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Theory of Bremsstrahlung and Pair Production. II. Integral Cross Section
for Pair Production
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Laboratory of lllscclear Stldses, Co&tell UNsversity, Ithaca, lllelo Fork

(Received October 29, 1953)

The differential cross section for bremsstrahlung and pair production at high energies obtained in the
preceding paper by Bethe and Maximon has been integrated over all angles, and formulas are given for
the integral cross section for all Z. For small Z, the correction to the Born approximation is proportional
to Z, and the constant of proportionality is given. The correction for heavier elements is somewhat less
than the Z' law would indicate. It is shown that the correction is associated only with large recoil momenta
of the nucleus whereas screening is important only for small recoil momenta; and, therefore, the same
correction is valid in the case of complete, incomplete, or no screening. Agreement of these new predictions
with observations of pair-production cross section at 88 and 280 Mev is excellent and not unreasonable at
17.6 Mev.

I. INTRODUCTION

''T is well known that the predictions of pair-pro-
~ ~ duction cross sections made by the Born approxi-
mation are not veri6ed for the heavy elements, the
discrepancy in the case of Pb being of the order of 10
percent at high energies. The error arises because of
the fact that in the Born approximation, the Coulomb
interaction is treated as a small perturbation. In the
paper immediately preceding this, Bethe and Max'imon'

have made a calculation of the bremsstrahlung process
in which the Coulomb interaction is included in the
uttperturbed Hamiltonian and which is valid for all Z as
long as the energies of all of the particles involved are
large compared with the rest energy of the electron.

The purpose of this paper is to carry out the inte-
gration of this differential cross section over all angles,
and this is done by a method similar to that used by
one of us' in determining the inRuence of screening on
bremsstrahlung and pair production. The integration
is facilitated by the fact that the energies involved are
high and, therefore, the angles between the photon and
the electrons are small for significant values of the

differential cross section. A brief statement of the
results has already been published. '

The notation employed is that of Bethe and Maxi-
mon, ' and a natural system of units is used in which
no= c=5= 1.

II. THE INTEGRATION

The most convenient starting point is Eq. (7.14) of
Bethe and Maximon which gives for the diGerential
cross section
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The variables of integration are 81, 8„and p. The other
quantities can be expressed in terms of these (see
Sec. VII of A):

I= &181, ~= eg8g, (2)

~=(1+ ')-', ~=(1+")-',
q'= u'+v'+2uv cosg,

y= q'trt.

(3)

(4)

(5)

FIG. 1. The domain pf integration in the space of $, g, and y.

*Now at Christ Church College, Oxford, England.
t Novr at Gradllate Dlvlsloll of Applied Mathematlca, Brown

University, Providence, Rhode Island.
' H. A. Bethe and L C Maximon. , D. QFerellzal Cross Section for

Bremsstrchlung and Pair Production, quoted as A in the following.
s H. A. Bethe, Cambridge Phil. Soc. 30, 524 (1934).

In all of these expressions, it has been assumed that
the angles 81, 8s are small, of order 1/e. In Eq. (4), it
has been assumed, furthermore, that q is of order 1
rather than of order 1/e. There is an important range
of angles, vis. , e18I=es8&, @=0, for which q'=O(1/e');
and then Eq. (4) is useless, not being of sufhcient
accuracy. We have found it necessary to consider the
two domains (I) q'=O(1) and (II) q'=O(1/e') sepa-
rately. Domain I corresponds to y=0(1) and domain II

'Handel Davies and H. A. Bethe, Phys. Rev. 87, 156 {1952}.
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to y= 0(e '). Classically these two domains correspond
to small and large impact parameters, respectively.

The minimum value of q is

qmin 8 k/2ele2 ~ (6)

The upper limit of q may be taken to be in6nite. From
Eqs: (4) and (5), the upper limit of y is 1 (which is
clear since x is positive); and a more accurate expansion
of q' shows that the minimum value of y occurs when
q=b and then y=P.

Domain I:y= O(1)

In this domain, Eq. (4) is valid.
Since the hypergeometric functions V(x) and W(x)

are complicated functions )see Eq. (6.24) of Bethe
and Maximon7, the integration over x should be left
to the end. We shall therefore transform the integration
variables. As a first step, we transform to the variables
I, v, andq.

Using Eqs. (2) and (4), we have

to x and doubling the resulting integral. The voluine
of integration can be conveniently represented in the
$tfy space as in Fig. 1.

The volume of integration is contained between two
surfaces in the @y space, both of which intersect ted =0

in the straight line y= $, and the plane rf= 1 in the
straight line y= 1—

p, one of which cuts the plane rf =-',
in the upper half circle and the other in the lower half
circle (Fig. 1). When )=rf,

y=2&(1—g) (1—cos4),

and near /=0, y is very small. This is precisely the
region in which Eq. (4) for q' is invalid and must
therefore be avoided in our present integration over
domain I. It is necessary to insert then a lower cuto6,
y=y&, for the present such that

8'«yg« j..
The integration can now be further simplified by

introducing the symmetrical variables:4

8 (u, v, q') = 2ei es 8i8s sing
8 (8i,8s,y)

(7)

s= $+rf —1, w= $—ti.

Then, after some algebra,

(16)

so that
NVdNAdq
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+asW'$(et'+es') (1—y)+2etess'7} (17)

with
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Next we change to the variables $, if, and y and get

do = 2Ad /d tidy [2y ($+ ti 2)rl) ($——rf)' —y'—$ &

X (y
—'V'(x) $(.i'P es') y+2eies(g —q)'J
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The limits of integration are 0 and 2pi for u and 0
and 2Ps for v; the upper limits can be taken as in&nite
since only u, v=O(1), and less give significant contri-
butions to the cross section. From Eq. (3), therefore,
the limits of $, ri are 0 and 1. According to Eq. (5),

y= qs$ti= (+rf 2)rf+2 cosPL—grf(1 —$) (1—rf)1&, (13)

and the limits of y are obtained by letting P go from 0

The last term in each of the square brackets of Eq. (1)
becomes

(9)

and Eq. (1) goes over into

and the integral reduces simply to one over the solid
angle sinxdxdip. However, it should be noted that the
entire domain of w, from —y& to +y&, and the entire
domain of s are covered by letting x go from 0 to v/2,
so that the integral over solid angle gives 2x rather
than 4v. for the terms independent of x and ip. On the
other hand, the integral has to be doubled according
to the remark after Eq. (13). The averages over solid
angle become obviously

(s') = s(1—y), (w') = sy (20)

4 The introduction of &+g—1, rather than g+g itself, is sug-
gested by the symmetry of the integration volume, Fig. 1, about
p= —,

' and V = q, as well as by the form of the last term in Eq. (12).
As is shown by Eq. (17), this procedure leads to the elimination
of all linear terms in m and s.

If we now change the order of integration, integrating
erst over m and z and finally over y, then the limits of
integration over m and z will both be given by the
vanishing of the square root in the denominator of
(17) which arises from the Jacobian (7) of the original
transformation. These limits on z and m suggest the
introduction of auxiliary polar coordinates z, ip by
setting

s= (1—y) & sinx cosiP, w= y& sin1f sining.

Then
dsdw = y& (1—y) & sing cosxdxdiP,

Py(1 —y) —ys' —(1—y)w')&=y&(1 —y)& cosy, (19)



790 DAVIES, BETHE, AND MAXI MON

Domain II y= O(S')

It will now be shown that to the order of approxi-
mation in which we are working, the contribution of
domain II to the integral cross section is the same as in
the Born approximation. The proof depends on the
behavior of the functions V(h) and W(h) near h=1.
It is shown in the Appendix that V(h) is convergent
up to and including x=1 and that the derivative of
V(h) which is related to W(h) by

V'(h) = zz'W(h) (22)

has a logarithmic singularity at x= 1, with an expansion
of W(h):

sinhma
W(h) = — [»gy+ cs+O(y logy)).

and, after integration,

do-=4s.Ady(eP+ ess+-'acres) [V'y '+zz'(1 —y) W'). (21)

This exceedingly simple formula is valid for all y down
to y=yz, as defined by Eq. (15). It can be shown that
all neglected terms are of order 1/e'.

(domains I+II),

zrzz ——4zrA V'(1) (ep+ es'+ s ezes) (—logP —1)) (25)

where V'(1) must be inserted into the cross section to
remove that factor (zrzz/sinhzrzz)' in the delnition of A

[Eq. (11)). The contribution from domain I in the
Born limit is obtained by putting zz=O in (21), which
yields V(h) =1, and integrating over y from yz to 1;
this procedure gives

ozzz = 47rA V'(1) (cP+es'+-s,ezes) (—logyz). (26)

Therefore, the contribution which comes from domain
II in the Born approximation and also in our theory is

o.zzzz
——4zrA V'(1) (eP+ es + s ezes) (logyz —log5' —1). (27)

III. CROSS SECTION

We now add ozzzz of Eq. (27) to the contribution of
domain I obtained from Eq. (21) by integrating over y
from y& to 1; this procedure gives

l

o =4zrA V'(1) (eP+ es'+-'acres) logy& —logP —1

When y=O(P), we can therefore replace V(h) by
V(1) with an error of O(P log5') which we will neglect
in comparison with unity. Further, '

V(1)=P(ia, —izz, 1, 1)

sinhm-u

z

+LU(1)) ' U'(*)y 'dy
J„,

+a'
~

(1—y) W'(h)dy . (28)
Pl

The integral in (28) may be written in the form
I'(1—itz) I'(1+izz) m.zz

~1—sz
p

U2

+o'hW' ldh.
)

(29)
which cancels the fzrst factor in Eq. (1) and subsequent
formulas for da. .

Again the term in Eq. (1) containing W(h) can be
neglected altogether in domain II. This is because g ',
unlike V', does not have the denominator q4 in Eq. (1)
or the denominator y iri Eq. (21). We therefore need
simply the integral over 8", and, the range of integra-
tion in domain II being only 8, the contribution to the
integral from this domain is O(P logP), which we
neglect in comparison with unity.

Therefore, the differential cross section reduces in
domain II to that of the Born approximation. Now
the integration in the Born approximation has been
carried out and yields' for the to/al cross section

Using the differential equation for the hypergeometric
function V which is given in A [Eq. (8.4)), sis. ,

d ( dVy
(1—h)—l

h l=zzsV, (30)
dh & dh&

we have, since d V/dh= zz'W [A, Eq. (6.25)),

(31)

and
dV

+a'hW'= U—(hW)+hW
dx

V2

(32)=—(hVW).
dx

hVW)p' "'= (1—yz) U(1—yz)W(1 —yz)

= V(1)W(1—yz)+O(yz logy, ) (33)

1—x dx'In a paper on the integral cross section for bremsstrahlung
to appear shortly, the integration over domain II will be done
without using the variables of reference 2. Making the approxi-
mations appropriate in domain II and performing the integrations
over w and s, we find that the remaining differential cross section
is very similar to Eq. (21) in form and equal to it in the region
vhere domains I and II overlap. The differential cross section Thus the integral zn Fq (29) zs
(in which one has only to integrate over y) valid in both domains
may then be written and the integral over the entire range
5'&y&1 performed at one time.

6E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, Cambridge, 1950), p. 282.
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since from Eq. (15) yi«1. Further, it is shown in the
Appendix, Eqs. (A12), (A13), that for yi small

where

2&1&2

X 2log —1—2f(Z), (35)

00

f(Z) =a'Z
i v(v'+a')

(36)

A convenient way to evaluate the sum is to write

2= (1+a') '+ Z (—a')" 'Pl (2n+1)—1j (37)
n=l

00

W(1—yi) = —V(1) logyi+2a'Q
=i i (r'+u')

+0(yi logyi). (34)

Substituting Eqs. (11), (33), and (34) in Eq. (28) gives

e' ( h )'dei
n =2a'—

~ ~ (eP+ e,'+-', e,e,)
hc 4mc) hs

IV. THE EFFECT OF SCREENING

The di6erential and integral cross sections have been
derived under the assumption that the 6eld is a pure
Coulomb field. The screening effect of the atomic
electrons has been completely neglected. In the Born
approximation, the inQuence of screening on the
bremsstrahlung and pair-production processes has been
investigated by Bethe, ' who showed that the screening
effect is important only for recoil momenta,

q &Z&/137.

For Pb, therefore, the region of q&0.03 is not seriously
aGected by the screening.

Because of (8), y&q', and therefore screening will

seriously acct only the region y(0.001. Already in
Sec. II (integration over domain II) we have shown
that the Born approximation is valid for such small y.
Indeed, from the explicit Eq. (28) and from Eq. (23),
we find that the contribution of y(y~ to the Coulomb
correction 2f(Z) is approximately

peal

—a' log'ydy= —a'yrLlog'yi —2 logyi+2$. (41)
a! 0

or, numerically, 7

Q = (1+u') —'+0.20206—0.0369a'
+0.0083a' —0.002u'. (38)

This expression is suKcient to evaluate P to 4 decimals

up to a=~„which corresponds to uranium. A curve,
going up to u=0.4, is given by Jackson and Blatt. '

For sou/It u, we have

Q = 1.2021, f(Z) = 1.2021a'. (39)

This conclusion means that the correction is propor-
tional to a' and hence to Z'. This has been verihed in
some' " of the many experimental papers on the
absorption of gamma rays by pair production. The
coeKcient is also in good agreement with experiment
(see Sec. V).

For larger a, P decreases. For Pb, for instance,
+=0.9250, which is only about ss of the low-Z value.
Therefore, the correction f(Z) to the Born approxima-
tion, as defined by Eq. (36), increases with Z somewhat
less rapidly than Z'.

' For accurate numerical values of the Riemann zeta function,
see J. P. Gram, Kgl. Danske Videnskab. Selskabs Skrifter,
Naturvidenskab. math. Afdel, 10, 313 (1925).

J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77
(19gO).

s G. D. Adams, Phys. Rev. 74, 1707 (1948).
' R. L. Walker, Phys. Rev. 76, 527 (1949)."R. L. Walker, Phys. Rev. 76, 1440 (1949).
' J. L. Lawson, Phys. Rev. 75, 433 (1949).
'3 DeWire, Ashkin, and Beach, Phys. Rev. 83, 505 (1951).

C. R. Emigh, Phys. Rev. 86, 1028 (1952)."Rosenblum, Schrader, and Warner, Phys. Rev. 88, 612
(1952).

's A. I. Berman, Phys. Rev. 90, 210 (1953).

For y~=0.001, this is about —0.06u', or 2 percent of
the total Coulomb correction. The Coulomb correction
is therefore not seriously affected by screening.

We can now make a similar statement about the

differential cross section: the corrections resulting from
screening and resulting from the Coulomb eGect are
independent; wherever one of them is important, the
other is not. This can be seen most easily from Eq. (21)
for the differential cross section. As we have already
seen, screening is important only for small y, let us
say, y (yt ——0.001. V' is multiplied by a factor 1/y, and
Vs itself is of order 1, Eq. (24). On the other hand,
5" is multiplied by a factor of order u' and is itself of
order (logy)'. Therefore, for small y, the term with W'
is of relative order

y(logy)'a',

which is small compared with 1. In the same approxi-
mation, V(x) may be replaced by V(1), and this factor
cancels the factor (mu/sinhma)' in front of the entire
cross section. Therefore, in the limit of small momentum

transfer and in the entire region in which screening can
be important, the digerentiai cross sections of Zqs. (Z1)
und (17) reduce to the Born approrimation result

This is physically reasonable: screening, and small
momentum transfer generally, imply large impact
parameters of the electron. Under these conditions,
the electron wave function should be well represented
by a plane wave, and, therefore, the Born approxima-
tion should be valid. Only for close collisions with q
(and therefore y) of the order of 1, and with impact
parameters of the order h/mc, will the Coulomb cor-
rection be important. The soundness of this physical
argument is, however, somewhat doubtful because for
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bremsstrahlung'~ the Born approximation breaks down
just for small q.

Returning to the integral cross section, we may say
that in domain I, the only correction to the Born
approximation is the Coulomb correction calculated by
Bethe and Maximon, and screening is insignificant,
whereas in domain II the Coulomb correction is
insignificant and results are suKciently accurate if the
screening eGect in the Born approximation is treated
as by Bethe. ' Hence the correction calculated in this
paper is valid in the case of screening, partial or
complete; and in the latter case, using Bethe's result
for a Thomas-Fermi model of the atom, we get, in
place of Eq. (35),

0 =4a'—
~

~ ( (op+ e2'+-', cie2)
kc (mc )

without screening, When screening is complete,

28 Z'~p'
0=—— log(183Z ') ——f(Z) .

9 137 42

At energies at which measurements have been made,
the screening eGect is incomplete; but the screening
calculation in the Born approximation can be done
numerically" and the Coulomb correction of this paper
subtracted. The term to be subtracted is always

28 Z'rp'
60.=— f(Z),

9 137
(46)

no matter whether screening is absent, partial, or
complete.

'~ A, Sec. VIII.
' H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London)

146A, 83 (1934l.

XC»g(183Z ') —f(Z)5+9~i"), (42)

where f(Z) is defined in Eq. (36) and evaluated in
Eq. (38).

For partial screening the correction is the same, and
Eq. (31) of Bethe and Heitler" may be written

e'
p h q'dpi

0=a'—
bc E mc)

X((~i'+~2') t &i(~)—(4/3)»gZ 4f(Z)5—

+3 i~ LA(7) —(4/3)»gZ 4f(Z)3 —(43)

where @i,&(7) are the functions given graphically in
that paper.

Integration over e gives for the total cross section
for pair production

28 Z ~p2 109
0.=— log2k — —f(Z)

9 137 42

V. COMPARISON WITH EXPERIMENT

The correction calculated in this paper amounts to a
decrease of the cross section for pair production, as is in
accord with experiment. The magnitude of the theo-
retical correction is relatively small: although it is of
order u', as might be expected for a correction to the
Horn approximation, it has to be compared with a main
term which is the logarithm of a large number and is
usually of the order 3 to 5: therefore, the Coulomb
correction for lead is not a'= 36 percent but only about
10 percent. The smallness of the correction as deduced
from experiment has often given rise to comment.

One of the remarkable features of the result, Eqs.
(35), (36), (42), (43), is that the energy distribution of
the pair electrons is essentially unchanged: the major
energy dependence is contained in the factor e+'+e '
+-,e~e in Eq. (35), and this is unaltered; only the
slowly variable logarithm, log(2eie2/k), is modified by
the subtraction of a constant term, f(Z), which is only
10 percent of the logarithm for Pb. Now if the energy
of the positron changes from 0.1k to 0.5k, the log
changes only by about 1 unit, or about ~~ of its value:
therefore the relative cross section at these two values
of ej is changed by the Coulomb correction by only
22 percent (in the case of no screening). For complete
screening, the energy dependence is not changed at all,
as shown by Eq. (42); and for partial screening, the
change is less than in the absence of screening. This is
in agreement with the experimental results of DeWire
and Beach" who measured the energy distribution of
the positrons and electrons produced by 270-Mev
photons in a —,-mil gold foil. In this case, screening is
close to complete, and the experiments give agreement
with the Bethe-Heitler distribution within experimental
error, as expected from our theory.

Turning now to the total cross section for pair
production, the measurements fall into two classes,
rig. , those of the pair production itself and those of
the total cross section for gamma-ray absorption. The
former measurements are all relative, """comparing
pair production in diGerent targets; for their interpre-
tation, it is necessary that the pair production for one
standard element be known. If this standard is chosen
to be a very light element, a considerable fraction of the
pairs is formed in the 6eld of the atomic electrons, and
the cross section for this process is still only approxi-
mately known. (This difliculty is absent for energies
below 4mc' where the pair formation in the Geld of an
electron is impossible. )"For the purpose of minimizing
the combined error from this cause and from the
Coulomb correction, the standard should be chosen at
intermediate Z, e.g., Al or Fe. In any case, measure-
ments of the relative pair cross section are only of
moderate accuracy, of the order of 2 percent.

"J.W. Desire and L. A. Beach, Phys. Rev. 88, 476 (1951).
0 Experiments in this region have been done by I. E. Dayton,

Phys. Rev. 89, 544 (1953).
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TABLE I. Percentage reduction of pair-production cross section
for lead compared v ith Born approximation.

Energy
Mev

10.3
11.0
13.7
17.6
2'7.6
17.6
17.6
19.0
88

280
50-300

This
theory

28
26
23
20
20
20
20
19
11.8
10.0
11.2

Experiment

6.8&1.0
8.8

10.0
20.4&0.6
22.9+1
25.5~2
23.5&1.0
13.5
20.7+1.6
9.7~1.2

21.7&1.7

Author

Rosenblum et al.
Adams
Adams
Walkers
Walker"
Walker
Rosenblum et ul.
Adams
Iarson
DeWire et al.
Emigh

Refer-
Methoda ence

Absol. c
Absol. d
Absol. d
Absol. e
Absol. e
Rel. f
Absol. c
Absol. d
Absol. g
Absol. h
Rel. i

a Absolute measurement of total absorption cross section, or relative
measurement of pair production in Pb as compared with a light element.

b Corrected for nuclear photoe8'ect as given in reference 15.
& See reference 15.
d See reference 9.
e See reference 10.
' See reference 11.
& See reference 12.
h See reference 13.
i See reference 14.
j Uncorrected.

"Gladys White, National Bureau of Standards Report NBS-
1003 (unpublished).

~ S. A. Colgate, Phys. Rev. 8?, 592 (2952).

The measurement of total absorption cross sec-
tion'""-"'5 has the advantage of higher precision
which can be as good as —', percent. It also has the
advantage of being absolute, thus avoiding the reference
to a standard which itself may not be accurately known.
On the other hand, the total cross section must be
corrected for other absorption processes. Fortunately,
the most important of these, the Compton effect, is
very accurately known from theory. The photoelectric
effect in the atom is quite unimportant at high energies
where our theory of pair production may be tested;
its behavior is reasonably well known theoretically"
and has been studied experimentally at a few Mev by
Colgate. "

The most troublesome correction to the absorption
coeKcient arises from the nuclear photoeGect because
neither a quantitative theory nor comprehensive experi-
ments on this eGect exist. However, it is known that
the photoeGect is strong only for photon energies around
20 Mev; in the neighborhood of its maximum, the cross
section is about ~ to 1 barn for lead and about propor-
tional to the atomic weight A for other elements. For
Pb, this is equa, l to 2.5—5 percent of the total gamma-ray
absorption cross section; for lighter elements, it may
be even more. However, at 100 Mev and over, the
nuclear photoeGect is probably negligible.

The most careful correction for nuclear photoeGect,
by use of both experimental and theoretical information,
was applied by Rosenblum, Schrader, and Warner. "
They find the correction to be 1—1.5 percent of the
total cross section at 10.3 Mev and 2—4 percent at
1'7.6 Mev.

The experimental results for energies above 10 Mev
are listed in Table I and compared with theory. Ke

l2

IO

+/z2 2

I57 g

/
IXi

r'/
/

~ ~

Wol~&er l.owson Oewire et ol

I II I I I I

IO IOO

h Units of mc2
IOOO

FIG. 2. Total cross section for pair production in Pb. Dotted
curve, Born approximation. Solid curve, theory of this paper.
Measured points are indicated.

give the percentage reduction of the pair-production
cross section for lead relative to that of the Bethe-
Heitler theory. The experimental data of references 9
to 12 are also shown in Fig. 2, in which the solid curve
represents the theory of this paper and the dashed
curve the Born approximation. Both from the table
and the figure, it is seen that the agreement is excellent
with the absolute cross section measurements of Lawson
at 88 Mev and of DeWire et al. at 280 Mev. It is equally
good with Emigh's experiments in which the continuous
gamma rays from a 300-Mev betatron were used to
produce pairs in various targets. The pairs were ob-
served in a cloud chamber, and all pairs below 50 Mev
combined energy were rejected; Al was used as the
standard target. The theoretical value in this case was
calculated on the assumption that the photon spectrum
behaves like dk/k between 50 and 300 Mev.

Agreement with Walker's measurements at 17.6 Mev
is not good, the discrepancy being greater with his
absolute absorption coefFicient than with his relative
measurement of pair production. As we have discussed
above, it is probable that the absolute cross section at
this energy contains a substantial contribution from
nuclear photoeGect. Indeed, if one applies the correction
for nuclear photoeGect given by Rosenblum et al."for
Pb at 17.6 Mev, then YValker's absolute measurement
implies a reduction of the cross section compared with
Born approximation of 12.9&1 percent, the error
including the uncertainty of the correction for the
photonuclear eGect. This corrected result is not incon-
sistent with his relative cross section and is in good
agreement with the more recent measurement of
Rosenblum et al. at the same energy. Agreement with
Adams" older measurements is not so good since they
were not corrected for photonuclear eGect.

Figure 3 gives the deviation from Born approximation
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FIG. 3. Percentage deviation from Born approximation of
pair-production cross section in Pb. Dashed curve, theory of
this paper with empirical second correction PEq. 848l]. Solid
curve, theory of this paper. Measured points are indicated.

as a function of energy for Pb. The solid curve repre-
sents the theory of this paper, the points the experi-
ments with probable errors. The good agreement at
high energies has already been noted. The discrepancy
between theory and experiment below 20 Mev is not
surprising. The error in our theory, according to Sec. X
of the paper by Bethe and Maximon, should be of the
order

8=a e Loge. (+')
At f7.6 Mev we have &=35 giving 3.5 percent from
Eq. (47). The actual error is about twice this figure,
which is quite understandable considering the roughness
of the error estimate. That the experimental points
should lie above our theoretical curve is consistent with
the prediction of the theory of Jaeger and Hulmes'
who made an exact calculation of the pair-production
cross section at T.53 and 2.55 Mev and found results
substantially higher than the Born approximation, by
100 and 25 percent, respectively. Their predictions are
well confirmed by Colgate's" measurement of the
absolute total cross section at 2.62 Mev and especially
by Dayton's" measurement of the relative pair pro-
duction by various elements at 1.33 and 2.62 Mev.
Therefore, one must expect that the correction to the
Born approximation crosses zero at some energy. This
has been realized by many authors, including Rosen-
blum et a/. ,"who put the crossing point at about 6 Mev.
All experiments on Pb above 5 Mev are well represented
by the empirical formula

o pair= o'sssr 4 0+46/e&

where 0-~~ is the Bethe-Heitler cross section, 4.0 the
correction derived in this paper, and the last term an

empirical second correction. All cross sections are
given in barns. Equation (48) is represented by the
dashed line in Fig. 3. The equation is no longer good
at energies below 5 Mev.

In summary, we can say that the agreement of our
theory with experiment is very satisfactory at high

~I. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. (London)
A1SB, 443 (1936);J, C. Jaeger, Nature 148, 86 (1941).

energy (88 Mev and up) and that below 20 Mev
deviations exist as should be expected.
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APPENDIX

The arguments involved in the above calculation
require a knowledge of the behavior of the hyper-
geometric functions V(x) and W(x) between x=0 and
x= 1.

V (x)=P(iu, s',u; —1; x) is convergent at all points in
this range, but W(x) is divergent for x=1, and the
series converges very slowly near x= 1.

There is a connection" between the hypergeometric
functions of s and 1—s,

F (c—u)I'(c —b)F (u) I'(b) P(u, b;c;s)
= F(u)F (b)I'(c)I'(c—u —b)P(u, b; u+b c+1; 1——s)

+ F(c)F(c—u)F(c—b)F(u+b —c)(1—s)'
QP(c u, c b; c—u—b+1;—1——s), (A1)

which is valid if c—a—b is not an integer.
We wish to investigate W(x) =P(1+su, 1—iu; 2; x),

for which the above equation is not valid. We proceed
in the same way as Whittaker and Watson P4

F (1+su)I'(1—su)
P(1+su, 1—su; 2; s)

F(2)

1 r '" F(1+su+s)F (1—su+s)F( —s)
(—s)'ds.2%s-'. I'(2+s)

(A2)
Now, by Barnes' lemma, '4

F (1+su+s)F(1—su+s)/F(2+s)

F (1+su+t)
F(1+su)F(1—su) 2sri&

)(F(1 s'u+t)F(—s—t)F(—t)dt, (A3)

where the path of integration keeps the poles of
F(s—t)F(—t) on the right and the poles of

F(1+iu+t)F(1—iu+t) on the left.
Hence,

Fs(1+su)I" (1—su)P(1+su, 1—su; 2; s)

'4 E. T. Whittaker and G. N. Watson, A Course of Modern An-
alysts (Cambridge University Press, Cambridge, 1950l, fourth
edition, p. 290.
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H the order of integration is interchanged,

I'(1+ia)1'(1—ia)F(1+ia, 1 —ia; 2; s)

~ joO

I' (1+ia+ t)I' (1—ia+ t)I'(—t)
2mi-';„

~ joO

I'(s—t)I'(—s)(—s) ds dt
l2 i~;„ (AS)

Hence,

I'(1+ia)1'(1—ia)F (1+ia, 1—ia; 2; s)

r(1+ia+e)r (1—ia+e)
(1—s)"

I'2(1++)

I"(I+ia+n) I"(1 ia—+e)
X +

r(1yia+~) r(1—ia+~)
p $00

r (I+iay t)I'(1 ia+—t)
2xi~

XI'(—t) (1—s) 'dt. (A6)

This integral ~s evaluated by completing the contour
with a semicircle to the right. The only poles within
the contour are double po1es at t=0, 1, 2 . The
contribution of the semicircle to the integral goes to
zero in the limit of in6nite radius. We must find the
residue of the integrand at a pole t=e. We write
t=n+ f, and, expanding,

I' (1+ia+ t)I'(1—ia+ t)I'(—t) (1—s) '

=[I (1+ia+I)+iI"(I+ia+~)j[r(1—~+~)

+fI"(I—ia+n)) [I (&+I)+t-I"(I+~)j-
sin'sf

Remembering that

I"(1++)—2 +log(1—s) . (A9)
1(1+n)

I"(1+ia)I'(1—ia) = = [V(1)l ' (A10)
sinhmu

and neglecting terms of order 1—x= y or higher, we get

W(x) = —V(1)[log(1—*)+e(1+ia)
++(1—ia) —2@(1)+O(y logy) j, (A11)

where %(e)= I"(e)/I'(m). This may be written in the
form

W(x) = —V(1)[log(1—x)+co)+0(y logy). (A12)

XI (1 s)"+f log(1 s)(1 s) "3 (A~) If we use the expression for the%'-function, the constant
co is found to be

The coeKcient of 1/t' is

(A13)I'(1+iay~)r(1 ia+~—) r'(1 +-i+an) co——2a' P
(1—s)" ~=~ v v a2

I'(1+ ) r(1+'+ )

r'(I ia+~) —r'(I+n) The Eq. (A12) is used in Eq. (23), and Eq. (A13) in

+ —2 +log(1—s) . (A8) Eq. (34). A practical formula for the sum in Eq. (A13)
I'(1—ia+ I) I"(1+m) is given in Eq. (38).


