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It was felt that the averaging procedures employed by Hahn in his theory of the "Spin-echoes" requires
modification in several respects. A more satisfactory averaging procedure has been introduced here, and
gives substantially the same results as those obtained by Hahn.

INTRODUCTION

'HE powerful free-induction technique has been
introduced into the field of nuclear induction

quite recently by Hahn. ' In contrast to the usual
methods of observation, where the motion of magnetic
nuclei is studied in the presence of a steady or pulsed
rf 6eM., the free-induction method confines itself to a
study of the motion in the abseece of the rf field, or
rather in the interval following the application of the
rf held, which is applied in the form of rectangular
pulses of short duration. A theory of the "free induc-
tion" process and of a further extension of it, termed
the "spin-echo" process, was also given by Hahn, '
starting from the conventional Bloch equations. ' Be-
sides taking account of the eBects of natural relaxation
processes and 6eld inhomogeneity, Hahn has also con-
sidered the e6ect of diffusion processes within the
periods of observation. In trying to follow his theory,
we found that his arguments regarding the diffusion
damping of the free induction and the echo signals did
not appear quite convincing. We therefore repeated his
calculations using what appeared to us a more satis-
factory averaging procedure. We give below the details
of our calculations and compare our results with those
obtained by Hahn.

THE FUNDAMENTAL EQUATIONS

In the analysis of the spin-echo phenomena, the basic
Bloch equations and their solutions, in the presence and
absence of the applied rectangular rf-6eld pulses, are
applied successively. However, the following two modi-
6cations are introduced:

(a) First, because of the inhomogeneity of the steady
magnetic 6eld in the Z direction, the sample under
study may be broken up into small groups of nuclei,
each characterised by a particular value of co„ the angu-
lar Larmor frequency about the Z direction. The in-

homogeneity of the magnetic 6eld causes a distribution
in co, and hence in Ato=~, —co (co being the applied rf
frequency) among the groups; and we may call this
breakup into groups a division into "isochromatic"
groups. We shall then have one set of Bloch equations'
for each isochromatic group, and in this we shall have
to use the natural spin-spin relaxation time T2 instead

' E. L. Hahn, Phys. Rev. 80, 580 (1950).' F. Bloch, Phys. Rev. 70, 460 (1946).

of the net transverse relaxation time T2*, including the
effect of the 6eld inhomogeneity. ' The effect of the
magnetic field inhomogeneity is taken care of by the
splitting into isochromatic groups. It will be assumed
that g(Aco), representing the distribution in Aco among
the groups, is Gaussian with a root-mean-square value
1/Ts*, and is thus symmetrica, i about d«o= 0.

(b) Secondly, the "self-diffusion" effect has to be
introduced. This takes account of the fact that by
virtue of the random motion of the molecules carrying
the nuclei, especially in liquid samples, each isochro-
matic group moves into different inhomogeneous parts
of the field, so that co, is a random function of time and
may be written

co, (t) =co,(t')+st„.

p«represents the change in Larmor frequency by diGu-
sion in the interval t—t', so that 6+ is now also a
function of time; i.e.,

Aco(t) =Aco(t')+st„.

When we write ~co without specifying the time, we shall
mean the value at time t=0. Thus Aco(t') =Aco+rti o.

Thus, the modi6ed Bloch equations for a isochromatic
group 6+ may, for the interval t' to t, be written as

d V/dt+[A~(t') yq„)V= —U/T„
d V/dt [Aoi (t,')+st—„)U= —(V/Ts) to&W, —

d8"/dt=osiV+ ((1—W)/Ti),

where UMp VMp, and WiVp are the X, I", and Z
components, respectively, of the magnetic moment
vector M(A«o) of a nucleus, in the group under study,
in a coordinate system rotating with the rf field Hi,
with frequency equal to the frequency of the rf field,
and with U in the direction of Hi.' Ms corresponds to
the intrinsic magnetic moment of the nucleus under
study. T1 and T2 represent the spin-lattice and spin-
spin relaxation times, respectively, because of natural
relaxation processes, and co1——yHl, 7 being the gyro-
magnetic ratio of the nucleus under study. Here Ato(t')
has been used instead of Ace because there will be a
spectrum of Larmor frequencies in the originally homo-
geneous isochromatic group 6+ at the instant t' as a
result of the fact that the members of the group will on
account of diffusion spread out to diferent positions.

' Bloembergen, Purcell, and Pound, Phys. Rev. 73, 679 (1948).
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qtt represents the further shift of Larmor frequency of
the cluster 6"+q, s in the interval t

If the rf Geld be applied for an interval t„,very small
compared with T~ and T2, so that the relaxation
processes and diffusion processes have little time to be
effective, then we can neglect the terms involving these
effects, and the solutions of Eqs. (2) for a isochromatic
group Ace during the pulse are given by

where t" refers to the instant when the previous rf pulse
was cut oG and free precession started. From the first
two equations of (7) we get, putting f= U+sV, (™
pare Jacobsohn and Wangsness')

t—t"
+i ~a&(t"). (~—«")

T2
f(~) =f(~").exp—

I'
g i»,„dP

U(~) =P (~')/~7 Q+ U(~'),

V(t) =a sin(Qt+P),

W(t) = —(o)i/0) aQ+ W(t'),

where t' refers to the start of the rf-Geld pulse, and t—P)
U(~) =expl—

T )2

)&[U(t") cos{A&u(t") (t—t")+Pii }
a= {[V(t')7'+[ U(t') cosO —W(t'). sinO]'} l,

V (&')
P= tan —'l

i U($) cosO' —W(3) slnO~)
—V(~") sin{~&a(~") (t—'")+@«}7,

(~)

V(/) =expl—
T, )

ace(t') =Ace+ t;s,

cot0= Ace (t')/(vi,

(3)
Separating (8) into real and imaginary parts, we have

U(~ +~.) = U(~ ),
V(t'+t ) = V(t') cos$—W(t') sing,

W(t'+t„) = V(t') sin(+W(t') cos$,

(6)

with )=nit„representing the angle of nutation of the
magnetic moment vector about the direction of the rf
field. ' The rf pulse may be referred to by specifying
the angle $. Thus in Purcell's qualita. tive explanation
[Sec. III(H) of Hahn's paper') of the spin-echo phe-
nomena, a 90' pulse was used.

In the absence of the rf field pulse, co ~
——0, and the

Eqs. (2) reduce to

Q = cos[Q(t —t')+f7 —cosP,

n= {o)is+[a(a(t')7'}&.

If we further have the condition that

cubi))(Aa) ~,

where (6")y is the half-width of the distribution in
ha& and is proportional to 1/Ts*, then we can write the
solutions at the end of the pulse approximately as

&([V(~") cos{A(a(f ) '(~ ~ )+Qgg" }

y U(&") sin{a"(&") (t—f')+y«-}7.

From the third equation of (7), we have

W(&) =1+{W(~")—1}expl—
T, )

Now, in (9), we have a phase factor involved, nss. ,

giving the phase accumulation by the precessing group
owing to the random diffusion process. Now, because of
the random nature of this diffusion process we have to
average over the dif7erent possible gii values. For this
purpose we need a distribution function in P,~", which
we may denote by

~[y„-, i—t"7. (12)

This has been evaluated by Slichter (see reference 1),
and is shown in the appendix to be

d U/dh+ [6"(t")+~„-]V= —U/T„
dV/dt [Ace(t")+—g«"]U= —V/Ts,

dW/dt = (1—W)/Ti,

C D

FIG. 1. Applied radio-frequency pulses.

(7) P[y«-, ' P]=-
'

4m—k(t —P)'
3

(
«xp! — „ I, (13)

E 4k(~ —t,")')
where k= (yg)'D; G refers to the field gradient, as-
sumed constant over the sample, and D is the self-

4B. A. Jacohsohn and R. K. Wangsness, Phys. Rev. ?3, 942
(1948).
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di6usion coefficient of the liquid containing the nuclei.
There is an important difference between our method
of averaging over P and that of Hahn. This point will
be taken up later and leads to results somewhat diBerent
in nature from those of Hahn. Furthermore, to average
over the I.armor frequency shift p&"& ", we need a dis-
tribution function in q. . . ws. , I'$g~ ~, t"—t"'j,
which is shown in the appendix to be

pt ]II (///]
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CONDITIONS AT SUCCESSIVE STAGES OF
APPLICATIONS TO THE PULSES

Using these results, we pass on to an analysis of the
nature of nuclear signals to be expected when the rf
6eld is applied in the form of successive pulses of the
type indicated in Fig. 1.The pulses satisfy the following
conditions regarding the intervals between the first and
second and between the second and third pulses:

~g))t~, 7 g))T2*) and ~2) 2rg) (15)
together with the following conditions regarding the
width and amplitude:

t„«T2, T~ and ~~))1/T~*. (16)

Using Eqs. (6), (9), and (10), we shall now tabulate
the values of U, V, and 8" for a group, at successive
stages of application of the pulses, vis. , at A, 8, C, D,
F, G, and II (see Fig. 1). The equations at E are ob-
tained from those at F by writing t in place of 72. In
this connection, it is to be noted that at A, as well as
at 8, the isochromatic group has its precessing fre-
quency equal to Ace. In the first free precession interval,
i.e., from 8 to C, di6usion occurs; and a phase accumu-
lation P~o, given by Jo"q,".odt"', and with a distribution
given by Eq. (31), takes place in the U and V terms,
5" remaining independent of the diffusion. At C, the
isochromatic group Ace breaks up into clusters, each
with a Larmor frequency A&v+g~o, whose spectrum is
given by (33). In the second free precession interval,
i.e., from D to Ii, a further phase accumulation &2~,

equal to P,2,&, occurs in U and V, and the cluster
4co+gM again breaks up at P into further clusters of
Larmor frequencies Aco+g&0+g». The quantity W,
belonging to the isochromatic group Ace, still remains
unaffected by the diffusion at the end of the second free
precession interval, as is apparent from the equations
in Table I. On this point we disagree with Hahn, who
expected a spectrum in 8' at this stage depending on g.
Finally, as the positions reached by the cluster at C
and again at Ii, starting from C, are quite independent
of each other, g~o and. g2~ will be independent of each
other and may be separately averaged by using the
probability that a cluster may collect a Larmor fre-
quency shift qm in the interval between 0 and 7.
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rt21 in the interval T2 Tl 'vis. E(t210 Tlp)'P(t221 T21)

given by Eqs. (38) and (39). After the third pulse, free
precession starts again and we use tt t2 to denote the
phase difference accumulated in U and V between G
and H, the latter corresponding to instant t) r2+t„. It
is our aim to calculate V(t) explicitly in the second and
third free precession intervals, because the signal ex-
pected will only depend on V.

PRIMARY ECHO

Using the solutions in Table I, we shall now investi-
gate the conditions after passage of the second pulse
at t= r~. In this case, we have to consider the solutions
at E for U and V, which can be obtained, as pointed
out before, from the solutions at Ii, by substituting t
for T2, with Tl+t„(t(T2. It has, of course, to be re-
membered that since we shall ultimately integrate over
a Gaussian distribution in her, we need only retain the
terms with even parity with respect to Dco. In this
respect, the U term at E may easily be seen to be
entirely of odd parity with respect to Ace, and so it does
not contribute to the total signal from the sample under
study. And even in the V term, we have to retain only
that part which is even with respect to Aau.

In this connection we need the even terms in x
in products of the form sin(ax+p) sin(bx+q) and
cos(ax+ p) cos(bx+q), and it may be easily seen that,
in these products, the parts even with respect to x are
given by:
Lsin(ax+ p) sin(bx+q)), „,„

= sinax sinbx cosp cosq

+cosax cosbx sinp sinq.

Leos(ax+p) cos(bx+q)), ,
=cosax cosbx cosp cosq

+sinax sinbx sinp sinq. (17)

Now, at E, we 6nd, substituting the values of U, V,
and 5" in previous instants, the total signal to be pro-
portional to

f f t'

V(E)=
J

' ! Sing Sin(htprlp+Qlp)
~ ~

rip�)

xexpl ——
l »n{(&~+rtl) (t—Tl)+4 tl}

+ —Sing COS (/! Cprlp+ tttlp)

Tlo ),
Xexpl ——

l
cos)—W(c) sing

Toi

XCos{(Dto1'pip) (t Tl)+4tl}

(Xexp
l

I+(tt 10, Tlo)&(ttttl, t—rl)
T2 )
X&(ttlpt rlo)g(+to)tttt lotlktltgrtlod(+00).

g(hco) = exp—
(22T) l

(tItopT2*)'
(20)

and using Eqs. (31), (33), and (34) of the appendix,
we get the total signal at E proportional to

(t—2rl)'-
V(E)= sin) sin' —exp ———

2 T2 2T2*'

Xexp ——{(t r1)'+ r—1'+3r 1 (t—r 1)'}
3

f2
—sing cos'—exp ———

2 - T2 2T'2*'

k
Xexp —-{(t—Tl) 2+ rlo+3r1(t —rl)'}

3

—W(c) sing exp—
t rl (t—rl)'—

2T

Xexp ——{(t—rl)'+3rl(t —rl)'} . (21)
3

This equation may be compared with the corresponding
Eq. (17) of Hahn's paper. The first and third terms give,
respectively, the Prirmary echo at t=2rl, and the free
indmctioe sigma/ following the second pulse. The middle
term is a continuation of the free imductoom sigma/ -follow-

ing the 6rst pulse and, on account of the smallness of
T2*, is almost zero in the second free precession interval.
There is complete agreement between our results and
those of Hahn regarding the trigonometric part of the
amplitude of the various terms, the damping due to the
natural relaxation processes, and the position of the
maxima. But, there is disagreement in the diffusion
terms. We compare our di6usion terms with those of
Hahn, in Table II.

SECONDARY ECHOES

In this case, we have to consider the conditions at H,
after the passage of the third pulse. Here again we need

Since the distributions over ttlp and tt 10 are Gaussian,
we have to retain only that part of V which is even in
plo and tttlo. Applying the symmetry conditions (17) we
have, for the part of the integrand which is of even
parities in Atd, ttlp and tt 10,

[sing{sin'-2'g coshst(t —2rl) cos(tt tl —tt 10)
—cos 2 $ cosZktdt cos (ttttl+Qlp) }
XCOS'gl(t rl) eXp( t/T2)
—W(C) Sing COSA&0(t —rl) COStt tl

XCOSgl(t —rl) ezp{—(t rl)/T—2}]
X+(tttlot rlo)+(tt'tl t tT1)+(rllpt Tlo)g( tp) (19)

Using for g(htp) the normalized Gaussian distribution,
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TAsx.z II. Our diffusion d amping terms for the p rimary echo, compared with those of Hahn.

Term

Position
of

maximum
Value of the

diffusion term

Hahn's results
Value of the

diffusion term at
echo maximum

Our results

Value of the diffusion term

Value of the
diffusion term at
echo maximum

Primary echo

Free induction
signal following
second pulse

2TJ exp (—-', kt')

k
exp ——(t—r1)'

3

exp
k

exp ——( (t—rt)'+ rto+3rt(t —rt)')
3

k
exp ——j (t—rt)'+3rt(t —rt)')

3

consider only the terms even in A~, and the U term

may again be seen to have no contribution to the total
signal. Further, we have also to find the terms in V
even in Ace. For this purpose, in addition to conditions

(17) we need the terms even in x from the products

sin(ax+p sin(bx+q) cos(cx+r)

Thus,

cos(ax+p) cos(bx+q) cos(cx+r)

)sin(ax+ p) sin(bx+q) cos(cx+r)$, ,„
= sinax sinbx coscx cosp cosq cosr

—sinax sinbx sincx cosp sing sinr

—cosax sinbx sincx sinp cosg sinr

+cosax cosbx coscx sinp sinq cosr

Leos (ax+p) cos (bx+ q) cos (cx+ r) ], ,„
=cosax cosbx coscx cosp cosq cosr

+cosax sinbx sincx cosp sinq sinr

+sinax cosbx sincx sinp cosq sinr

+sinax sinbx coscx sinp sing cosr. (22)

From the solutions for V at H, we get, after applying
the values of U, V, and 8' at previous instants A, 8,
C, D, F, and 6, the total signal, as proportional to

( TIQ)
Xexp~ ——~&(tt,10, T10)—»nA'(C)

r, )

T21)
Xexp (

——)&(4 21 T21)&(2)10 T10)
r2)

+COS{(AM+ttlo+rt21) (t T2)+Qt2}

( T101
Xsinp sin(ttIMTM+&10) exp~ r, )

X~(4» )+ o l (~ +rt ) +4

—cos2$ sing cos(AMTI0+$10)

t'

Xexp] ——[EQb10, T10)—sing cos&W(C)
~r, )

Xexp ]
——

~

& (ttt21 T21)& (Tt10 r 10)
T2)

—sing —sing exp
~ r, )

U(H) = '
t stn({6 M+2/10 +$21)(t T2)+Qt2}

J J 3 J J J —1—Sing Sing COS(AMTI0 1ttt10)

X
~

cos{(AM+2)10)T»+p»} sing sin(AMT10+$10)
E.

rio l
Xexp (

——
)
&()bio r 10)+cos&W (C) )T, )

~io
Xexp

~

——
(
&(4 10) r 10)r, )

—sin{ (AM+2)xo) r21+AI}.

Xexp
~

—
~
&Q t2 t T2)I'(tt21 T21)g (~M)

r, )

XdttttotltttottfrtyPdtttt2drt21d(AM). (23)

Cosf Sing Cos(BMTI0+$10) Retaining, as before, the part of the integrand which is

of even parity in hM, tt10 2)21t $10 $21 and pt2, we get,
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using Eqs. (31), (33), and (34) of the appendix,

sin'f
V(H) =

1 y
exp —(r2 —r1

&r, r) r,

Xexp—
{t (T2—+ r1) j.'

exp[——,'k{(t T2)—'

+T1 +3rl(t T1) +3 (T2 T1) (» T2) j]
t

+sin( sin' —exp ——
2 T2

{t (2T,——2r 1)j'
Xexp—

2T2*2

)(,exp[ k{(t T2) + (T2 Tl) +T1

+3r1(t—2r2+r1) +3(r2—T1)(t—r2) j]

+lV(c) sin) sin' —exp—
2 T2

Xexp—
{t (2r2 ——r1)j'

82

+exp[ 2k{(t T2) + (T2 T1)

+3T1(t—2T2+ r1) +3(r2 —T1) (t—T2)'j ]
sin'$

4

t ' {t—2r2}'
exp ——exp ——

T2 - 2T2*'-

)&exp[——',k{(t—T,)'+(r, —T1)'+T1'

+3(r2—r1) (t—r2)'+3r1(t —2r2+T1)'j]. (24)

We have not included in the above equation those
terms which represent the continuations of the primary
echo and the free induction terms arising in the previous
free precession intervals, because these will be almost
totally damped out in the interval II. The first term in

(24) represents the stt'Tttulated echo occurring at the
instant t= r2+r, . The remaining terms represent the
secondary echoes occurring, respectively, at t = 2 (T2 T1),
2r2 —r7, 2r2. Our results agree again with those of Hahn
[reference 1, Eqs. (22-A) to (22-D)] for the positions,
trigonometric dependence on $, and damping due to
natural relaxation processes. But there appears again
a discrepancy in the diffusion damping terms. We
tabulate in Table III our results, together with those
of Hahn for comparison.

DISCUSSION

The physical picture explaining the mechanism of
formation of the various echoes has been given in great
detail by Hahn. ' We shall here confine ourselves mainly
to a discussion on the origin and magnitude of the
discrepancies between Hahn's di6usion terms and ours.

The origin of the discrepancy is in the different pro-
cedures used for averaging over p and rt. Hahn applies
the averaging procedure for q merely to the 8' term as
indicated in his Eq. (14). For the U and V terms [see
reference 1, Eq. (11-A)],he collects the phase difference
accumulated in the interval t t", vt's. , P—(t) —g(t"), and
in the term exp[2{&(t)—p(t")j] he applies the averag-
ing procedure to @(t), regarding p(t, ") as a constant
and with p(t) now representing the phase difference
accumulated in the interval from t to the start. Our
method, on the other hand, is somewhat different. In
our procedure terms like g(t) and p(t"), by themselves,
have no meaning; only terms like P«, representing the
phase di6erence accumulated by diffusion in the inter-
val t to $", are important. This is because, as mentioned
before, we divide the entire interval of application of
pulses, into successive free precession intervals. Starting
with a single isochromatic group characterized by 6+,
we take account both of the entire Larmor frequency
shifts for calculations of U, V, and 8', and the phase
differences that U and V undergo in the successive
intervals, applying suitable distribution functions for
these (given in appendix); ultimately, at the position
of formation of the echoes, as in Eqs. (18) and (23),

TABLE III.Our diffusion damping terms for the secondary echoes, compared with those of Hahn.

Term

Hahn's results
Position of Value of the Value of the diffusion

echo maximum diffusion term term at echo maximum

Our results

Value of the diffusion term
Value of the diftusion

term at echo maximum

Stimulated echo r2+ r1 —ak[rP+(t r2)2 ~~k(3rPr2 —rP)—
+3rl (r2 r1)]

——',k[(t—r2)'+ rP+3r, (t—r,)'
+3( '

—~k(3rPr2+ 2r1 )

First
secondary echo

2r2 —2r1 ——,'kt' —(8k/3) [r22 3rgrg-
+3rPr2 rP]— —-,'k[5r2' —23r, '

+39r1'r2 —29r1r22]
——,k[(t—r,)'+ (r, ri)'+rP-

+3r1(t—2r2+ r1)'
+3(r2 r&) (t r2) 7

Second
secondary echo

2r2 —r1 ——',k (t—r1)' —(8k/3) (r2 —r,)' ——',k[(t—r2)'+ (r,—r,)
+3(r2—r1) (t—r2)

+3r1(t—2r2+ rg)']

—-,'k[5(r2 —r,)']

Third
secondary echo

2r2 ——;kt3 —(8k/3) r2' ', k[5r2' 6r1r22———
+3TPr2+3rP]

,'k[(t r2) '+ ri'+ (r2 —r1)'———
+3( — ) (t— )'

+3r, (t—2T2+ r,)')
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and
n~ -~-=vG/~" ~-,

t

tktt»='rG ttvvvtvvdt
/// ~ (25)

E. L. Hahn (private communication).' H. Carr, thesis, Harvard University, 1952 (unpublished).

we average over the entire frequency shift and phase
diRerence accumulated. This procedure has been ac-
cepted by Dr. Hahn as more rigorous. '

The magnitude of the discrepancies is apparently
serious, when we consider the expressions for any
general time t. But we must remember that the damping
of the echoes is primarily determined by T2, which
is usually very short, so that we have to evaluate these
expressions by taking the values of t near the echo
maxima. The discrepancy now appears less serious, and
the qualitative dependence pointed out by Hahn, vis. ,
that the stimulated echo is much less damped than the
others, is also clearly borne out, as the stimulated echo
only involves 7.2 and the others involve v2'. For the
special condition of experiment, vis. , r2))ri (in fact in
his experiment for measuring the damping of the stimu-
lated echo, Hahn uses rp/ri=50), we get the diffusion
term for the stimulated echo by both Hahn's method
and our method to be exp(kriPrp) Thus, . the experi-
mental result, vis. , the linear dependence of the diffusion

damping of the stimulated echo on riP (see Fig. 8 of
reference 1), also receives support from our calculations.

However, a uniform discrepancy appears in the damp-
ing effect because of diffusion for the other terms. For
r&))ri, Hahn's treatment gives exp[ —(8/3)kr&'] for
all the other secondary echoes, while ours gives
exp[ —(5/3) krpP]. An exactly similar discrepancy occurs
in the primary echo. Unfortunately, Hahn has pub-
lished no exact quantitative measurements on the
damping e6ect due to diffusion of the other echoes. Of
course, this numerical coefficient is quite unimportant
in measurements of k, and therefore of p, G, and D by
comparison methods, but we feel that the above analysis
puts the interpretation of the echoes on a firmer footing.

We are grateful to Dr. E. L. Hahn for pointing out
to us that Carr' has arrived at results in agreement with
ours for the primary echo. We have not yet had the
opportunity to procure a copy of Carr's work. The
authors are indebted to Professor M. N. Saba for his
constant interest during the progress of the work.

APPENDIX

The distribution functions P[tt«, t—t,"] may be
evaluated as follows. If we assume that there is a
field gradient G outwards from the center of the
magnet, then if A&p(t") refers to the start of the self-
diGusion process, then at instant t'" we shall have in
its place, h&p(t")+yG[l(t'") —t(t")]=hcp(t")+yGl, ".,-,
where /~ ~" represents the displacement in the direction
of the field-gradient t"' t" (because the cha—nge in field
involved in the diffusion process =G[l(t'")—l(t")7).
Therefore,

FIG. 2. Area covered in the 1—t plane.

i.e., vt«depends on the area covered by the tt

eersls I,
'" curve. Now, the distribution in /« is well

known to be given by the expression

p[t(tvl/) ttll . t(tt/) tl/]

it" t"2

exp ——,(26)
[4~D(t"'—t")]-' 4D(t"' —t")

D referring to the coefFicient of self-dif'fusion. Therefore,
mean square value of /&" &" is given by

p 'Ir ~2K

(tt" 't" )Av
~ p vj p p [4nD(t'" —t")]'.

&(exp —— t'sined8dtttdt
4D(t"' —t")

As we are interested in only the component of the dis-

placement along the field gradient direction,

(tt -t ')A, ——(6D/3) (t'"—t")= 2D(t'" —t"). (27)

Now, to get the distribution in vtv, we have to find the
root-mean-square value of ttvt" t", which we denote by
((Qtt ' )A )I; this depends on the shaded area in Fig. 2.
We have to find the mean square value of this shaded
area A&~". To do so, we divide the time interval t —t"
into n equal parts dt, where

eh/= t—t",

so that if m—+~, then Af—&0. We evidently have from
Flg. 2~

2 tt« = /lkt+ lpkt+ + tvvkt.

Now, /& and /2 are not independent quantities, because

lp
——li+ At,

where 6/ refers to the displacement in the interval
between d t and 2ht, but 6/ is itself independent of /~ and

/2. So, to get A~~ as a sum of independent quantities,
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As li, 12—li, all occur in the same time At, we have,
from (27),

(/1 )Av=((l2 —/1)')Av= =. ((/n —/.—1) )Av=2DAt.

Therefore,

(A ggvit )Av= 2DA/[1 +2 + ' ' '+I 5
= 2D (At) 323 (33+1) (2n+ 1)/6
=-', D(at)3233
=-',D(t —t")',

remembering that e is large. Therefore,

(29)

(4'tt" )Av Y G (A tt'' )Av

= -,' (yG) 2D (t—t")'= —;k(t —t")', (30)

where k= (yG)'D. Hence, assuming a Gaussian distri-

7 See James V. Uspensky, Introduction to M'athemcticu/ Prob-
ability (McGraw-Hill Book Company, Inc. , New York, 1937),
p. 270.

we use the relations

/2 = /1+ (l2 —li),

/3 /1+ (/2 /1)+ (/3 /2)

/vv ll+ (l2 /1)+ (l3 l2)+ ' ' '+ (/vv /vt 1)—~

Therefore,

A t t- ——[23/1+ (23—1) (l2 —li)+ + (/„—l„,))LU, (28)

and so A«- is now expressed as a sum of independent
quantities. Hence, by the standard deviation theorem, '

Further, we need the distribution function in gtt . From
Eq. (25), we have

(tttt" )Av ( YG) (/tt" )Av

= 2 (yG)2D(t —t")= 2k(t —t"). (32)

Hence, assuming a Gaussian distribution in g«", we
have

P[tttt, t t"7=- exp—
(2~(qtt ')A, )'

2'gtt"

2(2ttt" )Av-

exp-
[4~k(t—t")j-"*4k(t t")—(33)

Using these distribution functions for P[gt tt, t—t"]
and P[vtttt, t—t"j, we can eva1uate the various inte-
grals over g/v and tt involved in (18) and (23), making
suitable substitutions for t and t".For these integrations
as well as those over Ace we need the standard integrals:

( gt' )cosgtx exp( b'x')dx—= expj
b ( 4b2)

singtx exp (—b'x') dx =0.

(34)

bution for p«also, we have

—g/tt
'

P(tt tt", t t"—) = exp
(2~(4« ')A.) ' 2(0« ')A—

(' 3 ) ' 3g/vtt
2

exp — . (31)
(42rk (t—t")3) 4k (t—t")'


