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Reduction of an Integral in the Theory of Bremsstrahlung
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A matrix element integral for bremsstrahlung or pair production without Born approximation is reduced
to an.ordinary hypergeometric function by contour integration methods. The result is stated in Eqs. (1},
(2) for bremsstrahlung and in (1'), (2') for pair production.

' 'N the theoretical calculation of bremsstrahlung and
~ ~ pair production cross sections without Born ap-
proximation, ' ' i.e., without the assumption that the

deflecting forces exerted by the nucleus on the electrons
are small, a certain fundamental matrix element integral
occurs which can be reduced to an ordinary hyper-
geometric function. The reduction is carried out in thig
note by contour integral methods. For the brems-
strahlung case the correct matrix element integral' and
its value in terms of a hypergeometric function are

&iq r

I= I dre ""— F(ia&, 1,ip&r ip, —r)

XF(ia&,1,ipsr+ips r)

2sr (nq
'

'/y+bq

n Epj E p )

n = -,'(q'+)t'),

'r= Pr ' tl+$XPr —n~

p=ys q —i)tps,

~= prp2+pt p2 —P.

' A. Sommerfeld, Ann. Physik 11, 257 (1931).' H. Wergeland, Phys. Rev. 76, 184 (1949).' L. Bess, Phys. Rev. 77, 550 (1950).
4L. Maximon and H. Bethe, Phys. Rev. 87, 156 (1952);

H. Davies and H. Bethe, Phys. Rev. 87, 156 (1952) and the paper
accompanying the present paper.' As pointed out by Bethe, Low, and Maximon, Phys, Rev. 91,
417 (1953), the wave function for the 6nal state must be taken to
behave asymptotically like a plane wave plus an ingoing spherical
wave, whereas the initial state wave function is asymptotically
a plane wave plus an outgoing spherical wave. The function with
the ingoing spherical wave may be derived from the one with the
outgoing spherical wave by .taking the complex conjugate and
reversing the vector momentum. Then since the complex. con-
jugate of the 6nal state wave function appears in the matrix
element, 'the two functions appearing in the matrix element are
alike in all respects except for the sense of the momentum vector.
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In the original expression for I, q= pr —p2 —k, p, is the
initial momentum of the electron, p~ is its final momen-
tum, and k is the momentum of the radiated quantum.
ar=Ze'/Avt and as=Ze'/Ittv2, where v~ and vm are the
initial and final electron speeds. ) is a real positive
parameter introduced for the purpose of allowing other
integrals to be evaluated by differentiation with regard
to it. Only infinitesimal values of ) are pertinent in
applications of the result. In the final expression for I,

The pair-production integral will be discussed separately
below.

Although a result of this type has been derived
previously by Bess' in a manner patterned after Som-
merfeld' and employing transformations to parabolic
coordinates and several theorems on Bessel functions,
it is hoped that a more direct evaluation of I by the
powerful methods of contour integration may suggest
ways of evaluating other similar integrals. The factor
e
—r'& in (1) is unambiguously determined by the present

method, whereas it is not by the method of the Bessel
function theorems.

The conQuent hypergeometric functions involved in
I are special in that the second parameter is unity
(Laguerre functions) and a convenient representation
for them is
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The integration contour is closed and encircles each of
the two points 0 and j. once anticlockwise. At the
point where the contour crosses the real axis to the right
of 1 argt and arg(t —1) are both zero. Let integral repre-
sentations of this form be inserted into the expression
for I and consider carrying out the space integration
first:
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The interchange of order of integrations is justified if
the space integration converges uniform'mly in t& and t2

on the contours, and this will be the case provided the
contours are such that
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everywhere on them. This in turn is possible for any
positive A, and we so restrict the contours for the time
being.
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The space integral V is a standard integral for real
ti and t2, having the value
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Since both members of Eq. (6) are analytic functions of
ti and t2 wherever (5) holds, this result is valid for all
complex ti and tm obeying (5) as well.

Next we carry out the tj integration with t& Axed at
some value not in violation of (5). The quantity (6)
considered as a function of tj has one singularity, a
simple pole, at
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Is t* inside or outside the ti contour? Assume that
8(t2) =0, a value compatible with (5), and that X is so
small that its square may be neglected. Then calculate
the left member of (5) for ti=t*:

X(At 2+2Bt,+C)
-X-2p,a(t*)=
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where A, 8, C are best expressed in terms of the angles
0 between pi and p2, Pi between pi and q, P2 between y2
and q and y between the planes containing y&, q,
respectively pm, q: A =pi'p2' sin'0; 8=pi'p2q(cosf2—cos8 costi); C= pi2q sin+i. The quadratic in the
numerator of (8) is positive for all real t2, for A &~0 and

AC —8'= pi'p2'q' sin+i sin+2 sin'q &~0. (9)

Thus under the assumptions 8(t2) = 0 andri infinitesimal,
we find that t* violates condition (5) and must therefore
lie outside the tj contour. But the conclusion that t*
lies outside the t& contour cannot depend on any special
assumptions made in order to deduce the conclusion
because all pairs of contours in keeping with (5) yield
the same result for I and because I is an analytic func-
tion of ) . Hence t* lies outside the t& contour in any case.

The ti integrand in (4) is single-valued and O(1/ti2)
as ti~~, so that we may. expand the complete ti
contour to inhnity, and upon doing so we hnd that the
only contribution to the t& integral is from the residue
at the pole P. %e may of course expand the contour
thus at this stage, in violation of (5), because the
integrand is analytic. The result of the tj integration is
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'The values of arg(t*) and arg(t* —1) require to be
determined. Now for X=O and t~ on the real interval
(0,1) 8 is likewise on the real interval (0,1) because

pi pa+ pip2+ pi ' q & Pa q+ sf &0.

These inequalities follow from the conservation laws
and the relation between the energy and the momentum
of an electron. Furthermore it follows from the argu-
ments above relative to Eq. (8) that for li positive but
small s(t*) is negative. Thus t* lies below the ti contour
opposite the interval (0,1) and having regard to the
complex arguments stipulated for (3), we find arg(t")
—arg(t .—1)=n.+O(X) for .0&t2&1. Consequently it
is convenient to recast (10) into the form

2~e—&i(n+Ptz) ~i-& (y+bt )-~i (12)

In virtue of (11) both linear factors in (12) are real and
positive on the interval 0(t2& 1 for vanishing X; they
are both assigned arguments 0+O(X) on that interval.

The t2 integrand has now acquired two new singu-
larities, t2 —n/P ——and t2 —y/b, ——both of which have
negative imaginary parts (as follows from (2) and
pi) p2) and are therefore excluded from the t2 contour.
In general the exclusion of the new singularities from
the contours in both contour integrations is the only
essential consequence of the requirement for uniform
convergence of the space integration, and once the
contours are laid so as to exclude the new singularities
any stronger restrictions on ti and t2, such as (S), may
be disregarded.

I has now been reduced to
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with the point t= j. excluded from the contour. Equa-
tion (14) is now to be put into a standard form for the
hypergeometric function, and as such a form we take
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where for x real and &1, argr=arg(1 —r) =arg(r —x)
=0 on the real axis to the right of 0 and x and to the
left of 1, and a cut exists in the r plane from 1 to +~.
The appropriate change of variable for reducing I to
the standard form is a linear fractional transformation
which takes t=1 into r=1 and either t= —p/n or
t= —b/y into r=0. Of the two alternatives we choose
the latter because it makes x lie on the interval (0,1).
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Again the integrand is single valued and O(1/t22) as
t2—+00, and this makes the integral reducible to one
with only three linea, r factors, i.e., to an ordinary hyper-
geometric function. We set t=1/t2 and find:
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Thus r= (yt+b)/(y jb) and (14) becomes

1+cose—2 coslfi coslgg+~ 0, (17)

which follows from the fact that 0, fi and f2 are sides
of a spherical triangle. Since x is real and &1 the
arguments of the linear factors in (16) are as required
in (15). Identifying the parameters o,, b, c, we have the
final result stated in (1), (2).

In the case of pair production the corresponding
integral to be evaluated and the result'are as follows:
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where x= (nb —Py)/n(y+b). x ix real and positive but
less than 1 for vanishing X, see (2), (11),and one further
inequality, namely,
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and this is again outside the t& contour by the same
arguments as above. The result of the t~ integration is
now
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For ),=0 and t2 on the real interval (0,1), t* is in this
case on the real axis outside the interval (0,1) because

yi. q+-', q') 0; y2 q+-,'q') 0;

p2'q+-g )pip2 —pi'pm —pi'q.

Hence arg(t*) —arg(t* —1)=0+0(X). The convenient
form of (10') is then
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Both linear factors in (12') are real and positive on the
interval 0(t2(1 for vanishing X on account of (11');
they are assigned arguments 0+O(lb, ) on that interval.

The analog of Eq. (14) is

The space integral now has the form

U'= 2—~t,(P b—')t,t,+ (n ~')t, P—t, n—7 '-.(6')

The pole of the t~ integrand appears at

Since the derivation of this result is so similar to the
derivation for bremsstrahlung, we shall indicate only
the differences for the sake of brevity. q=k —p~ —p~ is
the nuclear recoil momentum, p~ is the positron mo-
mentum and p2 is the electron momentum. The wave
functions for both electron and positron are asymptotic
to plane waves plus ingoing waves. In the final ex-
pression for I', n and P have the same meaning as in

(2) and y' and b' are given by

y'=pi q 9p&+n—; b'=pi y2 —pip2+p. (2')
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In order to put this into the standard form (15) we

may again make t=1 go into v=1 and make either
t= P/n or—t= —b'/y' go into r=0. In this case we

choose the first alternative because it makes x lie on
the interval (0,1). Thus r= (nt+P)/(n+P) Identifying.
the parameters a, b, c we have the result stated in (1')
and (2').


