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and the generally decreasing atomic volume. Ke may
speculate as to whether the tighter binding in the case
of Gd is primarily to be associated with its ferromag-
netism. A determination of the characteristic tempera-
ture of Lu will thus be of interest.
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The isotope effect in superconductors is usually summarized by giving the observed values of p in the
equation M&T.=constant, where M is the isotopic mass and T, the superconducting transition temperature.
Frohlich predicted the value p=1/2, but the measurements in some instances show deviations from this
prediction. An explanation of the deviation of p from 1/2 is offered based on an analog of Wien s displace-
ment law apphcable to the vibration spectrum of real crystal lattices. The departure of p from the value

1/2 is attributed to the departure of the frequency spectrum from a simple power law. For many super-

conducting elements, p may be estimated from specific heat data, when such data are available to the
desired degree of accuracy. A value of p is calculated for Sn which is in good agreement with some of the
experiments. The large value 0,73 observed for Pb is shown to be reasonable. The values of P for the other
superconducting elements are discussed. It is concluded that the observed deviations of p from 1/2 are not
necessarily in conflict with the theories of Frohlich and Bardeen.

INTRODUCTION

HE various isotopes of a superconducting element
have diRerent transition temperatures T,. This

is the isotope eRect discovered simultaneously by
Maxwell of the National Bureau of Standards' and by
Reynolds, Serin, %right, and Nesbitt of Rutgers Uni-

versity. ' Shortly after the discovery, the Rutgers group
showed that the data of the mercury isotopes could be
correlated by the formula M'T, =constant, where M
is the isotopic mass. '4 Since then, it has become cus-

tomary to represent the data in the form'

M~T, =constant,

and to express the experimental results in terms of the
power p. Actually, the range of M and T, is so small

that one observes more nearly the equivalent relation,

MdT, d logT,

TdM d logM

arising from a plot of T, ~ersls 3f, or of logT, versls

logM.
Measurements have been made of the isotope eRect

' E. Maxwell, Phys. Rev. 78, 477 (1950); 79, 173 (1950).
2Reynolds, Serin, Wright, and Nesbitt, Phys. Rev. 78, 487

(1950).' Serin, Reynolds, and Nesbitt, Phys. Rev. 78, 813 (1950); 80,
761 (1950).

4 Serin, Reynolds, and ¹sbitt, Phys. Rev. 84, 691 (1951).
'Herzfeld, Maxwell, Scott, Phys. Rev. 79, 911 {1950).

for Sn, Pb, Hg, and Tl.4 ~" A review of the data to
the end of 1952 can be found in an article by Maxwell. "
The results seem to indicate that p is close to sr for
some metals, with, however, significant departures,
particularly for Pb. The observed values of p are shown

in Table I taken from Maxwell's review article. "
At the time that the data were being collected which

led to the discovery of the isotope eRect, Frohlich" was

developing a theory of superconductivity which at-
tributed the cause of superconductivity to the inter-
action of the electrons with the phonon field. The theory
was developed for the temperature O'K and led to a
threshold magnetic field IIO proportional to M &. From
this, one surmises that T,~M: from the fairly well

established correlation Ho~ T,. Thus, one can take
Frohlich's theory as having predicted the isotope eRect.
Bardeen also proposed a similar theory at about the
same time. A review of both theories has been given by
Bardeen. " Neither theory has been developed to the
extent required to include significant departures from

the -', power law.

6 E. Maxwell, Phys. Rev. 86, 735 (1952).
'Lock, Pippard, and Shoenberg, Proc. Cambridge Phil. Soc.

47, 811 (1951).' Reynolds, Serin, and Lohman, Phys Rev. .86, 162 (1952l.
Allen, Dawton, Bar, Mendelssohn, and Olsen, Nature 166,

1071 (1950).
'0 M. Olsen, Nature 168, 245 (1951).
"E.Maxwell and O. S. Lutes, Jr., Phys. Rev. 86, 649 (1952).
'2 E. Maxwell, Phys. Today 5, No. 12, 14 (1952).
"H. Frohlich, Phys. Rev. 79, 845 (1950)."J.Bardeen, Revs. Modern Phys. 23, 261 (1951).
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TABLE I. The observed values of P of Eq. (2).

EIement

Sn
Sn
Sn
Sn
Pb
Hg
Tl

0.505&0.019
0.462&0.014
0.46&0.02
0.50
0.73&0.05
0.504
0.50&0.05

Source

Maxwell'
Lock, Pippard, and Shoenbergb
Serin, Reynolds, and Lohman'
Olsen, Bar, and Mendelssohn~
Olsen'
Reynolds, Serin, and Nesbitt'
Maxwell

a See reference 6.
b See reference 7.
e See reference 8.
"See reference 9.
e See reference 10.
f See reference 4.
I See reference 11.

In this paper, we shall develop an idea already pro-
posed" and show how it leads to departures of the
power p from the value —', . The discussion here is inde-
pendent of the theories of Frohlich and Bardeen, though
it may be regarded as supplementing these theories. We
are concerned here with the dhsappearamce of super-
conductivity at T, rather than with its cause.

"J.de Launay, Phys. Rev. 79, 398 (1950).' See, for example, Charles Kittel, Introdlction to Solid State
Physics (John Wiley and Sons, Inc. , New York, 1953).

THE CRITICAL TEMPERATURE

The properties of a superconductor change as the
temperature rises from O'K to T,. In order that these
properties be temperature dependent, the electrons
must be sensitive to the phonon bath in which they
reside. At what the observer calls a "critical tem-
perature T„"we may say that the electrons find them-
selves in a "critical phonon field. " When the phonon
field is less excited than the critical state, the metal is a
superconductor; when the field is more excited than the
critical state, the metal is a normal conductor. This
much follows rather trivially from the experimental
facts and elementary notions from the theory of metals.

Now suppose that a given superconductor is at the
temperature T, and imagine that the mass of the atoms
is decreased slightly without changing the temperature.
Then, from lattice dynamics, the phonon fieM is less
excited than the critical state and the metal is a super-
conductor. Thus, it is of secondary importance to the
electrons that the temperature did not change. To
return the phonon field to the critical state, while main-
taining the mass at its lower value, heat must be
supplied. This increases the temperature to a new T„
higher than the original value.

The question then is how shall we relate the critical
phonon field to T,. The wavelengths, or more accu-
rately, the propagation vectors, of lattice waves are
determined by the lattice geometry and boundary con-
ditions" and not by the mass of the isotope. This
results in the frequency v and velocity c being propor-
tional to M ' for a given propagation vector. We suspect,
too, that it is the propagation vector of lattice waves

(and perhaps only the longitudinal component of these
waves) which is important in interactions between
electrons and lattice waves. Consequently, we shall
characterize the state of the phonon field by the energy
density E(X) at some wavelength X. We do not know
what wavelengths are the most important, so we suppose
that it is sufhcient to identify the state by the wave-
length X at which EP) is maximum. Beginning with
a given temperature T„a change in M shifts the peak
of E(X). This shift may be restored by a corresponding
change in T„and thus a generalization of Wien s dis-
placement law applicable to real lattices will be derived.
From this we can evaluate p.

hvg(v)dv
E(v)dv = const

~hv/kT
(3)

to derive the atomic heat. The energy of the modes with
frequencies between v and v+dv is E(v)dv. The dis-
tribution of the modes is represented by g(v). Trans-
forming from the variable v to the variable X in Eq. (3),
we obtain

g(c/X)dX
E(X)dh=const

),3 (~hclsTX ])

Setting the derivative dE/dX equal to zero and using
the abbreviations

and
x= hv/hT= hc/hTP„

X dg v dg d logg(v)
A=3 ———=3+-—=3+

g A. fly Qlogv

we find the following displacement formula:

e—*=1—x/A.

0'
0

FIG. 1. The intersections of the parametric curves representing
Eq. (6) yield the value of x. The straight lines are the plots of
y= 1—(x/Al for the indicated value of A. lt can be seen that for
A)3, a good approximation is a=A. .

THE DISPLACEMENT LAW

It is customary in lattice dynamics to employ the
expression"
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The displacement law represented by Eq. (6) is more
general than that required at the low temperatures at
which superconductivity usually occurs. In our domain
of interest g(v) is an increasing function of v so that A

is greater than 3. If we write Eq. (6) in the parametric
form

y=e *, y=1 —x/A

and plot the system of curves for A &~3 shown in Fig. 1
we see that the solution of the transcendental equation
1S

gfv)

=="~~C~ D

lI 11+III

l~

)

Formula (7) gives a value of x too large by the amount
Ae ~. In most cases this correction is negligible.

Using Eq. (5), Eq. (7) can be written explicitly as

hc hc ( dlogg)
T= A-i=

( 3+
h) „hX„E d log v &

(8)

1 v d t' dloggq
p= ————logi 3+

2 2dv E d loge)
(9)

An alternative form of the isotope law which we shall
find useful is )see Eqs. (5) and (9)$:

M dA=-+—
2 AdM

(10)

LATTICE VIBRATIONS AND THE ISOTOPE LAW

Not very much is known about g(v) for real mon-

atomic lattices. The only adequate calculation of a
lattice spectrum to which we can refer, at the present
time, is that of Leighton for the face-centered cubic
monatomic lattice. "Figure 2 shows g(v) of each of the
three branches (broken curves) and the sum (continu-
ous curve), for a special choice of the elastic constants.
The general character of the curve for g(v) does not
depend, however, on these constants. We do not expect,

"R.B. Leighton, Revs, Modern Phys. 20, 165 (1948).

THE ISOTOPE LAW

Let us formulate the isotope law for the special case
in which g(v) is an increasing function of v. From Eqs.
(2) and (8) (with T= T,), we obtain for p:

M dT M d (hc q |' dloggq-'
II 3+

T dM T dM Eh), ) t dlogv)

Since c varies as M ', we can diGerentiate c with respect
to M, where it occurs explicitly, and obtain

1 d |' d loggy
p= —+M logi 3+

2 dM ( d logv2

Now we also have v ~ M &. Thus, we can transform the
last expression to the more convenient form

0.5 I.o

Fio. 2. A plot of g(v) its v taken from Leighton (reference 17),
The unit of v here is its maximum value. The broken curves show
the three branches I, II, III. The solid curve is the sum of these
branches.

either, that the qualitative properties of the curve will
change greatly from one crystal class to the next. So we
shall assume that the qualitative aspects of g(v) pre-
sented in Fig. 2 are typical of the metallic elements.

Figure 2 shows the spectrum divided roughly into
four regions: A, 8, C, D. In regions A, 8, and C, g(v)
is an increasing function of v, but in the remainder D,
the function g(v) decreases on occasion. So our com-
ments must be limited to regions 2, 8, and C. For-
tunately, the superconducting elements all have domi-
nant wavelengths at T, confined to these regions. It
will help the discussion if we write g(v) in the form

g(v)=81v+Gsv+ ' ' ' =Q 8~v
1

(12)

in which all of the coe%cients are positive. This has
been pointed out by Leighton. ' Comparing this with
Eq. (11),we see that E(v) begins with the value 2 near
v=o, and increases steadily, approaching some value
between 2 and 2e. We have labelled this region by A.
In the region 8, Ã is decreasing, and decreases more
rapidly with increasing s than it did in region A. In
region C, X does not seem to be changing very much,
though it is difficult to be certain. Another of Leighton's
curves (not shown in Fig. 2) shows the curve in region
C concave downward instead of upward.

We shall next examine the qualitative behavior of A
in regions A and 8, and from this, estimate the behavior
of p. If Vis a constant, then it follows from Eq. (5) that

A= 3+X. (13)

In this case, Eq. (10) shows that P= sr. In region A,

g(v) =constv~&"'.

The value of $(v) is 2 for a simple Debye spectrum. For
a real lattice, X(v) is a variable approaching the value
2 at low frequencies. From the lattice dynamics of face-
centered cubic crystals the low-frequency end of g(v)
can be represented by the polynomial
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A

3+N
First we compute p by substituting from Eq. (12)

into Eq. (9), obtaining

(a) Region A (b) Region A M~ p=- ——v—logLQ(2n+3)b„v "/Q b„vs"$, (14)
2 2dv 1

5+8

5
(c) Region 8

5
(d) Region B M

FIG. 3. The schematic behavior of A vs v, and h. vs 3f in regions
4 and 8 of Fig. 2. 3f and v are in arbitrary units. The function
A changes more rapidly in region 8 than in region A.

where b„ is the ratio a„/ax. If all coe%cients b„are
positive, we see at once that p(~s.

Next we compute the atomic heat by substituting for
g in Eq. (3) from Eq. (12), integrating over the range
0~& v~& ~, and then differentiating with respect to T.
The result is

0.5

0

IJr
I

I

I~I~ 8&
I

FIG. 4. The schematic behavior of p as a function of the
frequency at which the peak of E()) occurs.

N(v) changes from 2 to some value X()2). The schem-
atic behavior of A as a function of v is shown in Fig.
3(a). Figure 3(b) shows the schematic behavior of h.
as a function of M(v~M &). The corresponding be-
havior of A. in region B is shown in Fig 3(c.), (d). The
behavior of p can now be ascertained. In Fig. 3(b) we
see that dA/dM is negative, while in Fig. 3(d) it is
positive. Consequently, from this and Eq. (10), we
deduce that when the dominant wavelength falls in
region A, then p( —', ; and in region B, then p) —', .
Furthermore, since dA/dM can be larger in B than in A,
we can expect larger deviations from —', in 8 than in A.
A schematic representation of p in regions A and B is
shown in Fig. 4.

So far, the discussion has been purely qualitative.
This has been primarily because of the lack of any
really quantitative information concerning the func-
tions g(v) for the various superconductors. However,
in the region A, which we de6ne as that region in which

g(v) is described by Eq. (12), we shall make a quanti-
tative calculation of p in terms of quantities obtainable
from atomic heat data. Most superconductors have
their transition temperature T, in the Debye T region
of atomic heat. The measured atomic heat however,
does not fit a T' law, even after allowance has been
made for the electron contribution. Regarding the
Debye characteristic temperature On as a function of
the temperature rather than a strict constant, one
obtains from the data curves similar to the one shown
in Fig. 5. Now we can calculate both p and O~ii from the
polynomial form of g(v). The formulas so obtained
enable us to compute p from the atomic heat data.

B (2&)2 ++2 (P/h) s n+2T2 n+I

1
(15)

where E is a constant. The b„are identical with those
in Eq. (14). B„is the mth Bernoulli number (Bx——1/6,
Bs=1/30, Bs 1/42, e——tc.). From Eq. (15), we easily

I.G =

0.9-

0

l

A —== 8~
I 1

) g

O. t

Fxo. 5. A plot of O~n/Oo vs T/0'0. The xegions A and 8
correspond qualitatively to those of Fig. 2.

obtain for O~, the relation

' 1++ b (2n.)'" '(kT/h)'" '
ODs Ov'. s Bs

(16)

Let the symbol 9 denote the fraction (Os —OD)/0, .
It is evident that if b2 is positive, then 8 is positive and

In the derivation of Eq. (16), we disposed of such
constants as K by defining Os as the value of Oz& at
T=O'K. In principle, one determines the coeKcients
b„of Eq. (16) by fitting the formula to the results of
experimental work presented in the form illustrated in
Fig. 5. Then p is determined by the substitution of these
values of b„ into Eq. (14).

In many cases, T, occurs at such a low temperature
relative to O~s that only the T' term in Eq. (16) need
be considered in the polynomial. For these cases, Eq.
(16) reduces to

20m' (kT
~

'-
OD=Oo 1—bs

21 Eh)
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less than unity. Ke have for 0:

20m' f?eT )
'

21 E?t )
(17)

The corresponding formula for p is

0.4bgv'-

2 (1+bshe)L1+ (7/5)bshe)
(18)

We now wish to express bsv' occurring in Eq. (18) in
terms of known quantities. Using Eq. (17), we first
notice that

2 (1+2.668) (1+3.72t?)

There is son. e reason to believe that the electrons
interact principally with longitudinal waves. An iso-
tropic crystal has a branch of purely longitudinal waves
(III of Fig. 2) and two branches of purely transverse
waves (I, II, of Fig. 2). A real crystal, however, is
anisotropic and all three branches contain waves which
are neither longitudinal nor transverse. If the average
wave of branches I and II has as much as 10 percent of
its amplitude parallel to the propagation vector, then
these longitudinal components of the waves dominate
those in branch III at low temperatures. If, in addition,
the distribution of longitudinal components in branches
I and II follows g(t) in region A, then formula (19)
will still be valid.

COMPARISON WITH EXPERIMENT

The data of Keesom and van Laer for Sn give'"

HD ——Os (1—0.0033T')

From this we obtain 8=0.0455 and p=0.463. A 10

'8 W. H. Keesom and P. H. van I.aer, Physica 5, 193 (1938).

Experimental data on atomic heat indicate that, '

in the
range of Eq. (17), ~8~ (0.1 Also the correction to —,

' in
Eq. (18) is small compared to —',. This permits us to use
the approximation (Itv/?eT) 5, the value for a Debye
spectrum. Consequently, a good approximation to the
value of b~v' is

bs v' 1058/4~'

When this is substituted into Eq. (18), we finally
arrive at a simple formula for p in terms of the well-

defined quantity 0:

1.060

percent error in the coefFicient of T' corresponds to
only about 2 percent error in p. The first three data for
Sn listed in Table I are the results of magnetic measure-
ments whereas the fourth is not. The average of these
three compatible data is 0.475. If we consider only the
second datum, the agreement is rather good.

The OD —T curve of Pb shows an inflection near
5.5'K and a minimum near 9'K. Thus T„which is
7.2'K, falls in region 8 of Fig. 5. This shows that Pb is
likely to have a value of p greater than —,

' and that the
rather large value 0.73 is entirely feasible.

The atomic heat data for mercury and thallium are
not sufficiently well known to enable us to compute p.
However, since T,/Os 0.04 for Hg, T, is near the
inflection point near which the regions A and 8 join.
Thus the value of P for Hg should be almost rs, though
it is difficult to ascertain whether the value is slightly
greater or less than —', . Thallium is definitely in region
A and thus p should differ only slightly from s. Thus
the values of p shown in Table I for these two elements
are consistent with the theory.

DISCUSSION

Zt is possible to make an estimate of p for the re-
mainder of the superconducting elements. Lead has the
highest ratio T./0 ( 0.08). The next highest ratio is
that of Hg, and probably La, being about 0.04. All
other known superconducting elements have values of
T,/0 considerably less than this, and in about half
these elements, less than 0.01. On this basis, Pb is
probably the only superconducting element with p sig-
nificantly larger than 2. Practically all of the elements
should have P= rs or very slightly different from sr. Of
these elements, there exist accurate atomic heat data
only for In."According to these data, 0=0.0113 and,
therefore, p= 0.489.

If the treatment of the isotope effect given in this
paper is correct, then the observed deviations of p from

are not in conRict with the value ~ predicted
by Frohlich inasmuch as his value was based on the
theory at O'K.~

The author wishes to acknowledge here the OD —T
curves of various superconducting elements kindly
provided by J. R. Clement, and the stimulating con-
versations on the subject of this paper held with both
Clement and R. T. Webber.

"J.R. Clement and E. H. Quinnell, Phys. Rev. 92, 258 (1953)."It is true that the mes, surements on Sn by Lock et al. (refer-
ence 7) suggest a 0.462 power for the relation M&Hp ——constant.
However, one cannot overlook the fact that this value is an extra-
polation to 0 K. Further, if one takes the value of 0.462 for the
effect on T. and 1/2 for that on Hp, the value of AHp would then
be 9.5 instead of 8.9 gauss. This value is not in disagreement with
the data, if the data of their "virgin material" are also included.


