electron temperature,
and e the electronic charge. D /p is very close to two-
thirds of the potential corresponding to the average
electron energy in electron volts and similarly for D+/p+
and the energy of the ions. The above conditions are
substantially satis6ed in high-frequency electrical dis-
charges and in the positive column of dc discharges; in
both of these cases D IJ+/D+p )&1.Such discharges will
be called active plasmas. The theory presented also
applies in part to cases in which this ratio has less
extreme values, and in particular to an isothermal
plasma where D /p =D+!p+, this latter situation
occurs in a decaying plasma.

Because of mathematical complexity the solutions
obtained are in general not exact. An approximate
solution to the general case is found and upper and
lower bounds are found for certain parameters. Machine
solutions are also obtained for both active and iso-
thermal plasmas, and a better analytic approximation is
derived for the active case; but the authors have not
found a converging series of approximations for the
general case.
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IL BASIC EQUATIONS fusion lengths A;, but only the largest is of interest to

The particle current I' per unit area for the electrons us) and (6) has no solution satisfying (5) unless

1s

F= D—VN p—Et'tt',

P' I =Tv. (3)

and for the positive ions

F= —D~VP+ti+EP. (2)

In the steady state these two Qows are equal; thus from
the assumption regarding the production of charges,

i =D /A'.

As the ionization frequency v is in general a function
of the applied Geld, this is the equation which deter-
mines the Geld at which breakdown occurs: it is the
Geld for which the ionization rate Xv equals the diBu-
sion rate ND /A'.

The positive ion distribution is then found by solving
for F and substituting in Eq. (2). The result may be
expressed in terms of the ratio P/N:

Finally, Poisson's equation r=P/N=D /D+. (8)
V E=e(P—N)/eo

must hold, where e/eo ——1.809)& 10 volt-meter.
In an isothermal afterglow, the electron and ion cur-

rents are not necessarily equal, and since there is no
ionization, (3) is replaced by

V F= BN/Bt. —

However, it will be shown later that in such cases the
density decays almost exponentially over the principal
range of interest, so that BN/Bt is very nearly propor-
tional to E, and the two currents are approximately
equal. Thus in an afterglow, —v is to be interpreted as
the decay rate.

These equations will be solved subject to the bound-
ary condition

Pg= Xg= 0

at the walls. Strictly, these quantities are not quite
zero but vanish at extrapolated points outside the walls,
and the extrapolation is greater for the ions than for the
electrons due to the eGect of the electric field. However
the difference may be made small by decreasing the
mean free path, and it will be assumed that the pressure
is sufFiciently high for the boundary condition (5) to be
used.

The theory applies to symmetrical geometries so that
there is a central point at which F=E=O, and this
will be chosen as the origin of coordinates. It will be
seen that there is a relation between the central con-
centrations Eo and Eo, leaving only one of them arbi-
trary. We shall choose Eo as the independent parameter
because it is the principal factor in the conductivity of
the plasma, and this is the quantity which is generally
measured.

III. CONSTANT RATIO APPROXIMATION

At very low densities, for example at breakdown, the
space charge field E may be neglected. Equations (1)
and (3) then give the well-known diffusion equation

D V2N+iN=O. (6)

The boundary condition (5) converts this into a char-
acteristic value problem: one can deGne a diffusion
length A for any shaped cavity (strictly a set of dif-

The positive ion concentration is much higher than the
electron concentration so that the positive ion diffusion
rate PD+/h'equals th. e electron diffusion rate. It is our
purpose to generalize Eqs. (7) and (8) to apply when
space charge is effective.

The excess ion concentration produces a space charge
whose Geld retards the electrons and accelerates the
ion Qow towards the walls, thus decreasing both v and
r. The form of Eq. P) can be preserved by defining an
effective diffusion coeKcient

D,= vh. ', (9)

and if we make the naive assumption that the ratio r
is independent of position this yields

ti+D-+ti-D+
r~Ã= —D„~X.

t +r+t—
The above procedure is that generally used' to derive
the ambipolar diffusion coefficient

(12)

which applies in the high-current limit when r= i. The
expression for D„also reduces to D in the low-current
limit when r=D /D+. It will be shown that in the
intermediate range the ratio r is not independent of
position and the expression for D„ is too small (D„(D,).
Nevertheless the expression for D„ is a convenient
approximation to D„which will be called the constant
ratio approximation (c.r.a.).

A. von Engel and M. Steenbeck, Elektrische Gusentladungeg
(Edwards Brothers, Inc. , Ann Arbor, 1944), Uol. 1, p. 199.

whereupon the problem is reduced to that of expressing
D, in terms of E'0 and the diffusion and mobility co-
e%cients. D, will decrease with increasing Ã0, and this
is the origin of the negative characteristic of a glow
discharge at low currents.

The unknown space-charge field E can be eliminated
between Eqs. (1) and (2) to give

tj,pD PVN+ti D~NVP
(10)
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whence
(V P)«O,

Introducing the constant ratio assumption into Eqs.
(3) and (4) leads to the relation

e(P'p &—p)/«v= (D /r -D+—)/(p+D +p-D+-), (13)

by which the ratio r can be determined, to this approxi-
mation, in terms of the central space charge e(Po —Eo)

As Eqs. (11) and (13) are not exact, it is convenient
to have an upper limit on the central space charge.
This is found by requiring that the positive ion con-
centration by a rnaximurn at the center; thus

the "skin. " This skin becomes infinitely thin as D+p /
D p+—+0; or, in physical terms, if D+——0, the ions have
no random motion, and then the absorption of the ions

by the walls can have no effect on their density inside
the plasma.

In an isothermal plasma, on the other hand, P„=X„
at densities high enough to form a well-developed
sheath. Thus the sheath and skin become indistinguish-
able, and perturbations in the ion boundary condition
can be transmitted through the sheath into the plasma.
The consequences of this latter situation will be illus-
trated in Sec. UIII.

V. DIMENSIONLESS VARIABLES

or

vXo= (p F)p= (p+Pp R D+PP)—p

)ep+Po(Po —1Vp)/«The number of independent parameters can be re-
duced to the following two:

1/ro) p+e(P p No)/«v—. (14)

1 epe'(P Eq
I

—+—l.
kp ET+ 2' )

(15)

In an electrolyte the two quantities in parentheses are
equal. In a plasma they are far diBerent, and we must
introduce two quantities,

X.'= ppD /Pep, (16)
X„'=«D~/Pep+, (17)

This relation will be called the central maximum bound.

IV. THE ELECTRON AND ION DEBYE LENGTHS

Debye and Huckel' have introduced a distance XD at
which the ions in an electrolyte will shield any station-
ary charge:

o'= p /&+ p—=p—D+/p+D

where p is the ratio of ion energy to electron energy.
This quantity is therefore j. in an isothermal plasma
but is of the order 1/100 for an active plasma.

Consider the dimensionless variables

n=Xep+/«v; s= (P 1V)ep+/«—v;

6= I'ep+/«v(D v)'; H= Rp+/(D v)'*;

P=x( /vD )l,

(2o)

(21)

(22)

~8= (p+/p-) (*/l~-)',

( + )e= (D./D )(*/l.)'
(23)

where x stands for any linear coordinate. The Debye
lengths are related to these transformations as follows:

representing the shielding distances by the electrons
and ions, respectively. The two distances are equal only
for an isothermal plasma at the ambipolar limit.

Adopting the constant ratio approximation, one has
at the center

In terms of the dimensionless variables the basic equa-
tions (1)—(4) become

pN+G= —oHe;

(1+p)pm+ (1+o)G=oHs —pps;

(24)

(25)

(26)p H=s;p G=e;
(Ay' ttp(D —D„) (D D„)' D. —

(1&)
~X„) soD ( D ) D D, —

Thus it is principally the electron shielding distance X„
which controls the transition to ambipolar diffusion
and when X„=A the ion density is about twice the
electron density and D,=2D . This is about midway
in the transition.

The Debye lengths also figure in the development of
the sheath. The wall strongly affects the electron
density within the distance X„of the wall and the ion
density within the distance X„. In an active plasma,
A, )&X„;the positive ion sheath is in reality an electron
deficiency, and. its thickness is closely related to P„.
On the outside of the sheath there is a thin region whose
thickness-is of the order X~ and whose potential is of
the order D+/p+, in which the ion density adjusts to
meet the boundary condition. %e shall term this region

' P. Debye and E. Hiicke1, Physik. Z. 24, 190 (1923).

with the boundary condition

eg ——Sg=0 (27)

'F6+6= —oHp 6 (24a)

(1+p)V'6+ (1+o-)6=oHp'H —pV'H. (25a)

The characteristic value parameter v has vanished
from these equations but occurs in the scale factor. The
problem now is to find pairs of central values, (vip so),
which yield solutions of (24) and (25) satisfying (27)
for the same value, P, , of the coordinates. The value of
v is then obtained by fitting $i to the known wall co-
ordinate x~, and the effective diffusion coefIicient is

at $&, the wall. By eliminating n and s one obtains the
two second-order, second-degree equations
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given by
D, =D (XP,/x, )'. (28)

It is measured by the value of $i and a geometrical
factor xi/A characteristic of the volume containing the
plasma. For parallel planes, xi/A. =x/2; for a long cylin-
der, xi/A=2. 405; for a sphere, xi/A=~.

The na, ture of the free and a,mbipolar limits is well
illustrated by Eqs. (24) and (25). In the free limit the
eGect of the space charge field is negligible, therefore we
neglect the field H but keep thespacechargesitself which
is, in fact, large compared to m. After taking divergences,
we have

V2n+~=0,

ps= (o —p)m.
(29)

k'= 1+oso. (32)

Since sp is the central value of s, it is seen that the
right-hand side of (24b) and its ffrst derivative vanish
at the center; and therefore a relatively small error is
made in neglecting it. The equivalence of the approxi-
mate form of (24b) and the previous form of the con-
stant ratio approximation (11) depend on assuming a
relation between sp and r which is

«o= (o rp)lr(1+ p)— (33)

On the other hand, in the ambipolar limit both H and
s saturate, but e and G do not, so that we may neglect
the right-hand side of (25), obtaining

(1+p) V'm+ (1+o)v=0,
H= (o.—p)6/(1+p)oe, (30)

o —p ( 1+o G')
s=

i
1+

o.(1+p) ( 1+p tP)

In the ambipolar limit the space charge reaches a
saturation value given by

s.= (o —p)/o (1+p) (31)

at the center and becomes infinite near the walls. The
assumption s&(e is therefore necessarily false near the
walls, and. the ambipolar solution, defined by (30), is
approached as e increases only in the sense that the
region near the walls in which s)n, and which con-
stitutes the positive ion sheath, becomes smaller as m

increases. It should be noted also that the space-charge
distribution is quite different in the two limits. For
parallel planes, e($) is a cosine function in both limits.
s is also a cosine in the free limit but is a secant squared
in the ambipolar limit.

VI. APPROXIMATIONS AND LIMITS

An alternate and. more useful form of the constant
ratio approximation is found from the dimensionless
equations by adding o Gso to both sides of (24a) and
taking the divergence:

V'e+ 0'e= o V" (Gso—Has) =0, (24b)
where

Such a relation is equivalent' to setting V2E/S= PP/I'
at the center —that is, to forcing both charge distribu-
tions to have the same shape near the center.

In the approximation (24b), e is a solution of the
diffusion equation for a cavity of diffusion length 1/k.
As the right-hand. side of the equation is positive, the
electrons actually assume a bell-shaped distribution,
the appearance of which indicates the formation of the
sheath. Thus the distribution of e is no longer every-
where convex, and the concentration actually extends
beyond that predicted by the approximation. Thus
D„=D /k', and we have the inequality

D,&D /k'. (34)

The equality holds both iri the free limit for sp ——0 and
in the ambipolar limit where

D-= D-(1+p)/(1+o) (35)

for sp ——s . It will be shown below that between these
limits the effective di6usion coe%cient D„calculated
by this formula may be too small by a factor as large
as 3.

The central ratio m&/so is obtained by dividing (25)
by oH and seeking the limit of each term at the center.
In particular (G/H) o='so/sp. In this way one obtains

(1+p) (s —so)N0/so ——so —(p/o) (V'H/H)o. (36)

The ratio (V2H/H)o cannot be determined without
reference to the boundary conditions. However it is
noted that near the free limit (29)

V'H/H =V'6/G= —k2.

whereas near the ambipolar limit (30)

V'H/H = (I/O) V'(6/e) = (I/G) VP1+ (kG/e)'j
=2k'v (6/n)

so that (V'H/H)o ——2k'. It is seen that for low con-
centrations the maximum space charge is at the center
whereas for high concentrations there is a minimum at
the center and a maximum part way out to the walls.
It may be expected that (V2H/H)o remains between
these limits, so that the following bounds may be placed
on sp sp'.

(1+.)"+p/-& (1+.) ( . ")"/s, -
& (1—2p)sp —2p/o", (37)

and one expects the upper bound, which is identical
with the constant ratio approximation (13) and (33),
to be approached near the free limit, and the lower
bound to be approached near the ambipolar limit. The
latter statement leads to a surprising result which
was first discovered in numerical solutions: when
1/p(2+3/o. or s, (x3, that is for a near-isothermal
plasma, the lower bound is negative, and therefore
sp) s near the ambipolar limit. As a plasma decays the
space-charge parameter sp, which initially has the value
s, first increases before decreasing to zero.
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In obtaining bounds for ep/sp one must be careful
not to divide by a negative number. Considering also
the central maximum bound (14), one distinguishes
three cases:

(a) s.)-'„so(s.
so+ p/a' (1+p) +o sp —(2p/a) (1+asp)

(37a)
s sp sp (1+p) (s sp)

(b) s»( p, sp($»

so+p/a. (1+p) eo sp

Sp 1—Sp

(c) S»(p, so)$»

(2p/a) (1+aso)—so ~so so

sp 1—sp(1+p) (sp s )

(37b)

(37c)

v. G=e, v H=s, (26)

with the boundary condition n&=0 at the wall.
The free limit of these equations is found as before

by setting jj=0 in (24), and yields the same electron
distribution as before Lsee Eq. (29)j.The space charge
is then found by neglecting e in (39) and yields

Hv. H= G, (40)

Cases (b) and (c) both apply to the near-isothermal
plasma. These bounds will be illustrated in subsequent
sections.

VII. THE ACTIVE PLASMA

In an active plasma, p=1/100, so that the bounds
(37a) fall very close to each other and the central ratio
ep/sp is well defined. In fact, as ~0, both limits reduce
to

(38)
and s~= 1.

This coalition is best understood by re-writing Eq.
(25) in terms of the positive ion concentration (e+s):

p/a~(rc+s)+ G= H(n+s). (25b)

Since p/a=D+/D =10 4, the first term is negligible
over most of the plasma except at densities very near
the free diRusion limit. Neglecting this term reduces
the order of the equation and therefore reduces the
number of arbitrary constants in the solutions. It also
reduces the number of boundary conditions to which
the solutions may be subjected, and one sees from (25b)
that one cannot set both n~ ——0 and s&

——0 at the wall

unless the first term is retained. This means that we
have neglected the plasma skin whose thickness is of
the order d P= p/a jji.

For an active discharge one therefore seeks solutions
of the equations

~n+ G= —a He,

G= H(N+s), (39)

G =np, /'k, (41)

the value given by the constant ratio approximation.
It is further assumed that n«s throughout most of the
sheath so that (39) becomes Gi= jjs. This yields

s=Gi'L2(t —6)j ', (42)

jj=L2G.(~-b)):, (43)

for $)$„;gp is a constant of integration. It is convenient
to introduce the independent variable

ajjd( = 2a. (2Gi) .* ($—$o) */3 =a-jP/3Gl (44)
~~p

in the sheath; v= Vp /D =eU/kpT, where V is the
potential di8erence measured from xp. Equation (44)
yields the standard high-pressure sheath, ' but it will

not be joined to the plasma at its origin $p. Using v as
the independent variable, Eq. (24) becomes

dl/dv+ ii = —(G '/3a'v) '

e= (Gio/3a')le '
y
—

le&dy,

V

(45)

for v) vv; v= v„at &= P„, and v= vi at g= gi.
In the interior region, an approximation better than

that given by the constant ratio approximation must
be made. It may readily be shown that at the center

1 d's (3sp —1)k'
= 2E'= . (46)

sdP p 4—3sp

3 J. D. Cobine, Gaseous CorIductors (McGraw-Hill Book Com-
pany, Inc. , New York, 1941), p. 129, Eq. (6.27).

which is very di8erent from (29). In the case of parallel
planes where the electron free limit ls s—Bp cosp, equa-
tion (40) yields s = (gimp) cos ($/2). This change in the
limiting form comes from the neglect of the high-order
term in (25b). In any actual case p/a is small but not
zero. The "limit" obtained above is an intermediate
state holding only so long as the ion-mobility term,
H(e+s), is larger than the ion-di8usion term
pV(e+s)/a. As the field gets yet smaller, the ion dis-
tribution undergoes a second transition to the true free
limit given by (29). This low-density change in the ion
distribution does not aGect the electrons, which are
already controlled by diffusion, and therefore does not
aGect the ionization frequency. It is of no importance
for our problem.

a. AnaIytic Approximation

A good approximation for the active plasma can be
obtained by separating it into an interior region,
0(f(gv, and a sheath, $„((($i,at („,the two regions
are joined. The method is illustrated for the case of
parallel planes.

The matching point $„ is chosen sufficiently far out
from the center so that the current G=G~ throughout
the sheath; it is sufficiently accurate to choose
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Thus s has a maximum at the center for so(-'„and a
minimum for so)+3, and we choose functions for s
satisfying (46) which reduce to the correct ones at the
free and ambipolar limits. Considering the inter-
mediate limit of the ions defined by Eq. (40), we choose,
in the range 0&so& 3,

s= sp cosv2E), (4'7)

H = (sp sinV2K$)/Y2E, (48)

where by E we mean !E! throughout. In the ra, nge
-',&so&1, we choose

s= sp sec'(E$), (47a)

H= so tan( E$)/K. (48a)

The form of n for $($„is obtained from (24b), but
the right-hand side is not negligible in the region t =$„.
A reasonable approximation results if it is set equal to
n times a power series, and the first term ( P) only is
retained. By taking second derivatives at /=0, one
6nds that, for parallel planes,

d'n/d8'+ [1 A8')n—=0, (49)

TABLE I. Quantities used in obtaining the free ambipolar
transition for an active plasma between parallel planes.

$0 I &/k I l &&I I kgjs k$o vqk~/oso k)I'

0
0.05
0.10
0.20
0.333
0.50
0.60
0.70
0.80
0.85
0.90
0.94
0.96
0.98
0.99
1

0
0.002632
0.01111
0.0500
0.1666
0.5000
0.9000
1.633
3.200
4.817
8.100

14.73
23.04
48.02
98.01

1/Q8
0.3323
0.3076
0.2425

0
0.3162
0.4264
0.5381
0.6614
0.7311
0.8086
0.8782
0.9161
0.9566
0.9779
1

~/Q 32
0.5038
0.4639
0.3642

0
0.4670
0.6169
0.7579
0.9031
0.9828
1.073
1.162
1.219
1,295
1.354

~/2

m. /2
1.516
1.508
1.502
1.500
1.477
1.447
1.408
1.365
1.344
1.327
1.324
1.330
1.354
1.384
m./2

~/2 —1
0.5971
0.6235
0.6773
0.750
0.8412
0.8933
0.9446
0.9979
1.029
1.070
1.120
1.154
1.217
1.277

m/2

Q 8/3
0.8526
0.8263
0.7902
0.750
0.6757
0.6137
0.5440
0.4700
0.4316
0,3937
0.3639
0.3500
0.3373
0.3324

~/2
1.996
2.241
2.470
2.621
2.676
2.676
2.621
2.513
2.432
2.321
2.199
2.111
1.980
1.880
~/2

& For cr =32 only.

where
A = 9o sp (1—sp)/2ks (4—3so),

8=k$.

(50)

(51)

Equation (49) yields Hermite functions with n= np and
dn/d8=0 at 8=0. Since A =0 for sp ——0 or 1, (49) reduces
to the constant ratio approximation at both limits.

The three unknowns g„, (p, and $& are determined by
matching s, H, and n at P~. This eliminates the discon-
tinuities in both s and n which exist in the usual joining
method. Matching sH and H/s from (42), (43), (47),
or (47a), (48) or (48a) gives, after elimination of Gi
and no,

sin2V2E$„= 2&2K[k (1—sp) $ (52)
So&-',

Kg~ K$p (tanv2E$„)/—2v2; —— (53)

tanKg„sec'Eg„= E[k (1—so)) ', (52a)s&'
Eg, Eg, = (sin2E~„)/4. — (53a)

200—

$50—

O O O. O

g) I I 1

AIAfg
C$ OOOO

O
QP

N
O

100—

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
So

0.8 0.9 1.0

Fzo. 1. Contours of constant n~/np on the so, a plane,
as used in Eq. (54).

By matching e
p

'81

oH „k(n„/no) = s„&e "& y le"dy,
4v„

(54)

TABLE II. The function F(s) = e 'Jo"y ie"dy.

0
0.10
0.20
0.30
0.40
0.50
0.60
0.80
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0

0
0.305
0.456
0.516
0.645
0.705
0.753
0.823
0.864
0.889
0.863
0.780
0.701
0.639
0.592
0,555

0

where H~ is obtained from Eq. (43), (48), or (48a). The
quantities no, !E/k!, !E$ !, k(„, k$o, and u„k'/osp are
functions only of so and are given in Table I. The ratio
n~/np is a function of sp and, to a lesser extent, of o, and
is determined from the solution of Eq. (49); the ratio
isplottedin Fig. 1.For tt)0.1; the functione 'Jo"y fe&dy

is nearly constant and is tabulated in Table II. For
v&0.1, the integral is readily determined from a series
expansion.

Equation (54) determines st, hence $&, and from the
dehnitions of v, G1, and eo,

kit —kgo
——[9vrsk4 (1—sp)/8o'sp'j'. (55)

kgi is a function of sp, and rather weakly, of o. It is

shown in Table I, computed for the value 0.=32; how-

ever, it is believed that the value of kit us so will be
much the same for all r.

One can now compute D, and s from (28) and (9),
the real charge densities, and other quantities. For
example, Erkily /D =oHi(D, /D ) is proportional to
the space-charge field at the wall, and Hi is calculated
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0.2,

O.I

(a)

~ether one defines the sheath as originating at $o
or $p (as has been customary) is a matter of convenience.
Choosing P„results in a sheath which first expands as sp

decreases from s„ then shrinks to zero at the free limit.
Kith this choice, the sheath potential becomes

V,g=D (ug —vo)/p .

(b) Approximation Near the Ambipolar Limit

The ambipolar limit is approached as so—&1, and
asymptotic expressions can be given for the quantities
required by the theory. These are obtained by setting
E=k, sin(kgb) = I, cos(k$o)= sin( s/2 kgb)—= pr/2 k$o,—
and are as follows:

0 I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1,0

1.0

Since

m./2 —kg, = (1—sp) &;

k(~.—~o) = (I—o)I/2;

p
'Vl

Oso=v~~e '& '

y eddy;
J~

k(~ -b)=(I— )I( /. )~.

v, = o.sp/3k'= ~s

(52b)

(53b)

(55a)

(44a)

0.5

0
0

10

0.1 0.2 0.3 0.4 0.5 0.6

(b)
Eq. (54a) may be further approximated by

san=1.08 ln(2. 20osp). (54b)

As ep ——sp'/(1 —sp), it is seen that the sheath thickness
varies as eo ' or Eo: and that the space-charge field
E~ at the wall varies as Eo'. The analog to the Lang-
muir sheath is given by the thickness (r—$p. As our
interior solution is much better than the conventional
one, we have joined at $„ instead of at $p.

In the ambipolar limit, our sheath potential becomes

V,g
——1.08(D /p ) ln(2. 20@ /pi) —D /3p; (57a)

the last term is a small correction arising from the
choice of $„, rather than b, as the sheath edge. Equation
(57a) differs from Langmuir's expression'

V,a ——(kpT /e) ln(T m+/T+m ),

0.4 (,0 0.2 0.3

FIG. 2. Machine ( ) and analytic (-——-) distributions
of n and s us distance parameter g for an active discharge between
parallel planes, with p=0, o =32. The center is at (=0, and the
wall at f= (&. (a) Low density, s0= 0.125, N0=0.01786; (b) Inter-
mediate density, ski=0.625, n0=1.041; (c) Near-ambipolar, so
=0.93/5, up= 14.06.

0.1

from Eq. (44). Similarly Vnu /D = JP'oHdt is pro-—
portional to the wall potential V~ relative to the center,
so that

4
Vr ———(D /p ) oHd$+or oo . —

where m+ and m are the ionic and electronic masses,
principally in the nature of the logarithmic term. Our
relation (57a) is derived on the assumption that the
mean free path is small compared to the sheath thick-
ness, so that the mobilities, hence the ratio of electron
to ion drift velocities, are involved. Equation (58) ap-
plies when the mean free path is long and the charges
fall freely; the logarithmic term is essentially the ratio
of the random velocities. As Eo increases and the sheath
gets thinner according to (55a) one eventually reaches
a point where the sheath is thin compared to the mean
free path and then one must use Eq. (58). A transition
between the two types of sheath, however, may not be
observed in practice, for sheath voltages calculated by
the two relations do not diGer markedly; it is proper to

' I. Langmuir, Phys. Rev. 33, 969 (1929).
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compare them after omitting the last term of (57a).
For hydrogen, o =32, p= 100; Eq. (57a) gives V, &IJ, /D
=4.6; and (58) gives 6.4. For oxygen, o=400, p=70;
both (57a) and (58) give V, sfj, /D =7.3.

Extension of the near-ambipolar solution to a cylin-
drical or spherical geometry is simple. Since the sheath
is thin, its form is unaltered, and only the matching at
p„must be adjusted; it is necessary only to replace the
form of the constant ratio approximation with the one
applicable to the geometry in question.

3.0

2.0 ~
/

7
V L,

I
II

'l.o ~ gag~ ~
] ~~ C
4gI
Ir

0 I

0
I t

0.2 0.3
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+ \B-~
1

I

0.4 0,5 0.6 0.7 0.8 0.9
So

Fzo. 3. Machine ( ) and analytic (————) solutions of
the quantities k)I (A) and spD, /D (B) ps sp for an active dis-
charge between parallel planes, with p=0, o =32. The quantity
spD, /Do is proportional to the true central space charge, and it is
noted that the central space charge exceeds the ambipolar value
through most of the transition. The value of spD, /D, obtained
from the constant ratio approximation (c.r.a.) (C) is also shown.

(c) Machine Solutions

For an active discharge in hydrogen, the appropriate
parameters are p=1/100, a=32. Thus the case p=0,
o.=32 for a cavity consisting of infinite parallel planes
was solved on the Mark IV computer at Harvard
University. Central concentrations so were chosen arbi-
trarily, and the appropriate concentrations eo were

o.5—

0.2
S

D
0.1

0.05—

I06
2 5 2 5 2 5

107 &08 309 &O'P

NOA~ /D (VOLT-METERS) ~

I

10"

D8
D

Fro. 4. Machine ( ) and analytic (————) solutions of
the effective diffusion coeKcient D,/D ps central electron density
Npa'p /D for an active discharge between parallel planes, with
p=0, 0 =32. The constant ratio approximation is also shown.

integrals over e and s are reasonably accurate. Curves A
of Fig. 3 show the quantity kP& vs sp for both the ma-
chine and analytic solutions, the latter also being tabu-
lated in Table I. The c.r.a. of course would give k$r
=pr/2, and the difference is a rough measure of the
sheath thickness. The true central space charge,

(E—E)pe= epvsp/p+= SpD ep/p+', (59)

20

as distinct from the central space charge parameter so,
is measured by the product soD, . This goes above its
ambipolar value, and this peculiarity is shown by
plotting spD, /D, vs sp in curves 8 of Fig. 3. The con-
stant ratio approximation value of spD, /D, is shown

by curve C and makes it evident that although this
approximation goes to the ambipolar limit it does not
approach it in the right way.

Figure 4 shows D,/D = (2$r/Tr)'plotted vs N&'ll, /D
= epD sp/eD (volt-meter) ', which is proportional to

computed from Eq. (38). The equations were inte-
grated from the center outward to the point $r where
m= 0.

Figure 2(a) shows both the machine solutions and the
analytic approximation for m and s vs $ with sp

——0.125,
np 0 0178.6——F.igure 2. (b) shows Ts and s for sp=0.625,
no ——1.041; such densities lie about mid-way through
the transition region. Figure 2(c) shows m and s for
so=0.9375, eo——14.06, approaching the ambipolar re-
gion. These figures illustrate the change in shape of
s($) with increasing density and the development of
the bell-shaped distribution of e indicative of sheath
formation. The length A„o is the Debye length corre-
sponding to the central electron den'sity. The ratio
)I;„p/xr ——(ITTsppr') & is marked off on Figs. 2(b) and (c),
and the ratio )I p/2xr is marked on Fig. 2(a).

While the distribution of s is rather crudely approxi-
mated by the theory, the end point $& and the various

to—
8—

0.8—

0.6—
0.5

2
06

/ r
J'

/
/

I
I I I I I

5 2 5 2
io~ 108

NpA + /D (Vol T- METERS)

5 2
109 &0'o

FIG. S. Machine ( ) and analytic (————) solutions of
wall Geld Z~AII, /D (A), wall potential —V~p /D (B), and
sheath potential V,Iy /D (C) ps central electron density NoiI2p /
D for an active discharge between parallel planes. p=0, 0.=32.
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Fig. 6. Machine solution ( ) and analytic limits (————)
of space-charge parameter s0 vs electron density parameter eo for
an isothermal plasma between parallel planes with 0.=32. Note
that so rises above s =0.484 through part of the transition region.

The limit itself, however, is not closely approached
below Xp= 10P/cms.

VIII. THE ISOTHERMAL PLASMA

The problem of the isothermal plasma in an infinite
parallel plane cavity was solved on the Whirlwind com-
puter at the Massachusetts Institute of Technology
for the case p= 1, 0.=32. Since the eQ'ects of ion diGusion
are not negligible, no is not directly determined in
terms of sp. Thus central concentrations (ep sp) were
chosen arbitrarily and the equations integrated from
the center outward. Solutions for which m and s did
not vanish at the same coordinate were rejected and
the solution repeated for a different value of eo. Appro-
priate pairs (ep, sp) were found and for these the entire
solution was plotted, and the value of (t recorded
Figure 6 shows so as a function of eo from the machine
solutions and the two limits (37b) and (37c) and
illustrates the departure from these bounds. It shows

the true central electron density; for comparison, the
constant ratio approximation (34) is also shown.

The quantities EtAp /D and —V~ /D, for both
machine and analytic solutions, are plotted in Fig. 5 vs

EpA'p /D . V,zp /D as obtained from the analytic
solution is also shown. Since it is the development of
the space-charge voltage that inhibits the electron Row
and brings about the free ambipolar transition, it is
not surprising to discover that the wall potential is
substantially in excess of the average electron energy
through most of the transition.

The transition itself takes place over several orders
of magnitude. If, for example, D /p =2 volts and
A=1 cm, then D,/D =O.S at Xp ——2&(10'/cm'; and,
even at this low density, the net central space charge
is about equal to that obtained at the ambipolar limit.

IB
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FIG. 8. Machine solutions of the quantities kb (A) and spD, /
s,D, (8) ps sp/s, for an isothermal discharge between parallel
planes, with 0.=32.
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Fio. 7. Machine solutions of n and s vs g for an isothermal plasma
between parallel planes with 0 =32; sp=0.375 up=0. 4031.

sp passing above its ambipolar value s . Figure 7 shows
the machine solutions of e and s ns g with sp ——0.375,
co=0.4031, about midway in the transition. The ratios
X„p/xt and X~p/xt ——Lo(m+s)pPt'/pg l are marked on the
figure. The spatial distributions are generally similar
to those of Figs. 2(a)—(c) except in the following de-
tails: (i) s drops to zero at $=$t, but still shows a
maximum part way out for the higher values of so.,
(ii) since the ions diffuse freely at the free limit,
s=sp cost at the free limit rather than sp cosp/2 as was
the case for p=O; (iii) at the ambipolar limit s,=0.484
rather than unity, and the maximum value of so in the
transition was 0.519.

Figure 8 shows the quantities kyar and spD,/s~,
plotted es sp/s and illustrates the peculiarities both
in the true central space charge and in so. Comparison
with Fig. 3 shows that the maximum sheath thickness
is about the same for both p=0 and p= 1.

Figure 9 shows D,/D vs IVY'p/D. For comparison,
the constant ratio approximation (34) is also shown,
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FIG. 9. The e efcftive diffusion coeffIcient D,/D vs central elec-
tron density Eph'p/D for an isothermal discharge between parallel
planes, with 0-=32. The c.r.a. is also shown.

IX. CONCLUSION

A very simple approximation termed the constant
ratio approximation (c.r.a.), has been found. Although
it goes to the correct free and ambipolar limits. it is
shown to be in error by a factor which may be of the
order 3. A good second approximation has been found
for the case of an active plasma (T~/T =p&&1). This is
obtained by joining a sheath to interior solutions which
consist, for the case of parallel planes, of Hermite and
trigonometric functions. The joining is done so that

using Eq. (33) to determine Ns as a function of ss. The
figure shows that ~dD, /d1Vst&&D, /Xs, ' thus a thermal
plasma initially situated on the curve will decay in a
quasi-equilibrium fashion closelyf ollowing the curve.

Finally, EIhp/D and VIlI/O are plotted in Fig. 10
vs iVs/t'fI/O.

Inasmuch as most of the fundamental processes are
the same for p=0 and p= 1, it is not surprising that the
results in the two cases are quite similar. It has not
been possible, however, to obtain satisfactory analytic
expressions for the case p=i, and the mathematical

difhculty arises because perturbations at the wall are
transmitted by the ions much further into the interior
of the isothermal than into the active plasma. For the
same reason, an experimental probe will disturb an
isothermal plasma more deeply than an active one. As
a result of these diKculties, it is possible to solve the
isothermal case only by machine methods.
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FIG. 10.Wall field E~AII/D (A) and wall potential —U,IJ/D (8)
vs central electron density Eoa'p/D for an isothermal discharge
between parallel planes, with 0-=32.
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electron and ion densities, field, and current are all
continuous. From this solution the development of a
sheath, with increasing plasma density, can be followed.
All quantities are compared with an exact machine
solution. An effective diffusion coefficient D, is calcu-
lated, from which the ionization frequency I =D,/h. '
can be calculated. The free-ambipolar transition takes
place over many orders of magnitude of electron
density, and the ambipolar limit is approached very
gradually.

The method used for the active plasma fails for the
isothermal plasma (p= 1) because the boundary condi-
tions react on the central ratio Ps/Ns of ion to electron
concentrations. This.has experimental implications in
the use of probes. Machine solutions have been ob-
tained here also and show that aside from the central
ratio the transition is quite similar to that for an active
plasma. It is shown that the relative change of D, is
slow compared to that of the concentration Eo and that
therefore the solutions obtained may be applied to a
decaying plasma for which B'AV/R= ED,//I'. —


