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The difterential cross sections for bremsstrahlung and pair
production are calculated without the use of the Born approxima-
tion, assuming the energy of the electron to be large compared to
mc' both in initial and final state. The wave functions in initial
and final state are essentially those previously proposed by Furry
(Sec. II). It is proved in Sec. III that our wave functions agree
with the exact ones of Darwin except for terms of relative order
a'/ts, where a=Ze'/Ac and t the angular momentum, and that
this agreement holds for any energy of the electron. An inde-
pendent proof is given in Sec. IX, showing that the Furry wave
functions give the matrix element correctly except for terms of
relative order 1/e.

In the matrix element for bremsstrahlung, the initial state of
the electron must be represented by a plane wave plus an outgoing
spherical wave, whereas the 6nal state has an ingoing spherical
wave (Sec. IV). In pair production, both electrons contain ingoing
spherical waves (Sec. V). This causes essential differences between
the cross sections for the two processes.

The cross section for pair production is calculated in Sec. VI;
the result consists of the Bethe-Heitler formula multiplied by a
relatively simple factor, plus another term of similar structure.
A simpli6ed derivation is given, which is valid for the important
case of small angles between electrons and quantum (Sec. VII);
it provides a useful check of the cross section of Sec. VI. In Sec.
VIII, the bremsstrahlung cross section is calculated and found to
be the Bethe-Heitler result multiplied by a factor. This factor is
different from that encountered in pair production and becomes
important only for very small momentum transfer q. In the limit
of complete screening, these small q do not contribute and the
cross section goes over into that of the Born approximation.

The error in the cross sections calculated in this paper is
estimated (Sec. X) to be of order I/e, where e is the energy of the
6nal electron in bremsstrahlung, or that of the less energetic
electron in pair production, in units of mc . The total cross section
for pair production by a quantum of energy k may be in error by
logk/k.

I. INTRODUCTION AND GENERAL DESCRIPTION
OF METHOD

HE exact calculation of bremsstrahlung and pair
production is a problem of long standing. For

nonrelativistic energies, the bremsstrahlung problem
was solved exactly by Sommerfeld. ' For relativistic
energies, a solution has been obtained only in Born
approximation, by Bethe and Heitler. ' The total cross
section for pair production by high-energy x-rays has
been repeatedly tested by experiment' ' and the Bethe-
Heitler cross section was found to be correct for light
elements, but too high (by about 10 percent) for heavy
elements. This discrepancy is less than might have been
expected since the error in the Born approximation
shou1d be of the order of magnitude (Z/137)s which is
36 percent for lead. Still it is reasonable to assume that
the discrepancy is due to failure of the Born approxi-
mation, and it was attributed to this cause in the experi-
mental papers.

Sommerfeld's success in the nonrelativistic case was

due to the fact that the Schrodinger equation for an
electron in the Coulomb field can be separated in

parabolic coordinates. This provides a wave function
for an electron traveling in a de6nite direction so that,
for instance, the problem of Rutherford scattering can
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be solved directly and in closed form. "This is not pos-
sible in relativistic theory, whether Dirac or Klein-
Gordon; in this case only a separation in polar coor-
dinates is possible. This makes even the simple problem
of electron scattering very cumbersome. ""

If we tried to use wave functions separated in polar
coordinates for the bremsstrahlung problem, the cal-
culation would become incredibly cumbersome. We
should have to calculate the transition matrix element
from any initial angular momentum /& of the electron
to any final l2. Now the important values of l extend
somewhat beyond ls ——fs/X, where b is the atomic radius
and X the de Broglie wavelength of the electron divided
by 2sr; b/)( is about 137e, where e is the electron energy
in units of mc', so that for a 100-Mev electron /0 is
nearly 30000 and the number of matrix elements re-
quired about 10. Worse than that, in each of these
matrix elements the retardation factor for the light
quantum, e'"', has to be expanded in spherical har-
monics, and l2 terms in this expansion will contribute to
the matrix element if /2&/&. Presumably, these various
contributions will interfere partly destructively. The
whole calculation would have to be carried out for any
pair of initial and Anal energies, e& and e2. Even if many
shortcuts should prove feasible, it is clear that this cal-
culation would be an essentially impossible task."

's N. F. Mott and H. S. W. Massey, Tke Theory of Atomic
Collisions (Clarendon Press, Oxford, 1949), second edition, p. 47.

"N. F. Mott and H. S. W. Massey, The Theory of A/omic
Collisions (Clarendon Press, Oxford, 1949), second edition, p. I4.

'~W. A. McKinley and H. Feshbach, Phys. Rev. 74, 1759
(1948).

's It is true that Harvey Hall, Phys. Rev. 38, 622 (1934), and
Revs. Modern Phys. 8, 358 (1936), was able to solve the related
problem of the photoelectric eGect in the E shell by considering
each angular momentum ly of the anal electron state separately.
However, in this case the angular momentum of the initial state

768



THEORY OF BREMSSTRAHLUNG AND PAIR PRODUCTION. I 769

It is therefore essential to 6nd at least an appropriate
solution in parabolic coordinates, suKciently accurate
for the calculation of the radiative matrix element. We
shall show that a slight modification of Furry's wave
function'4 satis6es this condition. Indeed, it will be
shown in Sec. III that this wave function is obtained
from the exact wave function (i.e., from the expansion
in terms of spherical harmonics times radial functions)
if in the latter we neglect" a'= (Z/137)' as compared
with P. Thus the large values of / which were disturbing
in the solution by expansion in spherical harmonics,
turn out to be helpful in this approach. Small values of
l are known to be unimportant: both from the Born
approximation solution, and from the Weizsacker-
Williams" method, it can be shown that impact param-
eters less than the Compton wavelength, and thus
values of / less than e, give relatively little contribution,
the contribution in this region being proportional to 3dl.

The error due to neglect of a' would therefore appear to
be of order a'/s'. Actually, a more detailed considera-
tion of the error in the wave function, along the lines
of Sec. III of this paper, shows that the error is of
order a'/eloge). A similar result, a'/e, will be found
from a discussion of the matrix element in Sec. IX.
Assuming the latter behavior, the total cross section,
integrated over all energies of the 6nal state, will

then have an error of order a'e& ' loge~ t see Eq. (10.6)).
Thus our theory will be satisfactory for energies of
50 Mev or more (error less than 2 percent) but will

give appreciable errors below 20 Mev.
We propose, then, to use the Furry wave function,

which was indeed originally developed for the brems-
strahlung problem. The same wave function, for the
same purpose, was developed by Sommerfeld and
Maue, "but neither they nor Furry used it to calculate
the bremsstrahlung itself. The 6rst serious attempt at an
exact calculation of bremsstrahlung was made by
Bess, ' who used a wave function of similar structure as
Furry's but containing one additional term which Bess
believed necessary for the purpose. Unfortunately, as
Nordsieck pointed out to us," this additional term is
incorrect (see Sec. II) and so is, therefore, Bess' result
for the cross section. However, Bess' work is still
valuable for the integration of the matrix element and
also because he wrote the Furry wave function in a
much more convenient form than Furry had done,
namely,

p=Xe's'P1 (i/2e)e V jP(iue/p; 1;—ipr ip r), (1.1)—

is 4=0 so that only one (actually a few) terms of the expansion
of e'"' in spherical harmonics contribute. Therefore, at least the
individual matrix elements are rather simple; only the summation
of the cross section over lI is laborious.

'4 W. H. Furry, Phys. Rev. 46, 391 (1934).
'5 This proof goes beyond that of Furry, who had to neglect

also terms of order 1/e'."C. F. v. Weizs'acker, Z. Physik 88, 612 (1934);E.J. Williams,
Kgl. Danske Videnskab. Selskab. Mat. -fys. Medd. 13, 4 (1935),

'r A. Sommerfeld and A. W. Mane, Ann. Physik 22, 629 (1935).
'g L. Sess, Phys. Rev. 77, 550 (1950)."A. Nordsieck (private communication).

where p is the momentum of the electron in units of mc,
e= (p'+1)& its energy in units of mc', a=Ze'/hc, e the
Dirac operator, r the electron's coordinate in units of
5/mc, and X a normalization factor. The deriva, tion of
(1.1) will be given in Sec. II (see also Secs. III and IX),
and we shall use the wave function in this form for both
initial and final state.

The matrix element to be calculated is

M=) fs*ngQre ' 'dr, (1.2)

where X is the direction of polarization of the light wave,
O.q the Dirac o. matrix in this direction, and the sub-
scripts 1 and 2 refer to initial and 6nal state of the
electron. Using (1.1) and neglecting certain terms dis-
cussed in Sec. IX, the integral may then be written in
the form (6.2), (6.3). (See Sec. VI.) Now the integrals
in (6.3) can be evaluated exactly, which is done in Sec.
VI, and all other contributions to M can be neglected
as is shown in Sec. IX.

It is somewhat surprising that the three terms in

(6.2) are all of the same order of magnitude, whereas it
might be expected that the term 1 in the wave function
(1.1) would give a much greater contribution than the
term (i/2s) e V which at least seems to be of relative
order 1/s. In other words, I& of (6.3) may be expected
to be much larger than I2 and I3. This is indeed the case,
as is shown in Sec. VI and VII; I~ is of order e, I~ and I&

of order 1. Nevertheless, the three integrals give con-
tributions of the same order to the matrix element 3f.
This is.due to the matrix factors in (6.2): the matrix
(us*nqur) is of order 1/e whereas the matrix vector
(us*nqeur) has a component of order unity. This makes
the contributions of I~, I2 and I3 all of order unity.

The statement about the order of magnitude of the
matrix factors can be seen as follows: In the 6rst term
of (6.2), the matrix factor (us*nqur) represents essen-
tially the velocity of the electron (in units of c) perpen-
dicular to the direction of propagation of the quantum,
k. But the differential cross section is known to be
large only if the angles 0&, 02 between the electron direc-
tions pr, ps and the quantum k are small, of order 1/s.
Then the electron velocities perpendicular to k will also
be small of this order, and so will the matrix factor
(uPnqur). On the other hand, in the second and third
term in (6.2), we may, for instance, choose the com-

ponent of the vector 0. in the direction P. This makes the
matrix factor equal to (us*u&) and this is nearly equal
to unity because the electron momenta in states 1 and 2
are nearly parallel. This proves the statement above.
This fact that I2 and I3 give contributions of the same
order as I&, although they look at first sight much
smaller, has been a major cause for obscuring this
entire problem in the past.

The contributions to the matrix element M which
are col contained in (6.2) mi'ght be expected to fall into
three classes: (a) terms which contain an integral of
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order 1, and a matrix factor of order 1/e, (b) terms con-
taining an integral of order 1/e and a matrix factor of
order 1, and (c) terms of order e ' loge or smaller. The
term which Bess tried to take into account" is of type
(a), as is shown in Sec. IX-c. Examination shows that
there is no term of type (b). The term VF2*VF1 which
naturally must occur is of type (c) and is shown to be
small of order e ' loge in Sec. IX-d; this term could not
easily be evaluated by analytical methods. Generally,
the proof that (6.2) determines the matrix element with
sufFicient accuracy, is given in Sec. IX, and we regard
this proof as a central part of our calculation. The most
important consequence of this proof is that it is unnec-
essary to calculate the wave function to a better ac-
curacy than the Furry wave function.

Once the Furry wave function is established as suf-
6cient, the evaluation of the matrix elements is possible
using the method of Bess or a similar one of Nordsieck.
The resulting differential cross section differs from that
of Bess only by the correction of minor algebraic
mistakes and the omission of terms arising from the
spurious term in Bess' wave function. It is therefore
simp1er than that of Bess and more similar to the
Bethe-Heitler cross section.

In the accompanying paper by Davies and ourselves,
the diGerential cross section is integrated over angles
and furthermore it is shown that screening can be taken
into account easily.

(e+a/r P+in V,)$=—0, (2.2)

where &„denotes the gradient with respect to the
coordinate r, no longer with respect to p= (l2/rwc)r as
in (2.1). In (2.2), P is the usual four-row unicolumnar
matrix, and n and p the four-row four-column matrices
of the Dirac equation.

Since we wish to derive wave functions which are the
relativistic generalization of the exact solution of the
Schrodinger equation with a Coulomb potential, we
transform (2.2) into a second-order equation which
reduces to the Schrodinger equation when spin and
relativity effects are neglected, i.e. , for a((1 and n(&c.
This may be accomplished by applying the operator
[(e+a/r)+P in V„]to (2.2), w—hich results in

[V„'+P'+2ea/r7$= [in V, (a/r) a2/r2]P, (2.3)—
after making use of the commutation relations for e and

'o With the incorrect wave function used by Bess, this term
appeared to be of order 1 instead of 1/e.

II. WAVE FUNCTION

We start with the first-order Dirac equation for an
electron ie. a Coulomb field,

(E+Ze2/p)1P=Pri2cg ihcn ViP. — (2.1)

Introducing Ii/212c as the unit of length, 212c2 as that of
energy, a=Ze2/kc and the other notations as described
below Eq. (1.1), we get

P. Here p is the momentum of the electron in units of
212c and e'=P'+1. The terms on the right-hand side of
(2.3) are negligible for a«1 and v«c, in which case we
are left with the Schrodinger equation

[V '+p'+2ea/r]p = 0.

As is well known, ' "the exact solution of this is

P= cVe'&'NF (2 5)

where iV is a normalization constant, Ii is the confluent
hypergeometric function

F=F(iae/p; 1; ipr —ip r), (2.6)

and e=N(p), the normalized Dirac matrix coefficient
for a free electron of momentum y. This factor, which
is independent of r, is the only one by which (2.5)
differs from the purely nonrelativistic solution; it
insures that (2.5) satisfies also the first order Eq. (2.2)
asymptotically for large r. The asymptotic behavior of
(2.5), (2.6) is a plane wave plus outgoing spherical
waves.

Following Bess' and starting with the wave function
Se'~'lI', we try to find a solution of the form

iP= Xei&'(1+0)uF, (2.7)

If we now assume that 0 commutes with the operator
V„2+2ip.V„,then (2.8) becomes

(2ea/r) QNF Q(2eauF//r)—
= [ian V, (1/r) — /ar'](1+0) FN. (2.9)

Since the simplest operators that commute with
V„2+2iy V„are those which are made up of any
number of differentiations with respect to x,y, s and of
Dirac matrices, we assume 0 to be of the form

where
0 0 ~01)

+i a1111/~z+ a12il/eely+ alRil/its

&2= a»a'/ax'+ a22a'/ay'+ +a„a'/away+, (2.10)

and the a„areconstants or Dirac matrices. In par-
ticular, 0-0 would merely affect the asymptotic behavior
of the wave function. However, since N(p) is already
the correct asymptotic Dirac amplitude, o-0 must not
contain any Dirac operators, but must merely be a
constant, and as such can be absorbed in the normaliz-

ing factor Ã. Therefore we may set 0.0=0 and find that
0 contains at least. one differentiation with respect to
coordinates.

where 0 is an operator to be determined. Then, re-
membering that (2.5) is an exact solution of (2.4),
substitution of (2.7) in (2.3) gives

(V„2+2iy V„+2ea/r)QuF
= [ian V, (1/r) —a'/r'] (1+0)NF. (2.8)
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Mere inspection shows that if we set

0 i= 'Ln' Vr/2e) (2.12)

then the 6rst of the terms on the right is canceled.
Furthermore, it may be noted that there is no 0-& of the
form assumed in (2.10) such that ai(1/r) 1/r', and
thus we cannot satisfy (2.3) to O(1/r') with 0 of the
form assumed in (2.10)."Actually, as will be shown in
Sec. IX, it is unnecessary to solve (2.3) with the term
involving a'/r' on the right; the solution so far obtained,
i.e., with 0=crt as given in (2.12), is sufficient.

We consider now the wave function Xe'& '(1+0)uF,
where 0= —(i/2e)n &„,and see to what extent it
satisfies (2.3), forgetting that we were led to 0 by con-
sideration of the terms in (2.9) which contain the lowest
power of 1/r. Denoting the wave function that satisfies
(2.3) exactly by ip, we may write

where
4'= 4'.+6+4",

ip = Jt/e'p ruF

i' —(s/2e) Jt/——e'&'n ~Fu,

(2.13)

(2.14)

(2.15)

and iP, remains undetermined. Thus we wish to see how
satisfactory pb is as a correction to i!„i.e., to what
extent we can neglect P, . Substituting (2.13), (2.14),
(2.15) in (2.3) and noting that

we have
[v„'+p'+2as/r]il. =0, (2.16)

[~,'+p'+2"/ ](~ +a.)
= [san V (1/r) a'/r'](p +—ipb+p. ). (2.17)

Substituting (2.10) in (2.9) we may attempt to
satisfy (2.9) to terms of O(1/r'), and hence obtain

—2ea[o.i(1/r) ]uF
= [ian &.„(1/r) a'/r—']uF+O(1/r'). (2.11)

exact solution within terms of the order a'/P for arby

energy. Since the matrix element of bremsstrahlung
comes mostly from impact parameters equal to 5/mc
or larger, the values of / contributing most are of order e

or greater. Therefore, the calculations in this section
give an added proof that the error in our cross section
becomes negligible for large e.

The exact solution of the Dirac equation in a Coulomb
field has been given by Darwin" in the form of an
infinite series. Starting from the Darwin solution,
Furry'. has derived wave functions in closed form by
neglecting, in each of the terms of the summation,
terms of O(1/e') and of O(a'/P) compared to those kept,
where l is the angular momentum. We shall show that
the wave function which we have been using here,
namely iP,+|lb, Eq. (2.14, 2.15), may be obtained
directly from the Darwin solution by neglecting only
terms of O(a'/P) in the infinite series, not those of
O(1/e'). Thus the wave function iP,+Pb is actually valid
for all energies, and, moreover, satisfies [up to terms
of O(a'/P)] the more restrictive first-order Dirac
equation as well as the second-order equation.

Since the Darwin solution is given as an expansion
in spherical harmonics, we shall first expand iP +1l b in
spherical harmonics and then show that, apart from a
diferent normalization factor, this is identical with
Darwin's series solution when one neglects terms of
O(a'/P) in the latter. We shall indicate the steps for the
initial state wave function; the procedure for the 6nal
state is identical.

From the work of Gordon" we have, directly,

ilr.=Xte'&'uF—= u P i (2l+ 1)sinai (r)Pi(cose), (3.1)

where

Li (r) =e'r"[I"(l+ 1 sat)/(2—l+ 1)!](2pr) '

Xe'""F(1+1 lai, 2l—+2; —2iPr), (3.2)

Substituting (2.15) and using (2.16), we find at= ae/p= Ze'/hs. (3.3)

so that
[&,s+p'+2ea/r]ipb=t'an V, (1/r)4. , (2.18) Solving (3.1) for uF and substituting in pb, Eq. (2.15),

we obtain

[V', +p'+2ea/r]p. = san &„(1/r)(pb+p, )
—(a'/r') (4'+0 +0") (2 19)

We shall return to (2.19) in Sec. IXc when showing
that the contribution to the differential cross section
coming from P, may be neglected when compared with
that arising from p, and pb

III. COMPARISON OF THE WAVE FUNCTION
WITH THE SOLUTION IN RADIAL WAVES

In this section, we intend to show that our solution
to the wave equations (2.14, 2.15) agrees with the

"It should be noted that Bess, in the paper referred to, assumes
that (2.9) is satis6ed to 0(1./r~) by choosing o.I= —(i/2c)o.'~,
+(a/2ela/ar As pointed on. t by Dr. hordsieck this is incorrect,
for although (a/2c) 8/Br(2'/r) = —a2/r2, the operator 8/Br does
not commute with g, '+2ip ~,.

sn, u (2l+ 1)I'(l+1 sa,)—
g Si&irar (2pr) i&i pr

26 (2l+1)!

X{cos|tPi[sPF(l+1—sat, 2l+2; —2sPr)

+ (l/r)F(l+1 sat, 2l+—2; —2spr)

—2sp[(l+ 1—sat)/ (21+2)]
XF(l+2—sat,' 2l+3; —2spr)]

+ (sine/r) Pi&'&F (l+1 sa, ; 2l+ —2; —2ipr)

ipPiF(1+1 ia—i,' 2l+2; —2i—pr))
(continuer' on next Page)

2~ C. Q. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).
"W. Gordon, Z. Physik 48, 180 (1928).
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—i(n cosp+m„sing) (u/2e) P &el "(2l+1)

X[I'(l+ 1—iai)/(2l+ 1)!](2pr) 'e'""

X{sinOPb[iPF (i+ 1 i—ai, 2l+ 2; —2iPr)

+ (l/r)F(l+1 —iai', 2l+2; —2ipr)

—2'pl (l+1—' )/(2l+2)]

XF(l+ 2 ia—i, 2l+3; —2iPr) ]—(cosO/r)Pb "'
e&rl- l-IG

(p + 1 ia )i emma&e~iw (L pl)—

2I" (2pb+ 1) (pb
—iai)

elPT

(2pr) &t-
pr

two components of the wave function are given:

$3=+[(i+1)e'"iGb+le'" i ~G ( i)i'Pb,

tb4
—p[ eiq(Gl+ eiq ) 1G—b—1)ilPl(1) ei q

where

(3.8)

sinOP~o&=l[Pb i—cosOPb],

(2l+1) sinOPb ——P(~, o& —Pb i~",

(2l+1) cosOPi ——(l+ 1)Pi+i+1Pb i,

(2l+1) cosOPb"&=1Pb it"+(i+1)P~ i"'

(3.5)

in which we define Po~'& =0 and P ~('& =0 in order that
these recurrence relations will also be valid for /=0.
We also make use of the following recurrence relations
for the conAuent hypergeometric function:

xF(a+1;b+1;x) = b[F(a+ 1;b; x) F(a; b; x)],—

xaF (a+ 1;b+ 1;x) = b (b—1)[F(a; b 1;x)—
F(a; b; x)], —(3.6)

aF (a+1; b+1; x) = (a—b) F (a; b+1; x)
+bF(a; b; x).

The last of these three relations can be derived directly
from the first two.

By straightforward but tedious application of (3.5)
and (3.6), we may obtain

gb= (ai/2e)n, u Q e'~" (2l+1)i'
X [I' (l+ 1—iai)/(21+ 1)!](2Pr) '(e'"'/r)Pb

X[F(l+ 1—iai ', 2l+ 2; —2ipr)

+iai(l —ia,)
—'F (l—iai, 2l+2; 2ipr)]-

+ (ai/2c) (n, cosp+n,„sing)NP e&~"

X (2l+ 1)ib[1"(l+ 1—iai)/ (2l+ 1)!]
X (2Pr)'(e'i'"/r)Pbt" (l iai) '—

XF(l iai, 2l+ 2; —2—ipr) (3.7).
Having obtained the expansions of p and tabb in

spherical harmonics, we turn now to the Darwin solu-
tion as given in Mott and Massey, "where the following

'4N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisiorss (Clarendon Press, Oxford, 1949), second edition, p. 76,
Eq. (25); p. 79, Eqs. (35), (37), and (38).

XF(!+1—iai,' 2l+2; —2ipr)}, (3.4)

where we have defined Pb~'&=sinO(dPb/dcosO), and
note that n r/r=n, sinO costp+n„sinO sinq+n, cosOand
n p=n, p, since the z axis has been chosen in the direc-
tion of y.

In order to obtain an expansion of i' in spherical
harmonics, we make use of the following recurrence
relations involving the Legendre polynomials I'-& and
the associated Legendre functions P~") .

X{—(l ia, /e—)F (pb iai, 2—pb+1; —2iPr)

+ (pb
—iai)F(p~+1 —iai', 2p~+1; —2iPr)}, (3.9)

and pb ——(P a')'*(p—ositive square root implied). e'«G
b

may be obtained directly from (3.9) by replacing l by
—/ —1 everywhere except in the factor e" (' &i& which
is replaced by e&' t' &-'-'&. In obtaining (3.9) from Mott
and Massey, we have replaced rb, u =Ze'/kc, y =Ze'/hv,
and y'=y(1 —n'/c')'*, by their corresponding symbols
in the notation that we have been using, namely 1, a, a&,

and ai/e, respectively. We have also divided G & i and
Gb (as given in Mott and Massey) by p in order that
they have the same asymptotic behavior as L~(r), given
in (3.1). Further, the relation

F(a; b; x) =e*F(b a; b; —x)—

has been substituted in the Darwin solution in order
that the arguments of the conAuent hypergeometric
functions be the same as those in (3.1) and (3.2) for

f, and tabb.

If we assume /ai2«1 in each term of the sum, then

pb and p b i may be replaced by 1 and l+1, respectively,
so that we have then, from (3.9),

i F(i+1 iai)e'—" e'&"

e '~-'-IG
&

&=- (2pr)'
2 I'(2l+1) (l—ia, ) pr

X{—(l ia,/e)F(l iai) 2l+—1; —2ipr—)

+ (l ia,)F(l+1 ia—&, 2l+1; —2—ipr) }, (3.10)

I' (l+ 2 iai) ei-'—
e''l'G&= (2pr)'—

2I'(2.'+3) (l+ 1—iai) pr

X{(l+1+iai/e)F(l+1 ia, ; 2l+3; —2iPr)—

+ (l+1—ia~)F(l+2 —iai', 21+3; 2ipr) }. (3.11)—
By substituting (3.10) and (3.11) in (3.8) we may
obtain, after numerous applications of the relations
given in (3.6),

f3 p(21+1)(2l+1)!——'Pe*' &I'(i+1—iai) (2pr)'
+e'""F(l+1 iai, 2l+2; —2ipr)P—b

(aip/2e) (e+ 1) i p (2l+ 1) (2l+ 1) t ipe2~«

Xr (1+ 1—ia,) (2Pr) ~(e'"/r) Pb

X{F(l+1—iai., 2l+ 2; 2~Pr)—'

+ia, (l iai) 'F(l iai, 2lj—2) 2ipr—)}, —(3.12)
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Thus with

1

I=
I 1+p'/(s+1)'j '

/(, +1) ~

0

(3.14)

0
0
0
.1

0 0 1 0
0 1 0 0

0 0 " 0
0 0 0 i

0 0 1
0 0 0

0 0
0 —1 0

0
0
—z

0

0

0 )

0

0 —i
i 0
0 0
0 0.

(3.15)

and numbering the Dirac components of our wave
function (3.1) hyle i, P s, iP s, P,4, we have, from (3.1),
(3.7), (3.12), and (3.13),

0.i+fbi =
I 1+p'l (e+1)'?'6,

4.s+As= L1+p'/(s+1)'I '44,
(3.16)

where Ps and f4 refer to the function of Mott and
Massey. The wave function used here, P,+Ps, is,
therefore, apart from a difference of normalization
factor, "identical with that of Darwin after neglecting
terms of O(e'/P) in the latter. *

It may be noted that since we have assumed only
a'/P«1 rather than tt'«1 in each of'the terms, further
corrections to p,+if s may be obtained fairly easily. We
need only write

P=gt"+&tt ft(r, e,@;a') ft(r, g, &;—0)], (3.17)

where po& is ou'r old solution of Sec. II, ft(r, e,&; tt') is
the component of the exact Darwin solution for a given

2'Darwin, Mott, and Massey, take the particle density to be
~
it & ~'+

~ it 4 ~

' and consider tt ~ and fs as expressed in terms of f~, P4.
We take the density to be Pi['+[its)'+(iti)s+[rP4)' this
explains the difference in normalization.

*Pote added As proof: —Closer examination shows that our
wave function (3.2) differs from Darwin's true wave function by
terms of order a'/l rather than as/P This will b. e shown in a
forthcoming paper by one of us (L. C. M.). It has the consequence
of making the error in our matrix element of order a'/(e loge), as
mentioned in Sec. I.

$4——(tttp/2e) (e+1) 'e'" p(2l+1) (2l+ 1)! tttel-'

Xr (t+1—iat) (2pr)'(e'&"/r)Pt&'&

X (1 t'a—i) 'F (l ia—t ) 2l+2; 2i pr)—. (3.13)

We note 6rst that, apart from the matrix factors, the
terms in the summation for Ps $Eq. (3.12)]are identical
to those in (3.1) for P, and in (3.7) for the part of fs
with the factor e,. Further, apart from the matrix
factors, the terms in the summation for F4 (Eq. (3.13))
are identical to those with the factors e, and n„in the
summation for Ps in (3.7).

Now, if I represents the state with positive energy
and "spin up,

" then, since we have chosen the s axis
in the direction of p, we have p, =p„=0, p,=p, and

where

His' ——(," ~ips*ct),,e '"'pidr

(:=—eIttc(2'/k) &,

(4.1)

(4.2)

and o.~ is the component of the Dirac matrix operator e
in the direction of polarization, X, which is perpendicular
to the propagation vector it. The wave functions ipi and
Ps of the initial and final state of the electron are taken
in the Coulomb potential and are given by the ex-
pressions in Secs. II and III.

The wave function of a continuum state, however, is
not fully de6ned until its asymptotic behavior is given.
In the case of i' t, it is clear that it has to be represented
by a plane wave propagating in the direction of the
initial momentum p~, plus outgoing spherical waves. In
the past, ' ""Ps has often been chosen in the same
manner. That this is incorrect was recognized 6rst by
Mott and Massey'8 in a more general context and then
by Sommerfeld" in relation to our particular problem.
A physical argument was given by us in an earlier
paper. "The correct theory was used for internal con-
version by Rose et u/. "who give references to several
previous papers in which the incorrect assumption was
made, as well as to Rarita and Schwinger" who were
familiar with the correct treatment.

A mathematical argument which leads to that of
Mott and Massey is as follows. The Hamiltonian of our
system is

P=H, +H„+B', (4.3)

where B„is the Hamiltonian of the pure radiation field,
II, that of the electron including its Coulomb interac-
tion'with the nucleus, and H' the interaction between
electron and radiation. The latter is to be regarded as
a small perturbation, and to be treated only in 6rst ap-
proximation. The Schrodinger equation is

B'k= If y%, (4 4)

where E~ is the energy of the incident electron. In zero
order, we have no radiation present, and the wave
function therefore satis6es

II,+&'& =E&+&'&. (4.5)

s' See Heitier, The Quantum Theory of Radiation (Oxford Uni-
versity Press, London, 1944), second edition, p. 96.

s' L. Maximon and H. A. Bethe, Phys. Rev. 87, 156 (1952).' Reference 24, pp. 111-13.
s'A. Sommerfeld, Atomhau und SPehtrallinien (F. Vieweg and

Son, Braunschweig, 1939), Vol. 2, pp. 457 and 502.
'e Bethe, Maximon, and Low, Phys. Rev. 91, 417 (1953).
"Rose, Biedenharn, and Arfken, Phys. Rev. 85, 5 (1952).
"W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).

l, and ft(r, 8,$;0) is the same component with us/P

replaced by zero. In practice, the sum is extended over a
fimste number of terms according to the accuracy desired.

IV. THE MATRIX ELEMENT~IN BREMSSTRAHLUNG

It is well known that the matrix element for brems-
strahlung is
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The solution of this equation is the initial electron wave
function, i'.

In erst order, we have to solve

(H +II —Ei)@&'&=—H'+&'&. (4.6)

Now if we take the part of +&" in which there is a
quantum k present, H 0'&"=K &" and

(P,—E2)% &'& = —H%&'& = II'pi, — (4.7)

since E2=E~—k. Now if we take the factor of 0 &"

which describes the electron and denote it by it, then

(SI, E2)i'=—C'ugkie '"'=S, — (4.8)

where C' is a constant closely related to C, Eq. (4.2).
The right-hand side of (4.8) will be called "the source"
and denoted by S. Our task is now to solve (4.8) by a
wave function p which consists exclusively of outgoing
spherical waves, without any plane wave, because
there is no incident electron having the final momentum
P2 ~

Writing the left-hand side of (4.8) more explicitly, we
seek a solution of

P +p, +v(.)$4=s, (4 9)

where U(r) is the "potential operator" occurring in
(2.3), vis. ,

U'(r) = 2&a/r i avi & (1/r)—+u2/r', (4.10)

and the solution @ is supposed to contain only outgoing
spherical waves. Exactly the same problem is solved by
Mott and Massey, with somewhat diferent notation
and with the restrictive assumption that

Therefore P(r', 7r —0) is a function which behaves
asymptotically like a plane wave propagating in the
direction —y2, plus the outgoing spherical waves
associated with it by the potential U(r); thus,

cj(r v Qw) +c iP—2 r+r . 1&i'&—2rf (X) (4.13)

where x=v —0 is the angle between —y2 and r, and
f(x) is the amplitude of the wave scattered through an
angle x from the direction of the plane wave, —p2.

It should be noted that in (4.11) F occurs, not P~.
Therefore P must be identified with f2* in the matrix
element (4.1). Therefore i' itself" will be

F2(r') = r*(r', v.—0)

*(r m. ()) c+'».r+r—'c—;yirfe(x) (4 14)

In other words, P2 is a plane wave propagating as usual
in the direction +pi, plus a spherical wave which is
iegoieg rather than outgoing. The amplitude of the
ingoing wave is large near g=o, or O~=ir, i.e. on the
side from which the plume waveis coming, as is reasonable
for an ingoing spherical wave associated with the plane

i&2.r 34

We can prove more explicitly that f2 is just the
solution of the homogeneous equation which satisfies
the boundary condition of having no outgoing spherical
waves added to the plane wave e'» '. Inserting 0= m. —0
in (4.12), we note that Pi(ii 0)= (—1)—iPi(0') and
i '( 1) '=i —'; in fact, this is the way in which
P(r, m. —0~) is first introduced in the derivation by
Mott and Massey. Therefore

rU(r)~0, as r—+~. =Q(21+1)Pe '"'Li(r')Pi(O). (4.15)

This restriction is not satisfied by our potential (4.10)
but can be satisfied by introducing a screening factor
e "in (4.10) and letting n go to zero in the end.

Mott and Massey show that it behaves asymptoti-
cally, as

This divers from the usual expression for the wave
function, (4.12), only by having e '&' instead of c'«. Qy
considering the asymptotic behavior of Li(r ), it is
easily seen'~ that

P(r) = —(4irr) 'e'"'" ~dr'S(r')F(r', ir —0'), (4.11) with

(4.16)

where
F(r',8) =P (2l+1)i'e'&iLi(r') Pi (8) (4») g (8) = (—2ih) ' P (21+1) (e 2'&' —1) (—1)'Pi (g)

=f*(~—~) =f*(x) (4 17)
is the well-known solution of the homogeneous wave
equation in the given potential, i.e., of (4.9) with zero
on the right-hand side. The asymptotic behavior of 5
is the usual one, vis'. , plane wave plus outgoing spherical
waves. Li is the regular (and real) solution of the radial
wave equation and q~ the phase shift for angular mo-
mentum / in the given potential. According to (4.11),
& must be taken in the integrand at the angle v.—0~,

where 0 is defined by Mott and Massey as the angle
between the vectors r and r'. Now we are interested in
the asymptotic behavior of P(r) in the direction p2,.
therefore we must choose r in (4.11) in the direction of
p2, and m —0~=x is the angle between —pq and r'.

For the actual evaluation of the matrix element, it is
more convenient to use & than i'. As is seen from

(4.13), 8 is the usual solution, plane wave plus outgoing
spherical waves, only with —p2 instead of +y2. There-
fore, if we consider only the part of the matrix element
(4.1) arising from the "main" part P„iedefidnin (2.13),

"There is of course no need to go to f2,' the actual calculation
could be done equally well directly with f'.

'4 It is good to note that in the Born approximation one doesn' t
need to pay attention to the incoming wave because one doesn' t
consider any spherical waves at all in the wave function. This was
recognized by Mott and Massey, p. 356, reference TO.".'As in Mott and Massey, pp. 22-24, reference 10.
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of the wave functions P~ and f2, we get

Bg2' ——CNgN2*(u2*n&ug) dre '"-'e'~»»& '
part of the matrix element (5.1) becomes

IIgg'=CN+*N *(u *nt,ug) I dre'&" »»&'

al ael/ply a2 ae2/p2 (4.19)

The usual choice of P2, with outgoing spherical waves,
would replace the last factor in (4.18) by

F(—iam, 1; —ip2r+ipm r). (4.2O)

The evaluation of the matrix element will be given in
Sec. VIII.

V. WAVE FUNCTION AND MATRIX ELEMENT
IN PAIR PRODUCTION

In the case of pair production, both the electron and
the positron are produced, and therefore both should
be represented by plane waves with convergent spherical
waves. Thus, in contrast to the Born approximation
theory, there is a significant difference between the
matrix element for bremsstrahlung and pair production.
The latter is

)&F(ia~, 1; ip&r —iy~ r)F(ia~, 1; ~'pmr+ipm r) (4.18)

with

)&F( ia—g) 1; ip+r+ip+ r)

)&F(ia; 1; ~p r+iy r). (5.6)

Asymptotically for large r, the hypergeometric function
gives a large scattered wave where its argument is
small. The scattered waves of both electron and positron
in (5.6) are therefore large when r is in the direction —p
(convergent waves), whereas in (4.18) one scattered
wave (for the incident electron) is large in the direction
+p, the other (outgoing electron) in the direction —p.
This will make a considerable difference in the matrix
element.

As is well known, P+~ can also be considered as the
wave function (not conjugate) of a negative energy,
negatively charged electron. The usual prescription for
obtaining this is to take the electron wave function

p, =N, 'e»'F(iaeg/pg, 1;ip,r iy, r)u—(yg, g)e, (5.7)

and substitute e~= —e+, y~ ———y+, while leaving p~ ——

+p+. It is easily seen that this leads to the correct
function

IIgg' C) P *n—g—k+*e'".rd (5 1) fy=Nye '&+'

&&F( iae+/p—+; 1;ip+r+iy+ r)u( —p+, e+), —(5.8)

b= (u *natu, ). (5.2)

The spatial part of P+ divers from that of an electron
by having the sign of the Coulomb interaction reversed.
This can be accomplished by changing the sign of ae/p
in the 6rst argument of the hypergeometric function
(2.6), thus obtaining

P~,'= N~e'&+'u~F ( iac+/p+; 1;—ip+r iy~ r) (5.3)—
for a positron going in the direction p+ plus oltgoimg
spherical waves. For f+ in (5.1) we must again take
ingoing spherical waves, so that P+ is represented, in

analogy with (4.18), by

with

p+,*——N+*e '&+'u, F( ia~, 1;ip—+r+ip~ r), (5.4)

where f+ is the wave function of the positron.
The spinor factor u+* in the wave function P+* of a

positron of momentum p+ is the same as the spinor
factor uq (not conjugate) in the wave function of an
electron of momentum —p+ and negative energy —e+.
The matrix element (5.1) thus contains the matrix
factor

which is exactly the function occurring in (5.6).

VI. EVALUATION OF THE PAIR MATRIX ELEMENT
AND CROSS SECTION

We proceed now to the evaluation of the matrix
element (5.1). For ease of writing, we shall denote the
quantities referring to the positron by the subscript i
rather than +, and those referring to the electron by 2.
Thus p~=p+ in the next two sections, Pj is the hyper-
geometric function relating to the positron and I'2*
that for the electron.

We substitute d'p= (h/mc)'d'r and P~ P~,+P,q——+P„,
as in (2.13), and similarly for the negaton. Of the re-
sulting integrals we will show that three may be evalu-
ated in closed form, and those remaining will be shown
in Sec. IX to give contributions to the diGerential
cross-section which may be neglected when the energies
of the positive and negative electron are much larger
than mc'.

We proceed then to those integrals that may be
evaluated in closed form and to the differential cross-
section determined from them alone. These integrals are

r
C ~f~,*nqe'"'f~, d'p+C P2 *n~e'"'Pitd'p

al ae~/p+ (5.5)

Similarly, the negaton is described by a wave function
f *exactly like the last factor of (4.18), and the "main" +C) Qu* one'"'Qz, pd. (6.1)
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(6.12)H, 2 ——C [(u2*l21ul)I1+ (u2*nle I2ul)

+ (uz*n Ipnlul) j, (6.2) where
a= -', (q2+X2),where P=P2 q —z"AP2,

(6.13)
Q —pl ' 'q zlzz pl+el) ~ 121

' p2 plp2+Py(6.3)

(6.14)

Using (2.14), (2.15), the matrix element which we will in the accompanying paper, "we obtain
use may be written in the form

2$r fy'l ' ( n

$2 Ea) En+P)

and

I,= —('/2, ) I ' 'F,*V'F d',

I2 ——(z/2p2)) e'&'(V'F2*)Fld'r

C' =C (h/zlc) 2N2*N1,

q=k —pl —p2.

(6 3a) For small X, the three quantities n, n+p, and p are all
real; in fact we have

(6.3b) D' 2 (~+~)'=' 2q' p'+q
= (k—yl)' —p2'= 2k(pl —pl cosel);

(6.15)
(6 4) D2=—2 (7)X=p= 2q' pl+ l7

(6.5)
= (k—p2)' —Pl' ——2k(22 —P, cos82).

Ip= i~e "e'2' F2 Fld r/r (6.6)

by difFerentiation with respect to parameters. Thus

Nl and N2 will be determined so that lpl and F2 are
normalized to unit amplitude asymptotically. Following
Bess again, the integrals in (6.3) may be obtained from
the integral

Some algebra yields

(v+~)

V(~+0) 1=P
(6.16)

Therefore the two powers with imaginary exponent in
(6.12) will be of absolute magnitude unity. The argu-
ment of the hypergeometric function, x, can be shown
to be between 0 and 1. For most calculations, it is
preferable to consider

I,= —~ip/~ll I l=p.

Further, according to (5.6),

Fl= F ( zal,' 1; zplr+—Xpl
' I),

and difFerentiation of the argument gives

(6.7) y = q'tl/D1D2, -

t$=2(v+&)1=p= 7$' (p +-p2)'—

(6.17)

(6.18)

is a positive quantity (since k= el+22), independent of
angles. It is convenient to introduce the abbreviations:

(Plr+Pl ' r) (Pl/r) ~ 1(P$lr+Pl ' r)

~»= (~/~pl. ) ~/~p—l., ~/~pl. )

and F2 is independent of y~. Therefore we have

(6.8)
V12(x) =F( ia„za—2, 1; x),

(6 9)
W12 (2 ) (ala2) d V12/d+

=P(1—zal) 1+za2) 2) s).

(6.20)

(6.21)

E=4$ra (D2/q2) "~(D,/q2)-"2
I
E

I

=42a, (6.19)

~,
I2 ———($P1/2p, )Vz, e"&'F2*P,d'r/r'

= —(2'a/2al) ~l lip I l=p, (6.10)

"A.T. Nordsieck, following paper in this issue. The integration
was already carried out by Bess, but it is somewhat more difFicult
to follow the complex arguments of all the quantities involved in
Bess' paper.

in which both aI and q are to be considered independent
of y& when operating with V». Similarly, since
F2* F(ia2, 1; ippr+——ip2 r),

Ip ——(ia/2a2) V$2Io I & =p. (6.11)

The method used in the evaluation of Ip (involving
contour integration) is due to Dr. A.~~T. Nordsieck. "
The authors are indebted to Dr. Nordsieck for his
generous communication of the essential steps of this
evaluation. By a calculation entirely analogous to that

V12 f $2 21)
r, =2E

q2ID, D)
2&12 ($ i ($$

+ alezl —1 I+
D1D2 KD1 ) ED2 )

V12 q lV12 ( $$—+za2 ql
—1 I+-

D2 g D1D2 - lD2 ) pl

+za, q
Dl g D1D2- ~D1 ) p2- ~

(6.23)

We now differentiate (6.12) as required in (6.7),
(6.10), and (6.11). For this purpose, q must be kept
constant, i.e., (6.15) and (6.18) must not be used until
after the differentiation. We note that, for X=0,

pl+Ply P2pl P192=Pp +P2tl p/p2+'q. (6.22)

Ke obtain
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W(x) =a 'dV/dx

a'(1+a') (2'+ a')
x'+ . , (6.24)

3)2

In the limit of high energies, a~= a2= u with an error
of the relative order 1/62. We may therefore replace
V» and W», respectively, by

V(x) =F( 3a, —ia; 1; x)

a' a'(1+ a')
=1+—x+ X2

$ t2

sional reasons. II is much simpler than the correspond-
ing expression of Bess which contains a number of
additional terms arising from the incorrect part of his
wave function. "It is reasonable that the results should
differ only in Il because Bess' additional term in 2P,

(a/26)8F/Br, involves no matrix operator and should
have the same matrix factor as the contribution of 2P,

A minor change is in the coeKcient E for which Bess
has 42ra(D1/D2); this does not affect the result.

The transition probability per unit time is

2e= (2~/h)e~ I&»'Igv (6.27)

1+a' (1+a') (2'+ a')
=1+ x+ x2+

f12'I
(6.25)

pf = (mc')'plelp262dQld02 (ZX'I3c) (6.28)

where X~II»'t' is given by (6.26) and pf is the density
of final states for the two emitted electrons, i.e.,

Both of these functions are real so that the expressions
for Il to I3, (6.23), fall into a real part proportional to
V and an imaginary part proportional to W. The
resulting cross section therefore contains only V' and
W2, not VW.

In the cross section we require the absolute square of
the matrix element 8'12', Eq. (5.1), summed over the
spin directions of electron and positrons, and averaged
over the directions of polarization of the incident
quantum. Since the spin sums of ~II12'~2 involve the
free-electron Dirac matrix coe%cients I& and N2 we may
use the spur and closure theorems. From (6.2) we have
then

Z
f
II12'f'= [C'['(6,62)-'

XQ(Ilv'(&1&2+1 —plp2 cos81cos82)
v=l

+ (I2v + Igv ) (6162 1+plp2 cos81 Cos82)

2I2vgI3vg (6162 1+Pl ' P2)

+2 (I2v I3v) (P2I3vzPlz P1I2vzP2z)

+2I3v p2I2, pl —2I2v p213v pl

+2Ilv&2(I2v'Pl I3vzPlz)

+2Ilv&1(I3v'P2 I2vzP2z)

+2 (Pl' P2 PlgP2z) I2v' Igv}r (6.26)

where II,„,with v= 1 and 2, denote the real and imagi-
nary part, respectively, of the integral Iz, f3= 1 to 3 (see
remarks following Eq. (6.25)). The subscript s used in
the expression above denotes the s component of the
vector to which it applies, i.e., the component in the
direction of k.

The results (6.23), (6.26) do not differ greatly from
Bess' results (37) and (36). In (6.26), the only difference
is that Bess omitted the last line which is in fact not
important for small angles 81, 82. In (6.23), I2 and I3
differ from Bess' expression only by the denominators

pl and p2 in the last terms which are needed for dimen-

where &=@1—$2 and the integration over $2 has been
carried out, yielding a factor 2m.

The factor ~C'~2 in (II»'~2 is given by (6.4) and (4.2)
in terms of the normalization factors E~ and E2. The
wave function of the negative electron is asymptotically
$2=Ã2e'pz'N2F2. Since the exponential and 242 are
normalized to unity we must examine the asymptotic
behavior of Ii2 which is

F2~| p(1+3a )j—le—za2/2elaz log(pzr+p2 ~ r) (6 3p)

Thus, normalizing 2P2 to unit amplitude, we have

r(1+3a2) I'ezaz=~a2e /s2i nmha, 2(6.31)

whereas for the positive electron the sign of e is re-
versed, yielding

I&, l
=~ ,ae-/isn~h„a- (6.32)

with positive aI.
Substituting (4.2), (6.4), (6.19), (6.31), and (6.32),

we have
22re2I32C2 ( $ q

6 2r2a a2ez(az
—a&)

i
O'Il.

i
'= (42ra)'

i )
. (6.33)

E mc ) sinh2ral sinhra2

Upon making the approximations al= a, a2= a t involv-

ing errors of O(1/6') ), this becomes

(22ra)4 2m. e2I'32c2 ( fi ) '
/O'Ef'=

(sinh2ra)' f3 (mc ] (6.34)

Substituting (6.23), (6.26), and (6.34) in (6.29), we

where dQI, and dQ~ are the solid angles.
The diGerential cross section, dr, is equal to the

transition probability normalized to unit current of the
incident particle. Thus we must divide x.by the velocity
of the incident quantum, c, and obtain

(22r)2 (mC')4
do= plp26162&III» I

del
AC (22rAC)'

Xsm81d81 sln82d82dpr (6.29)
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&& sin0 sin8+d8 d8+dP

V2(a) p 'sin'0 (4» '—q')X—
(c —p cos8 )

p+' sin'8+ (4c '—q')

(c+—P+ cos0+)'

(4» e++q' —2k')2p p+ sin0 sin8+ cos4

(» —p cos8 ) (»+—py cosOy)

2k'(p ' sin'8 +p+' sin'8+)

(e —P cos0 ) (»y —P+cos8+)

a'[k' —(p +p+)']'-~'(~)

[4k (»pcos0') (»+ p+ c—os0+)]

p 2 sin20 (4» 2 q'2) p
2 sin20 (4» 2 q2)

X +
(» pcos0 )— (»+ p+ cos0+)

(4»»++q 2k )—2p p+ SIIIO SIIIO+ COSQ

(e —P cos8 ) (e+ P+ cos0+)

2k'(p ' sin'0 +p+' sin'8+)

(» —p cos8 ) (»y p+ cos0+)

4k'(e»++p p+—cos8 cos8+) . (6.35)
I

It will be recognized that the 6rst group of terms,
those proportional to V'(x), is identical with the Bethe-
Heitler cross section except for the factor

[V(a)Ira/sinh2ril]2.

It can be shown that"

V(a= 1)=Sinh2rII/2rII,

so that the cross section is simply multiplied by

[V(*)/V(1)]'

(6.37)

(6.3g)

In addition, there is another group of terms propor-
tional to W2(X). These terms have a form very similar

to that of the Bethe-Heitler terms, but the deviations
from the latter are real, as will be further demonstrated
in the next section.

The pair-production cross section (6.35) may be
compared with Bess's result (38) for bremsstrahlung.
When the translation from one phenomenon to the
other is made in the usual way, the main difference is

"Davies, Bethe, and Maximon& Eq (24), this iss.ue (Phys
Rev. 93, 788 (1954)g.

have the differential cross-section for pair production:
I

~a q'a' p k q'e' p p+
d»+

& sinhlra) 22r i 222c ) hc k'

that (6.35) does not contain those terms which arise
from Sess' spurious terms in I~, i.e., all his terms con-
taining u'V', a'V8' or a48". In addition, Bess omitted
the q' terms in the erst square bracket, which is not
serious. The second bracket has been completely re-
written to make its similarity with the 6rst bracket
evident; apart from this, it differs from Bess appreci-
ably in content.

u= p181, p2021 (7.1)

if we make the approximation sin0~=8~, 1—cos8~= ~8~'

which we shall use generally. It is convenient to split

q into the part in the s direction and the part perpen-
dicular to k which are, respectively,

q, = (1+u')/2», + (1+v')/2»2)

q, = —(u+v),

q
'= u'+2'+2uv cosg.

(7.2)

(7.3)

Here, and in the following, we neglect consistently
terms of relative order 1/e'. The minimum value of q,
for s=v=o, is

qmin qs min —8 k Pl P2 k/2»1»2. (7.4)

If 0 and z are of order j. , q is of the same order; but q,
is generally of order 1/e and q cae be of that order if
the vectors u and v are nearly equal and opposite.

The quantities introduced in (6.15) to (6.18) are, in

our approximation and notation,

Dl (k/»1) (1+u )) D2 (k/»2) (1+5 i)) (7 5)

p= 2k'= k'/el»2, (7.6)

y= q'/L(1+ ') (1+")1. (7.7)

It will be convenient in the following to use the further

3' We are indebted to Dr. Handel Davies who carried out the
angular integration, for some of the calculations reported in this
section.

VII. SMALL-ANGLE APPROXIMATION

It is well known that the main contribution to the
integral cross section for either pair production or
bremsstrahlung comes from sisal/ angles, Oi and 82 of
order 1/e. Moreover, our whole approximation, i.e. , the
representation of the electron wave functions by the
contributions II and b, alone, Eqs. (2.14), (2.15), is only
justihed for small angles. It is therefore interesting to
investigate the behavior of our matrix elements and
cross sections in the limit of small angles. This will

permit a considerable simplihcation, and thereby better
insight into the orders of magnitude and the structure
of the expression. Furthermore, this simplification is an
essential first step in the integration of the cross section
over angles. "

We introduce the vectors u and v to denote the com-
ponents of p~ and y2, respectively, perpendicular to k.
Their magnitudes are
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~III.
I
-I~

I ("") Z,{(2 ...)-
y (k2+ e 2N2+ ei2v2) I 2

+2Ii„(c2u I2.,+eiv. I,„,)
+2eie2(I2„~'+I3„~')}.

This can also be written

(7.11)

zlII
l

—lC l'P, ((k'/2 )I,'
+2(Ii„u/2ei+Ig„~)'+2(Ii„v/2e2+I3p~)'}. (7.12)

The simplification achieved in (7.11), (7.12) is quite
remarkable. The result can also be understood directly
by evaluating approximately the matrix elements oc-
curring in (6.2), vis. ,

k= (a2 equi), c= (N2 o!i,cgi), (7.13)

between an initial state of energy —e», momentum
—y», and a final state e~, y2. Taking the X component of
c, we obtain the operator o.q'= 1 whose matrix element
is very nearly 1 if the spins of electron and positron
are para11el. There are two possibilities of achieving
this, viz. , both spins up or both down; hence the factor

abbreviations:

t= 1/(1+1'), n= 1/(1+v'), (7 8)

in terms of which (7.5) and (7.7) can easily be rewritten.
If k and e», e2 are regarded as of the same order of mag-
nitude (order e), and are large compared with 1, then
Di, Dg, p, , y, u, v, $, and q are all of order unity.

The vector P introduced in (6.22) has the components

P&= e2u eiv, I,= (ei/2e, )v' —(e2/2ei)N' .(7.9)

Since p occurs only with the denominators pi, p2 in
(6.23), the component I', (which is of order 1) gives
a negligible contribution compared with either P~
(order e) or the remaining terms in (6.23).

Inserting into (6.23), we obtain

Ii 2K(eie——2/k) [q '(g $) V+v—a($+g 1)Wj,—
I,=K(e,/k) [—qq-2&V+ia(u+&q) W), (7.10)

I,=K(e,/k) [qq '(V-+ia(v+(q)W5

These expressions are very much simpler than (6.23).
They show clearly that I» is of order e, while I& and I3
are of order 1.This is to be expected from the definitions
(6.3) in which I2, I~ have extra denominators ei, e2

It can also be shown by the methods of Sec. IX.
The spin sum (6.26) contains many terms which are

negligible in the limit of high energies and small angles.
Clearly, the factor of I22 inside the braces of (6.26) is
of order e', therefore the complete expression in the
braces must, be expected to be (and turns out to be)
of this order. This means that we should retain coef-
ficients of order 1 multiplying I», of order ~ multiplying
I»I2 or I»I3, and of order e' multiplying I2', I2I3, or I3',.
all lower powers of e can be neglected. Doing this, (6.26)
becomes after some algebra,

of I22 and I32 should be 2,: as indeed it is in (7.12).
Only the components of I2 and I3 perpendicular to k
can come in because X is perpendicular to k. If the elec-
tron and positron have opposite spin, the matrix element
of cg is of order 1/e

The matrix element b, for parallel spin of electron
and positron, represents the sum of the velocities of the
two particles in the direction of X (or, after summing
over polarization, the velocity component perpendicular
to k). The velocity of the positron perpendicular to k
(in units of c) is u/ei, that of the electron v/e2. It is at
lea. t plausible that the positron velocity u/ei will
interfere only with I& which is due to the correction to
the positron wave function, and vice ve~sa. The 6rst
term in (7.12) arises from the matrix elements of b

which correspond to a reversal of spin.
From (7.12) and from the last two paragraphs, we

can see clearly what has already been said in the intro-
duction: I2 and I, have matrix factors of order unity,
thanks to the extra operator e occurring in c, while I»
has a matrix factor of order 1/e. Therefore, even
though I» itself is much larger than I2, ~iz. , of order
t. rather than 1, its contribution to the complete matrix
element is only of the same order as that of I2 or I3.

With the simplified expressions (7.10), (7.11), it is
now easy to calculate the differential cross section which
becomes

( va )'a' I Iv )'e' ei'e2'
d. =8l

l
—

l l

— d.,e,dg,Me,~
&sinhv. a] 2v. &sic ) Sc k'

)( (q
4V2 (g) [k2 —(~2+ v2) g~ 2&1&2(~2(2+ v2~2)

+2 (ei'+ e 2') uv$g costs)+ a'W'(x) PrP

X[k' (1—(zP+ v') (y/) 2e] e, (—N2P+ v'g'2)

—2(ei2+eP)mv/it cosP]}. (7.14)

This result can also be obtained by making the high-
energy, small-angle approximations in (6.35) and taking
out a factor 8~»e2 from the braces. However, the fact
that (7.14) can also be deduced from the simple theory
of this section gives con6dence that no algebraic error
has been made on its derivation, and that the difference
in structure between the factors of U' and t/t/' is real.

The result (7.14) is also the most. suitable starting
point for the integration over angles.

VIII. THE CROSS SECTION FOR BREMSSTRAHLUNG

The matrix element for bremsstrahlung is given in
(4.18). Its evaluation is quite similar to that for pair
production, with the result, analogous to (6.12),

&
"' &~+» ""-"'

E~+s) E ~ i
XF(1—iai, ia2, 1; x), (8.1)

where the meaning of n and P is the same as in (6.13)
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but the other parameters Cre changed to

'7 pl Q+Zlipl rr) 3 plp2+pl 'P2 p.
Also,

%=Pi P2—k~

(8.2)

(8.3)

outside of F in (8.1) contributes only a term of relative
order 1/e which may be neglected.

It is then only necessary to diBerentiate with respect
to the argument x of the hypergeometric function, and
we obtain

and the argument of I' is

(8.4)
where

2E1 dF ~p, p, q
yil ——I,

a q'dx LD, D3

It is again more convenient to use

y=1 x=—v(~+0)/(v+t')~ (8 5)

The reason for the appearance of the factor e 'I is
explained in the paper by Nordsieck following this.

The most important change is that 8, Eq. (8.2), now
contains the sum of piPp and pi. Pp rather than their
difference, as in (6.13). This change can be traced
directly to the form of the matrix element (4.18) for
bremsstrahlung which contains pj r and p2 r with
opposite signs while in the pair matrix elements (5.6)
they occur with the same sign. The eBect of the changed
expression for 8 is to make this quantity very large, of
order ~', if p& and p2 have nearly the same direction, as
is usual. The three other parameters, n, P, y in brems-
strahlung, and all four parameters in pair production,
are of order 1. Since 8 is now so large, the definition
(6.14) of x is no longer convenient because it would
make x larger than 1. The changed argument x in turn
causes a change of the erst parameter of the hyper-
geometric function, from —iud to 1—ia~. The new
de6nition (8.4) of x keeps x(1; in fact it is easy to
show that y = 1—x is in general very small (see below).
Since for small angles between p~ and p2 we may replace
8 by 2~g~2, we get

D1D2/4 eie2q

where Di is the same as in (6.15), and

Dp=2(p)i, p
——2pi q —q'=pi' —(k+p2)'

= 2k (e2—ps cos8p) (8.7)

is given by the same final expression as in (6.15) even
though intermediate steps are diferent. Since Dj and
Dp are of order 1, y will in general be of order 1/e' (i.e.,
where q is of order 1) but will be larger for small q. In
particular, if both yi and ys are in the direction k, then

q attains its minimum value (7.4); I and v, Eq. (7.1),
are zero and this makes y= 1 and @=0.Thus the argu-
ment of F in (8.1) is extremely close to one except for
very small q: this is the essential diGerence between
the results for bremsstrahlung and pair production.

We must now differentiate (8.1) with respect to X,
yi, and p& as required by (6.7), (6.10), and (6.11).
Consider first the differentiation of the factors in front
of P. Of these, o. does not depend on X in first order,
nor on the y's; y has the exponent i(ai ap) which—is of
order 1/e', and 8 is so large that 8 log(y+il)/N, and the
other derivatives, are small of order 1/e or less. Thus
one can show that the di8erentiation of the factors

d d ( dVy
y
—(xw) =a-'(1—x)—(

*
dx dx& dx&

(8.11)

Now the hypergeometric function F(a,fi;c; x) satisfies
the di&erential equation'

x(1—x)F"+Lc—(a+ ii+1)x jF' abF =0. —(8.12)

For V= F( ia, ia;—1; x), this becomes

x(1—x) V"+ (1—x) V' —a'V= 0,

and, therefore,
d(dV)

(1—x)—(
x i=a V.

dx i dx)

(8.13)

(8.14)

Inserting in (8.8), (8.10), (8.11) gives

Ii—2Eq '(p, /D, p,/D, )fV p—ayW j. (8.1—5)

This is just the first part Ii in (6.23), with V(x) replaced
by V iayW. Similar—ly, I& and Ip also become equal to
the first term in the respective formulas (6.23), with
the same replacement. "This result is very similar to
the Born approximation which corresponds to taking
the limit a=0. Doing this in Eq. (6.23) removes the
second term which is proportional to a8', and replaces
V by 1. Thus our result agrees with the Born approxi-
mation except for a factor.

To determine this factor, we must consider the nor-
malization factors of the initial and 6nal electron wave
function, E& and lV2. ItI2 is given by (6.31) and, in our
case, E» will be given by a similar formula because the
initial state is now also an electron of positive energy,
whereas the normalization factor (6.32) applied to a
negative-energy electron. The two normalization factors
~X&X&~' together yield a factor e~&"+'», but our ex-

~E. T. Whittaker and G. N. Watson, A Course of Modern
Aealysss (The Macmillan Company, New York, 1946), p. 283.' There are also some changes of sign, due to the di6'erence
between pair production and bremsstrahlung; these are the same
as cn Born approximation.

4srao—n l(aq2/4eiep)&ai(4eies/D2) &(ai—as) (8 9)

We now transform the hypergeometric function. Setting
a&

——a2 ——a, it can easily be shown that

F=F(1 i—a, ia; 1—; x) =F( ia, i—a; 1; x)
+iaxF(1 ia, 1+i—a; 2; x) = V(x)+iaxW(x), (8.10)

with V and W defined in (6.24), (6.25). One of the terms
occurring in (8.8) is then
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I' (c)I' (1—a—b)
F(a, b, c, 1)=

I'(1—a)I' (1—b)

and therefore from the definition (6.24)

sinhmu

(8.17)

(8.18)

Therefore, when the normalization factor is included,
the matrix element for bremsstrahlung divers from that
in Born approximation by the factor

fV(x) —iayW(x) j/V(1))

and the cross section by the factor

(8.19)

t V2(x)+a2y2W2(x)$/V2 (1) (8 20)

As we have already mentioned after (8.7), the argu-
ment x of the hypergeometric function is almost always
very close to one. Whenever this is so, we may use the
result of Davies, Bethe, and Maximon, vis. , that for
y=1—x near zero,

W(x) = —V(1) logy. (8.21)

Then yW(x) y logy is very small, and the factor
(8.20) becomes equal to unity. Thus, for most of the
possible angles, ei, 02, and g, the differential cross section
for bremsstrahlung is given exactly by the Born approxi
matioe. This is in contrast to the cross section for pair
production, and is probably due to the fact that the
scattered waves for the initial and final electron do not
overlap appreciably in bremsstrahlung (see Sec. IV)
while they do for pair production (Sec. U).

An exception is the case of q very close to its minimum
value, b. Then, as shown below Eq. (8.7), the argument
x is substantially below 1, and then R, Eq. (8.20), will

dier from unity. In fact, it can easily be shown to be
always less than 1. For this purpose, we take the
derivative of the numerator of (8.20) with respect to x
(note y=1—x):

dR'/dx= Vd V/dx a'yW'+a'y'WdW—/dx. (8.22)

Using (8.14), we find

dR'/dx= a'y Wd W/dx (8.23)

But from the power series expansion (6.25) it is clear
that both W and dW/dx are positive for all x between

4'E. T. Whittaker and', G. N. Watson, A Coarse of Moderl
Analysis (The MacMillan Company, New York, 1946), p. 282,
reference 39.

pression (8.9) shows that
~

C'X ~' now contains a factor
e 's "&, just as in (6.33), and for high energies this
factor goes to one. This leaves the same factor as com-
pared with the Born approximation as in (6.34), vis. ,

X= (sra/sinhsra)'. (8.16)

This expression is closely related to the hypergeometric
function V(x) for x=1. In fact, we have" for argument
1:

0 and 1. Therefore (8.20) increases monotonically with

x, and since it reaches 1 at x= 1, it is less than 1 for any
other value of x.

Thus we have shown that the bremsstrahlung cross
section is always less than the Born approximation
value. Concerning the integration over angle, there is
one limiting case for which the result is obvious, namely
that of complete screening: in this limit, the di8erential
cross section for small q is essentially eliminated by the
atom form factor F(rl). Then q cannot come close to
its lower limit 8, which was the only region in which we
obtained a deviation from the Born approximation.
Therefore, in the limit of complete screening, the Born
approximation is valid for bremsstrahlung.

The integration in the absence of screening has been
carried out and will appear shortly. For this limit the
correction to the Born approximation turns out to be
the same as for pair production )see DBM Eq. (35)$.
Experimental cross sections, in which screening is in-
complete should therefore (for high energies) be less
than the Born approximation value. However, the
reduction will be less than that for pair production,
where the inhuence of screening is only in the region of
small momentum transfer, for which the Coulomb cor-
rection is unimportant.

This has consequences for the theory of cascade
showers in heavy elements: the cross section for pair
production is reduced by about 10 percent (for lead)
while that for bremsstrahlung is unchanged. Therefore
the ratio of high-energy photons to electrons in the
shower is increased by about 10 percent compared with
the conventional theory, and the radiation length is
increased by about 5 percent. 4'

(P+ p+2 ear/)P. = —a'r —Q. (9 1)

and we must show that its contributions to the matrix
element, such as (in the case of bremsstrahlung)

Ie ~its.*e '"'iPi.d r, (9 2)

are actually negligible. It was just this contribution I4
which Bess tried to take into account, and by which his
theory divers from ours. That the contribution from I4
is negligible will be shown by considering the orders of
magnitude of the various contributions to the matrix
element.

4' We are indebted to R. R. Wilson for this remark.

IX. THE NEGL'IGIBLE MATRIX ELEMENTS

(a) General

It remains for us to prove that the approximate wave
function derived in Secs. II, III is really sufficient for
the calculation of the matrix element. In particular, we
must consider the correction to the wave function which
arises from the term a2/r' in the wave equation, i.e., the
function P, defined by
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We have discussed orders of magnitude already in
Sec. VII. As in that section, we consider t.))1, and the
angles Hi, 82 of order 1/». Then, as is shown above Eq.
(7.9)„.Di, D2, ii, I, z, etc. , are of order unity. Also q is
in general of this order but it can be as small as O(1/»).

The integral Ij., involving the main part of the wave
function, P„is of order», while the integrals I2, Ia,
involving the correction iP» to the wave function, are of
order 1, Eq. (7.10).The matrix factor b, multiplying Ii,
is of order 1/», as shown below (7.13), while the matrix
factor c, multiplying I2 and I», is of order 1.

Now ipse, satisfies the differential equation

It is then justified, in first approximation, to consider
the vectors pi, p2 and k to be essentially in the same
direction, —s.

If the argument iii=pi(r —z) is large, the hyper-
geometric function is given by the asymptotic formula

tava1/2

I'(1+»a,) (»i, J I'( ia—i)

»iui ia& 10»—u&

+o~
Zt'i & xi'

(g2+p2+2»a/y)ipi, = t'ai» ~ ~ (1/y)ip (9 3) Through I» this expression depends on

which is similar to (9.1) in that the right-hand side is
of order iP /r' in both equations. The order of magnitude
of iP, must therefore be expected to be the same as that
of fi„and the order of Ii the same as I2 and I3, namely
unity. In Subsection c, we shall prove this statement in
detail; but in Bess's paper I4 comes out to be of order e,
like Ij, which is an unreasonable result.

Now the wave function iP„like iP„obviously contains
no operators 0,, and therefore the integral I4 will simply
be multiplied by the matrix factor b, Eq. (7.13).4' In
Sec. VII, fi was shown to be of order 1/»; therefore, if
I4 is of order 1, its contribution to the matrix element
is of order 1/» and hence negligible.

pir+pi r»1. (94)

Putting the s axis in the direction of —y~, this means

or
p, (r—z) =-',p,rH'»1,

8»8,= (p,r)—:.

(9.5)

(9 o)

If r ~&», then 8» as defined by (9.6) is larger than or
equal to 1/», i.e., to the order of magnitude of Hi and 82.

43 In this point, we agree with Bess.

(b) The Order of Magnitude of I, and. I,
It is useful to discuss in a simple way the orders of

magnitude of the principal integrals Ii and I~. The first
purpose is to check the validity of order-of-magnitude
arguments which will later (Subsection c) be used to
estimate I4 ~ Secondly, we shall show that there are no
unsuspected cancellations by interference, and finally
the arguments will give added insight into the mathe-
matics.

We shall use for the integration variables both polar
coordinates r, 0 and cylindrical coordinates s, p, and
use the fact that q, =8=0(1/»), while q»—= q~ is in
general of order 1. It can be shown that the main con-
tribution to the integral Ii comes from regions of space
in which the hypergeometric functions F in the matrix
element (5.6) can be replaced by their asymptotic ex-
pressions. This is permitted if the arguments of the
hypergeometric functions are large compared with j.,
VZS.

q

we have
p=r8;

I,=p, (r z) =p—,p'/2z

(9.S)

(9.9)

The other factor depending substantially on p is

G=—exp (iq~) . (9.10)

It is easy to see that there is no important constructive
interferences between F~, F2, and G.

The integral over p arises mainly from values of p

up to
pi= 1/q, (9.11)

because at larger values of p, rapid oscillations of G
set in. Since the volume element is 2xpdpds and since
the first term of (9.7) does not contain any power of p
as a factor, the p integration gives a result of the order

1/q'. (9.12)

The integral over s contains only one important
s-dependent factor, vis. ,

exp(iq, z), (9.13)

which shows that values of z=r up to 1/q, contribute,
and this quantity is of order e. Hence we find from a
very simple consideration of orders of magnitude that

I, »/q', (9.14)

where the first and second term correspond to the two
first terms in (9.7).

We need consider only those components of I2 and I»
which have a matrix factor of order unity, i.e., (from
(6.2)) are in the x or y direction. We have from (6.3a),
for example,

1 f . dPyI.,~ 'e'&'F2~ (Vli),d'r-
dui

(9.16)

which agrees with the explicit evaluation in (7.10).
In I2 and I3, we need the derivative dF/dN which is

in the region of validity of the asymptotic expression
(9.7):

1 p»ia& logM&»i+& m& logu&
~ (1—

»,mug/2
( + )+0/ f

(9 15)
u ( I'(ia ) I'(—ia,) J &u,')
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f
exp (iq~) 0p~1/q&, (9.18)

We use the asymptotic expressions (6.30) and (9.15)
for F2* and dF, /du& )from which F2* is essentially of
O(1) and dF&/dui is essentially of O(1/ui), when
p) ps= res= (r/pi) i),44 and the small angle approxima-
tions (9.9) and

(Vu,),=p,o= pip/s, (9.17)

(note (9.8)$. The integrals over s and p are, then, in
view of the remark following (9.9),

we neglect; this is an approximation similar to the re-
placement of $2, by a plane wave (the error is probably
smaller if the Coulomb field is neglected in both P& and
$2). Then we get

I4=—
d'r

i(p1 —p~k) .r

pi' —(p2+k)' " (9.24)r2'

where we have also replaced fi, by the plane wave
e'» ' on the right-hand side of (9.1).

Now

p, —(p,+k) =2k(ss —p, cost&2) =D„(9.25)

so that

exp (iq,s)Ch~1/q, =0 (e),

Is, 1/q =O(1), (9.20)

and is of O(1), according to (8.7). Therefore, using the
definition of tl, Eq. (8.3), the order of magnitude is

in agreement with the explicit result in (7.10). I4~ e'&'d'r/r'~1/q. (9.26)

e-i(P2+k& ~ rP dsr ) (9.21)

(c) The Main Term in the Neglected. Part
of the Wave Function

In this subsection, we shall discuss the integral I4~

Eq. (9.2), which arises from the main term in the
neglected part of the wave function. We shall show that
this is of order 1, i.e., of the same order as I2.

We shall evaluate I4 by replacing $2, by the plane
wave, e'»'. This amounts to replacing E2F2 by unity,
and thus to neglecting some interference eGects. The
arguments of Subsection b have shown that the elimina-
tion of interference e6ects will not reduce the order of
magnitude of the integrals. Furthermore, we take into
account that 1V& and 1@2 LEq. (6.31) and remarks pre-
ceding Eq. (8.16)$ are of order unity.
Then

As expected, this is of the same order as I2, namely
independent of e, and has also the same q-dependence
as I~. In Bess' calculation, the integral corresponding
to I4 turned out to be of the same order as I~ which is
unreasonable.

Together with the arguments about the matrix
factor in Subsection a, this shows that the contribution
of I4 is of order 1/s, and that therefore f, can actually
be neglected.

(d) Other Contributions

It is rather evident that the contributions from still
higher approximations to the wave function are neg-
ligible, and that the same is true of cross terms con-
taining "small parts" of both the initial and final wave
function, such as

i.e., apart from a constant factor, I4 is the Fourier com-
ponent of p&„corresponding to the momentum p2+k,
or it is the momentum-space wave function. To calcu-
late this, we multiply (9.1) on both sides by e "vs+k& '
and integrate over space. One of the integrals thus
occurring we integrate by parts:

e—'&2~k& 'Vgi, |&&sr

= —(ps+ k)2)t e-*''22+ "&'p,d'r. (9.22)

(9.27)

This particular term gives a contribution of order e ' loge
to the matrix element, as shown below.

The significant contribution from I5 will come from
those components with matrix factor of order 1, which
result from choosing the s component of Pts and a com-

ponent of ass* perpendicular to s, or vice versa Fol-.
lowing the order of magnitude estimation of I2„weuse
the asymptotic expression (9.14) and a similar one for
dF2 /dus and consider

Another integral on the left-hand side, vis'. ,

2eu e-'l2~»'P„d'r/r,
~J Noting that(9.233

1 t (Vui), (Vus),
dr

ste2 ~ ul u2
(9.28)

"Since the integral in (9.16) converges with dF&/dgi 1/u, , it
will certainly converge in the region p(po where the asymptotic
expression (9.15) is not valid and dF1/du1 is of order 1 or less.

(Vus)./u, =1/r, (Vu,).=p,e,

ui p&re /2, (9.29)
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and using spherical coordinates, we have

, I eiq r+~q&re 'coqQg++@5xz J (9.30)

the azimuthal angle @being measured from the direction
of q. The integral over @ gives Jq(q~r8) and that over 8
is then 1/q~r for q~r&O(1), and of O(1) otherwise. The
ma)Or contribution to the integral over r is thus in the
region 1 &r ~& 1/q, from which we have

~1/gz logy,
(q~r)

—' exp(qq, r)dr =O(iogq), (9.31)

so that Is„is of order

t. 'log6. (9.32)

This shows that I5 is smaller than I4 which we pre-
viously discussed.

The integrals which arise from higher corrections
have their integrands more and more concentrated at
small r. Ultimately, the main contribution to the inte-
grals comes from values of r of the order of one wave-

length, i.e., 1/p. These integrals will then be of order
1/eq. Now it might be possible, with sufFicient rnathe-

matical skill, to actually calculate the contributions of
order 1/e, e 'loge and 1/o' to the matrix element by
explicit evaluation of some of the integrals we have
neglected. But there would be very little hope for the
numerous contributions of order 1/e', these can prob-
ably be evaluated only in polar coordinates.

where y(q, ) is the relative error at eq. Thus, if

p~1/eq~ C'~ci logei (10.2)

For pair production, k should be substituted for e~.

'q W. Heitler, The Qgomrqiro Theory of Rodjatjom (Oxford Uni-
versity Press, London, 1944).

X. ESTIMATE OF ERROR

In Sec. IX we found that the main term neglected in
calculating the matrix element comes from I4 and is of
relative order 1/e. We believe that there are no cancel-
lations from other neglected terms and that the error
is indeed of order 1/e.

Errors are introduced both in the initial and 6nal
state wave function. Since &2&A~ for bremsstrahlung,
the error in the cross section must be estimated to be of
order 1/oq. It has long been known that the Bethe-
Heitler treatment is wrong near the upper limit of the
bremsstrahlung spectrum, and corrections have been
proposed by Heitler. "Probably this problem could now
be solved, either using the wave function of this paper
or a method similar to that of Harvey Hall. "

No approximation is made in the wave function of
the quantum, e'"'. Hence the theory is expected to
remain correct for small k.

The total cross section for pair production (or the
total energy radiated in brernsstrahlung) is obtained by
integration over e2. Since all energies e2 between i and
e~ contribute about equally, the relative error in the
total cross section is about


