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with Eq. (4). Using gets=2.05 and p=2.2 Eq. (4) gives
a value of x=0.24 which is quite reasonable. It is im-
portant that further measurements be made at higher
frequencies on the nickel ferrite aluminates to obtain
data on the frequency dependence of gos.

At the composition near :=0.7 the shift in gess from
high to low values is tentatively identified with the
assumption that the magnetic moment on the 4 sites
becomes greater than the contribution of the B sites.
The interpretation given by Eq. (2) is that the change in
Zest 1S a consequence of the algebraic sum of the spins
and magnetic moments going through zero at slightly
different compositions. This simple picture lends
validity to the foregoing assumption that the magnetic
moment on the A sites is the dominant one for ¢>0.7.
When the samples are quenched, the rearrangement of
the ions in a more random condition shifts the moment
back to the B sites with a corresponding large change in
g values. It is of course necessary that the g values be
different for the two ions, in this case Nit+ and Fet+™,
or for the same ion in different sites, otherwise the
change in distribution of the various magnetic atoms
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either due to heat treatment or chemical composition
would not alter the ratio which gives gess.

CONCLUSIONS

It is seen from this work that there can be large
variations in the resonance behavior of a substitutional
ferrite and that for any particular composition further
changes can be effected depending on the particular
heat treatment the specimen has undergone. With the
aid of Eq. (2) a simple interpretation of both very large
and small g values is possible, and this in turn bears on
the broader question of the exact distribution of ions
for the specimen.
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By hydraulic means, a single crystal of barium titanate in the
shape of a flat circular disk was subjected to a pressure exerted
on its edges and not on its faces. A very slight pressure removed
all domains that were not normal to the disk. The stress system
then consisted of equal pressures on the two a axes, and no pressure
on the ¢ axis. The transition temperature increased with the square
of the two-dimensional pressure, while, according to Merz, a
hydrostatic pressure produces a linear drop. Using Devonshire’s
expansion for the free energy and the appropriate Legendre
transformation, the free energy, depending on polarization and
pressure, was obtained for both two-dimensional and hydrostatic
stress systems. This yielded a purely linear-pressure dependence,
and it was, therefore, necessary to supplement Devonshire’s ex-
pansion with higher terms in order to obtain a quadratic effect.

Although it was too difficult to evaluate the effect of pressure

INTRODUCTION

T has long been known that substitution of strontium
for barium in barium titanate!'? causes a drop in the
Curie temperature that depends linearly on the stron-
tium concentration. This has been explained as the

* Sponsored by the U. S. Office of Naval Research, the U. S.
Army Signal Corps, and the U. S. Air Force.

1A. von Hippel et al., National Defense Research Council
Reports 14-300, 1944 and 14-540, 1945 (unpublished) ; von Hippel,
Breckenridge, Chesley, and Tisza, Ind. Eng. Chem. 38, 1097

1946).

( 2 D? F. Rushman and M. A. Strivens, Trans. Faraday Soc. A42,
231 (1946). :

on the transition temperature itself when higher terms were
included, it was easy to determine the effect on the Curie-Weiss
temperature To. This is the temperature at which the inverse
susceptibility of the cubic phase extrapolates to zero, and its
pressure dependence will be the subject of a future paper. For
both two-dimensional and hydrostatic pressures, the linear part
of the shift of the Curie-Weiss temperature was found to depend
only on the lower terms in the free energy, and provide two inde-
pendent relations for determining the two g coefficients. The
quadratic shift of the Curie-Weiss temperature depends on the
higher terms with which Devonshire’s expansion was supple-
mented, and a reasonable interpretation of these higher terms
gave an upward direction to the quadratic shift of the Curie-Weiss
temperature.

result of an effective decrease of the unit-cell size caused
by the smaller strontium ions. If, instead, the unit-cell
size is reduced by application of hydrostatic pressure,
the transition temperature decreases with decreasing
unit-cell size at about the same rate.® The substitution
of lead for barium, on the other hand, raises the transi-
tion temperature at a rate depending linearly on the
lead concentration.? Lead titanate itself has a much
higher Curie temperature (490°C) and is much more

3W. J. Merz, Phys. Rev. 78, 52 (1950).



2-DIMENSIONAL PRESSURE ON

strongly tetragonal.* In fact, optical observations on
crystals grown in the laboratory® show that it remains
tetragonal all the way down to liquid helium tem-
peratures, although with a rapid drop of the bire-
fringence. The effect of hydrostatic pressure has been
discussed by Slater® in terms of his statistical model of
barium titanate. In this model, the local potential seen
by the Ti ion, that is, the potential exclusive of dipole
interaction, is represented by one harmonic potential
well of cubic symmetry, supplemented by a small,
fourth-power term to keep the spontaneous polarization
finite. If the lattice size is reduced by hydrostatic com-
pression (or strontium substitution), the oxygen ions
that surround the Ti ion tetrahedrally are pressed more
tightly against the Ti ion. The consequent stiffening of
the local harmonic potential well requires a greater
local field caused by dipole interaction to displace the
Ti ion a given distance.

A two-dimensional pressure, however, should have
quite a different effect, for the crystal will contract
along two axes but expand along the third. If the two
axes undergoing compression are cubic axes, the local
potential well will acquire tetragonal symmetry and
will become football shaped, or possibly even dumbbell
shaped. The latter would mean that the single local
potential well has become a double well, which would
result in an order-disorder type of transition if the
barrier between the two wells were comparable to k7.
The way in which a two-dimensional pressure affects
the Curie transition in barium titanate will depend very
critically on how the 2z expansion is related to the x
contraction, and particularly on how the internal field
is affected by these strains. One may say that the change
in the local potential well produced by a two-dimen-
sional pressure should allow the Ti ion to displace more
freely in the z direction. On the other hand, an expansion
of the lattice in the polarization direction and contrac-
tions across the polarization direction should reduce the
local field.

APPLICATION OF TWO-DIMENSIONAL PRESSURES

Bridgman? has made studies of plastic flow and frac-
ture of a number of substances under two-dimensional
compression. One method was to use a specially con-
structed steel die that could actually push on a ductile
material in two directions at once, and the other method
was to exert a pull in one direction on a sample sub-
jected to hydrostatic pressure. The latter method
amounts to a two-dimensional pressure superposed on
a hydrostatic compression that is less than the applied
hydrostatic pressure by the strength of the pull. In the

4 Shirane, Hoshino, and Suzuki, Phys. Rev. 80, 1105 (1950);
G. Shirane and E. Sawaguchi, Phys. Rev. 81, 458 (1951).

5 H. H. Rogers, Technical Report 56, Laboratory for Insulation
1Reilse:a)rch, Massachusetts Institute of Technology, 1952 (unpub-
ished).

6 J. C. Slater, Phys. Rev. 78, 748 (1950).

7 P. W. Bridgman, Large Plastic Flow and Fracture (McGraw-
Hill Book Company, Inc., New York, 1952).
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Fic. 1. Details of crystal holder for applying two-dimensional
pressure.

present work, we have developed a method of exerting
a uniform two-dimensional compression on the edges
of a disk-shaped sample with pressures up to, and
probably well above, 1000 atmospheres. While this is
small compared to the range of two-dimensional
pressure obtainable by Bridgman’s second method, our
technique has the advantage of leaving the faces of the
disk exposed, so that one can make optical and x-ray
measurements and apply electric fields.

The method relies on a rubber “O-ring,” which is a
circular ring of soft rubber with a circular cross section.
The O-ring is placed around the disk-shaped sample and
the combination is clamped in a steel clamp as shown
in Fig. 1. The faces of the clamp have openings to
permit direct observation of the crystal. The clamp is
tightened, thereby flattening the O-ring, until the
separation of the faces of the clamp is only ca 2 mils
greater than the thickness of the crystal. This clearance
allows free expansion of the crystal in the direction not
subjected to pressure. Oil is forced into the clamp as
shown in the figure by means of a hydraulic pump. The
pressure of the oil pushes the O-ring against the edges
of the crystal, and the O-ring prevents the oil from
leaking out. The outside seal is accomplished by another
O-ring. The clamp used in the present work was de-
signed so that one face of the clamp is electrically
insulated, although the electrical measurements have
not yet been made. Observation with a microscope was
sufficient to determine the transition temperature. By
introducing quartz windows, it will be possible to apply
a different pressure to the faces of the crystal, and to
study the effect of a superposition of hydrostatic
pressure on a two-dimensional pressure. Since a soft
rubber has a low shear modulus, sticking of the rubber
to the faces of the clamp should not create a large
pressure correction at the pressure used. However, if
the O-ring is lubricated before clamping, the rubber can
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Fic. 2. Effect of two-dimensional pressure on the Curie
transition in barium titanate.

relax back and forth between the faces of the clamp
fairly rapidly under changes in pressure. The data can
be taken in such a manner as to allow a check on the
presence or absence of a frictional correction in the
pressure, which is read by means of a Bourdon gauge
in the oil line.

EFFECT ON TRANSITION TEMPERATURE

The disk-shaped crystal was cut from a strain-free
crystal plate of cubic-growth habit and of uniform
thickness. Its diameter was a little over § in. and its
thickness, ce 20 mils. The thickness to diameter ratio
of about 1:8 should be sufficient to prevent elastic
buckling. The clamp was wound with nichrome ribbon
and well insulated with glass cloth. Temperatures were
measured by means of a mercury thermometer em-
bedded deeply in the massive metal of the clamp. The
transition was observed with a polarizing microscope,
which revealed a considerable disturbance at the transi-
tion point. The transition was reasonably sharp at all
pressures. The effect of pressure on the transition was
followed by zigzagging isothermally and isobarically
along the transition curve. The agreement of the down-
going transition temperatures taken isothermally and
isobarically shows that the rubber transmitted the
pressure without appreciable frictional correction (Fig.
2). Unfortunately, the upgoing transition could be
taken only isobarically due to the insensitive needle
valve in the hydraulic pump. The results show a purely
quadratic dependence of the transition temperature
on two-dimensional pressure. The width of thermal
hysteresis increases with two-dimensional pressure. The
results of Merz,® using hydrostatic pressure, show a
purely linear pressure dependence. If, for convenience,
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the two-dimensional and hydrostatic pressure effects
are symbolized by 2-H and 3-H, respectively, the results
can be described as follows, where H is the oil pressure
in atmospheres and 7' the transition temperature:

2-H: Te=Teo+3.1X107°H?,
3-H (Merz®): T,=Teco—0.0058H.

EFFECT OF PRESSURE ON DEVONSHIRE’S
FREE-ENERGY EXPANSION

Devonshire® has expressed the free energy of barium
titanate in terms of polarization and strain, with
respect to the cubic unpolarized configuration, as

A(x,P)=%cu® (w243, 422 +crof (922824 %29,)
Hou? (2 + 92+ a2 X (P24 PP
10" (PAPSPSY
+3&10" (PP P2P 24 PP}
+gu @ P4y, P+2.Ph)
+g10{ @ (P2 P2 43, (PP
+2.(P2+P?)}+gu(y.PP.A2.P.P,

+x,P.P,)+5" (PSP, P0). (1)

The boldface symbols mean the stress or strain tensors
and the vector polarization, the components of all of
which are in the above expression. For the present
purposes, we need not consider configurations involving
shears or any components of polarization aside from
that in the z direction. We are thus considering the
dependence of the free energy on x,, ¥, %, P, (which
we shall abbreviate %, v, 2, P), all other strain com-
ponents (the shears) and the x and y components of
polarization being kept equal to zero:

A (x,P)=3%cuu® (a24y*+ ) +-c1o” (ya+aa+-xy)
+%X”PZ+‘41‘511”P4+g112P2
+gue(a+y) P55 P (2)

Using the convention that a positive stress shall be a
compression and a positive strain an extension, we find
that the three stress components are X=—dA4/dx,
V=—094/3y, Z=—09A4/9z, and thus for a two-dimen-
sional pressure:

—H=cyx+ci2(y+2)+ g1,
—H=cyy+cia(z+2)+g12P?, ©)
0=cnstci2 (x+y) ‘|'g11P2;

where the superscripts P of the elastic coefficients at
constant polarization have been dropped for conve-
nience. For a hydrostatic pressure, the stress equations
(3) are the same except that the zero in the third line
is replaced by —H.

To discuss the Curie point and the properties asso-

8 A. F. Devonshire, Phil. Mag. 40, 1040 (1949) ; 42, 1065 (1951).
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ciated with the 2 direction, we need only compare cubic
and tetragonal configurations, so that the strains « and
y are equal, and the stress relations become

—H= —H=(cuu+c12)x+croz+ g2 P2,
3-11:{ , 2-3:{ 4)

—H= 0=2¢c10x+cuz+gul?,
which can be solved for x and 2, giving

11
— H
(611“—612) (611+2612)
C11812— C12811

- (611* 612) (Cu+2612)

2-H: x=

pP?

2¢19
Z= H
(011‘612) (Cu+2€12)
+2612312— (611'f‘612)g11P2
(611—‘612) (611+2612)
(611—612)
(€11 ¢12) (€11+2012)

C11812— C12811

(5
3-H: x=-—

)

(611"612) (611+26x2)
(cui—c12)
(c11—¢12) (c11+2¢12)
+2612g12— (611+612)g11P2.
(611—612) (611_+2€12)

If we now substitute these expressions for the strains
into the free energy [Eq. (2)], remembering that x=1y,
we obtain for both cases

A (x,P)=terms in H?+terms in H P>+ terms in P?
~+terms in P*4terms in PS. (6)

We can now determine the free energy 4 (X,P) ex-
pressed in terms of stress and polarization, and see how
it compares with the free energy as a function of polari-
zation at zero stress,® for which the most recent coef-
ficients have been given by Merz.® The free energy in
terms of stress and polarization is related to that in
terms of strain and polarization by the usual Legendre
transformation :'°

AXP)=4(xP)+x-X, )

where x- X is a scalar product, and is the transformation
term that must be added to Eq. (6) to obtain the free
energy expressed in terms of polarization and pressure.

®W. J. Merz, Phys. Rev. 91, 513 (1953).
0 See, for instance, L. Tisza, Phase Transformations in Solids
(John Wiley and Sons, Inc., New York 1951), pp. 1-38.
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The transformation term is
x-Xo.g=2Hx=a term in H?
C11812— C12811
- (611—'612) (611+2612)
x-Xg.y=2Hx+Hz=a term in H?

8)

cugiz— C128u1
(c1—c12) (cut2c12)
| Zonagu— (cutci2)gn
N (cr1—c12) (cut2012)

Therefore,
A(X,P)=terms in H?>-+terms in HP*+A4p, (9)

where Ap is the free energy as a function of polarization
for zero stress, the coefficients of which have recently
been given by Merz as

Ap=3.TX1075(T—T¢) P*—1.7X1078P44-3.8X 10~ 3PS,

To is the Curie-Weiss temperature at atmospheric
pressure and is about 11°C below the transition tem-
perature, and the units are electrostic cgs units.

The only terms through which the pressure can affect
the dependence of the free energy on the polarization
are terms containing both H and P, in this case [Eq.
(9)], the terms in HP?. If these terms add up to a
positive quantity, pressure will raise the free energy of
the polarized configurations faster than that of the
unpolarized phase, and so lower the transition tem-
perature; if they add up to a negative quantity, it is
raised.

Having found the transformation terms [Eq. (8)],
we now need to calculate the contribution of 4 (x,P) to
terms containing both H and P. The terms in 4 (x,P)
that give terms in H and P (viz., HP?) are as follows,
where we have set x=1y since we are only interested in
comparing cubic and tetragonal configurations:

(entc1)a*+3enz? 4201005+ g1z P 2g100.P2.

For a two-dimensional pressure the sum of the terms
in HP? in A(x,P) is

{(611+612)2[611(611g12—Cngu)]
+ (%611)2[2612(2612&2‘ (C1l+612)g11)]
+2612[—2612(6115’12"612g11):|+2612[“611(2612g12
- (Cll+012)gll):|}HP2/(Cll—512)2(611+2612)2
+ (g112612—2g12611)HP2/(6u—612) (611+2612)-

The second and fourth terms within the braces
cancel, and the first and third terms, when added to-
gether and factored, become 2(c11g12— ¢12911) (11— ¢C12)
(c11+2¢12), which, when multiplied by the quantity
outside braces, exactly cancels the last term in the
whole expression, which means that for a two-dimen-
sional pressure, 4 (x,P) contributes no terms in HP2
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However, for hydrostatic pressure the free energy
A(x,P) contributes —2ci2g11/ (c11— c12) (c11+2¢12) H P2,
Therefore, when we add on the transformation terms
[Eq. (8)], the HP? term in 4 (X,P) is

‘"2g12(611—612)—811(611+612)
(611—612) (611+2612)
c —cC
g TR s for 2o
(611_612) (611+2612)

The free energy in terms of polarization and pressure
is then

2-H: A(X,P)=Ac+[3.7><10—5(T—-To)

HP? for 3-H

and

(11

C11812— C12§11
—2 H]P2
(611— 612) (611+ 2612)

—1.7X1078P*4-3.8X 1075 P,
(12)

3-H: A(X,P)=Ac+[3.7X10*5(T-T0)

2(611—612)g12+ (611+612)g11

- H]P2
(cr1—c12) (c11+2¢12)

—1.7X1078P+4-3.8X 1078 P8,

From this it is seen that the dependence of free energy
on polarization, for a given applied pressure, is un-
altered only if there is a corresponding change in tem-
perature AT :

1 [ c11g12— C12811
2-H: AT= 2 ]
3.7X1075L (c11—c12) (cr1+2¢12)
(13)
1 2 (cu—c12) g1zt (cutc2) gu
3-H: AT= ]H
3.7)(10_5;_ (611—612) (611+2612)

Since a purely linear dependence of the transition
temperature on two-dimensional pressure is thus pre-
dicted, it is necessary to supplement Devonshire’s
expansion with higher terms in order to account for the
quadratic effect. While it is too difficult to evaluate the
effect of pressure on the transition temperature itself
in the presence of the higher terms, it will be shown
that the effect on the Curie-Weiss temperature T is
easy to determine. This may be determined experi-
mentally by extrapolating to zero the inverse suscep-
tibility of the cubic phase. Its dependence upon two-
dimensional and hydrostatic pressure will be the subject
of a future paper. It will be shown in the following
section that the linear part of the shift in the Curie-
Weiss temperature for two-dimensional and hydrostatic
pressures gives two independent linear relations con-
necting the coefficients gi; and g2, and the quadratic
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shifts give two linear relations connecting the 9 coef-
ficients in the higher terms with which Devonshire’s
expansion may be supplemented.

EFFECT OF HIGHER TERMS IN THE FREE ENERGY
ON THE CURIE-WEISS TEMPERATURE

As a result of the symmetry of the crystal, the strains
with respect to the cubic phase depend on even powers
of the polarization. Since there is a P? term in the strain,
the P% term in the free energy as a function of stress and
polarization [given by Eq. (10) for zero stress] will be
partially made up of terms not included in Devonshire’s
expansion Eq. (1). These are terms in strain XP%,
strain? X P?, and strain®. For the present case of no
shears and no polarization other than P,, the free energy
including these higher terms will be :

A x,P)=1ci,? (02492420 +c1oF (yz+20+-xy)
+3x P41 &0 P gz P gro(a+y) PP
4§87 P11z P Bra(x+y) P
+ v P24y 12 (624 3?) P24y 132y P?
+v14(yz+22) P24-611 (23424 25) +-S100y2
+o1s[y (427 +2(0*+9%) +2(y*+27) ].

There is not enough accurate information to evaluate
any of these higher terms, but it is easy to show that
the terms with coefficients v and § give rise to a quad-
ratic dependence of the Curie-Weiss temperature 7'
on the pressure.

The isotherms of polarization vs electric field, that
Merz? calculates from the free energy, are reproduced
in Fig. 3, where ¢ is proportional to (T'—7T%), Ty being
the Curie-Weiss temperature. It is easy to show that
the transition temperature occurs at the point {=0.75
and in Fig. 4 the free energies corresponding to =0,
t=0.75 and {=1 are shown schematically. The Curie-
Weiss temperature (=0, is clearly the temperature to
which the cubic phase could be supercooled in the
absence of thermal fluctuations, and the tetragonal
phase could be overheated to t=1 in the absence of
thermal fluctuations. The Curie-Weiss temperature
t=0 is determined by the condition (§P/JE)= » taken

(14)

Fic. 3. Merz’s isotherms of the electric field.
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at zero polarization, where the strain polarization rela-
tions will be those for very small values of these vari-
ables and will, therefore, be given by Egs. (5), which
may be written

x=C1H+Gl2P2, 3= CoH+Gn P2 (5)

When the above strains are substituted into Eq. (14)
and the Legendre transformation terms included, the
terms in the free energy as a function of polarization
and pressure A (X,P) that contain P? and hence deter-
mine the slope dP/9E at P=0 and the Curie-Weiss
temperature, will be

%X”Pz‘i‘ [ [2 (611+C12)C1G12+611C2611

+2¢15(C1G11+CoGr2) +£11Co+2g1:C1 ]
2Gy2 (for 2H)
2G12+G11 (for 3H)

+ (2y10+715) C24-3(2611+2615) C1°G 12

+3611C2G 11+ (812+2013) (C2G11+2C1CoGr2)
+2613(2C1CoG1+C2Gro) JHEPE.  (15)

Thus the linear dependence of the Curie-Weiss tem-
perature depends entirely on the coefficients g (and, of
course, ¢, which are known) and is given by Egs. (13).
The quadratic dependence is determined by the coef-
ficients v and 6, and depends, of course, also on the g
and ¢ coefficients.!!

For two-dimensional pressure, the linear part of the
pressure shift [Egs. (13)] is seen to be proportional

}HP2+ [711C22+2714C1C2

11 As has been pointed out by Tisza (reference 10), the validity
of thermodynamics in the vicinity of a point such as (=0, P=0)
in Fig. 4 is questionable, since the statistical fluctuations about one
of the macroscopic variables will be large. The expression (15),
when divided by P?/2, is the inverse susceptibility of the cubic
phase as a function of temperature and pressure. As prescribed by
Devonshire, the temperature dependence arises only from the
coefficient x”' =xo(7'— To), which Is a straight line passing through
zero at the temperature 7. Equation (15) states that the applica-
tation of pressure shifts the straight line up or down. What we
call the shift in the Curie-Weiss temperature, AT, is simply the
amount of the shift of this straight line in the direction of the
temperature axis. The fact that the validity of thermodynamics
is questionable when one is very close to the crossing point, does
not enter the picture.
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to the coefficient Gy,. If one can assume that the Curie-
Weiss temperature changes in more or less the same
way as the transition temperature, which has yet to be
checked, one would conclude that Gi» is zero, and,
therefore, that the « strain has no P? dependence at all.
In Fig. § are plotted the strains from the x-ray data of
Kay and Vousden!? against the fourth power of the
polarization, as recently measured by Merz;® within
25°C of the transition temperature the x strain is
directly proportional to P* rather than P2. One may
object to using the results of Kay and Vousden on
crystals that gave much too low values for the spon-
taneous polarization. But Merz has shown that the
reason for these low values in crystals that are not
exceedingly good is that some tendency to antiparallel
domain formation persists to fairly appreciable fields.
The x-ray parameters, however, are not affected by the
existence of domains. The crystals of Merz have a
somewhat lower transition temperature than those of
Kay and Vousden, so the data were plotted for corre-
sponding temperatures below the transition temper-
ature.

The nature of the terms with coefficients v and § is
immediately apparent upon differentiation of the free

energy [Eq. (14)]:

—98Z/0z=c1 P+ 2v11P?+ 381154 2013 (x+),
—0X/dx=c1P+2v1sPP+301%+2015(y+2), (16)
—0X/0y=c1aP+y1sPt 8105+ 2815 (x+ ),
—9Z/0x=c1oP+v14aP* 8129+ 2613 (y+2).
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F16. 5. Plots of the tetragonal strains against
powers of the polarization.

2H. F. Kay and P. Vousden, Phil. Mag. 40, 1019 (1949).



692

Energy

F16. 6. Typical depend-
ence of energy on an inter-
atomic distance.

z

For the small polarization and strains involved in the
present discussion, one can make some qualitative
statements about the v and § coefficients. Considering
the first of the above equations, it states that the
mechanical stiffness in the z direction departs from
Hooke’s law by the quantity 38112 when the x and y
directions are clamped and the polarization is not
allowed to change (since the partial derivatives are
taken at constant x, y, P in the first line). This is to be
expected, since, with #, y, and P clamped, the energy as
a function of extension in the 2 direction is not a parab-
ola, but is rather as shown in Fig. 6, which to a second
approximation has a negative 2® term in addition to the
2> term. Hence the coefficient 811 must be a negative
quantity. For small changes in the clamped dimensions
x and y, the shape of the energy curve in the z direction
will probably not change much except to be shifted, so
one would expect 83 to be rather small. If one increases
the fixed value of the polarization, z will be increased
since z=G11P? and thus i must have the same sign
as 011, 1.e., negative.

Considering the second of Egs. (16), the polarization
P2 does not change the strain x for small values, since
this depends on P% and, therefore, the coefficient yis
is zero. For the same reason v1; in the third equation is
also zero. In the third equation, a small change in the
clamped dimension z will not much affect the X, y
stress-strain relation, so 852 is small. In the fourth
equation, where y and z are clamped, the stress Z
produced by a strain x will not be influenced by P
since x does not produce any P2, and the coefficient v
is small.

According to the foregoing, one might assume, for
qualitative purposes, that the only important coefficients
are v1; and 813 The terms in H2P?in expression (15) then
reduce, since Gy; is zero, to [y11Co?+3611C2Gri JH2P?
which is a negative quantity, since Gy is positive and
11 and 811 are both negative. This means that the
quadratic shift of the Curie-Weiss temperature for two-
dimensional pressure is upward, as observed. Using
Mason’s®® values ¢1;£=2.07X102 and ¢;,°=1.40X10%,
the value of C? for the two-dimensional pressure is
about 18 times that for hydrostatic pressure, so that

13 Bond, Mason, and McSkimin, Phys. Rev. 82, 442 (1951).
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the quadratic effect for hydrostatic pressure is very
much smaller, also as observed.

Finally, we may consider the linear dependence of
the Curie-Weiss temperature on hydrostatic pressure.
If the linear effect for two-dimensional pressure is
absent, then c¢11g12—c¢12g11=0 from which g;2=0.68¢.
In order to match the dependence of the Curie-Weiss
temperature on hydrostatic pressure to Merz’s® meas-
urement of the transition, it is necessary to assume
gu=—0.17. Assuming z=aP?*+4bP*, one can match the
2z strain in Fig. 5 quite accurately within 25°C of the
transition by assuming ¢=0.57 X 102, which requires a
value for gi; of —1.2. However, the curve in Fig. 5
suggests negative P% or P® terms in the strains, and, in
fact, the z strain can be accurately represented by
z=2X10"8P24-3.4X 107 2P*—2.9X 107#P% where the
coefficient of P? requires a value of g;;=—0.42. This
gives a linear dependence on hydrostatic pressure
about twice that observed.

PROBABLE EFFECT ON THE HYSTERESIS LOOP

If the shift remains quadratic to much higher pres-
sures, a two-dimensional pressure of 2000 atmos should
raise the transition by more than 100°C. This should
result in a marked increase of the coercive field at room
temperature. Furthermore, it is possible that at room
temperature the hysteresis loop is affected by the
proximity of the orthorhombic transition around 5°C,
since the direction of the polarization might well
reverse by a rotation through the orthorhombic con-
figurations rather than by direct passage through the
cubic configuration. In this case, the effect of the two-
dimensional pressure on the orthorhombic transition
would enter into the picture. It is expected that the
two-dimensional pressure, as presently applied to two
of the pseudo-cubic axes, will cause a very large de-
pression of the orthorhombic transition. The reason for
expecting this is that the elongation that accompanies
the spontaneous polarization would be working in part
against a component of compression, when the polariza-
tion direction snaps into a new direction at 45° to the
direction in which there is no component of stress. The
rhombohedral phase would likewise be suppressed by
the two-dimensional pressure as applied at present.
From the magnitudes of the effects of two-dimensional
and of hydrostatic® pressures on the orthorhombic
transition, it will be possible to obtain information
about the shear terms in Devonshire’s expansion.
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