
RAD IATIVE EFFECTS IN MESON —NUCLEON SCATTERING 615

(inlnite) set of graphs: the ladder approximation arising
from use of the meson-nucleon equation. ' Such a calcu-
lation represents another extreme in approximation
schemes: it drops terms with many mesons in the field
in favor of higher order (iterated) scattering graphs.
However, any method which arbitrarily neglects an
infinite number of relevant terms is, of course, open to

the objection that inclusion of these other graphs could
vitiate all its conclusions.
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The Dirac 6eld, as perturbed by a time-dependent external electromagnetic 6eld that reduces to zero on
the boundary surfaces, is the object of discussion. Apart from the modification of the Green s function, the
transformation function differs in form from that of the 6eld-free case only by the occurrence of a 6eld-
dependent numerical factor, which is expressed as an infinite determinant. It is shown that, for the class of
fields characterized by finite space-time integrated energy densities, a modi6cation of this determinant is
an integral function of the parameter measuring the strength of the 6eld and can therefore be expressed as
a power series with an in6nite radius of convergence. The Green's function is derived therefrom as the
ratio of two such power series. The transformation function is used as a generating function for the elements
of the occupation number labelled scattering matrix S and, in particular, we derive formulas for the prob-
abilities of creating n pairs, for a system initially in the vacuum state. The general matrix element of S is
presented, in terms of the classi6cation that employs a time-reversed description for the negative frequency
modes, with the aid of a related matrix Z, which can be viewed as describing the development of the system
in proper time. The latter is characterized as indefinite unitary, in contrast with the unitary property of S,
which is verified directly. Two appendices are devoted to deterniinantal properties.

TIME DEPENDENT ELECTROMAGNETIC FIELDS [(IV 3I)J
'HE previous paper in this series' dealt with the

Dirac field, as coupled to a second prescribed
Dirac field. Vile shall now discuss the e6ect of coupling
with a prescribed Bose-Einstein field, using the example
of the electromagnetic field. The Lagrange function and
field equations of this system are presented in Eqs.
(IV. 1, 2).

The simplest extension of the work of IV is obtained
by supposing that the external electromagnetic field
vanishes in the vicinity of the boundary surfaces 0&

and a-&, while assuming arbitrary values in the in-

terior of this region. We shall retain the gauge A„=O
to describe a zero field. The decomposition of the
Dirac field into positive and negative frequency com-

ponents on 0-1 and 0.2 can be performed as in IV, and
the history of the system between r& and 0-2 will be de-

scribed by the transformation function (x& &'o., l
x&+&'p.&).

The source substitution (IV. 33) produces the latter
from the transformation function referring to zero eigen-

values,

(Oo t l
Oo s) = exp(AVp).

The dependence of V)0 upon the source is expressed by

' J. Schwioger, Phys. Rev. 92, 1283 (1953).

where now

(2)

~.[—i~.—e~.(x)3(4 (*))+m(4 (*))=n(x),

[ia„—eA„(x))(P(x))y„+mg (x) )= q (x),
(3)

are the equations to be solved in conjunction with the
boundary conditions (IV. 40, 41). The associated
Green's function [Eqs. (IV. 42, 43)j thus obeys the
differential equations

p„[ sB, eA„(—x)jG—+(x,x')+mG+(x, x')

= [i8„' eA„(x'))G—+(x,x')y„+mG~(x, x') =5(x x'), (4)—

and the boundary condition that G+ as a function of x,
shall contain only positive frequencies for'xo) xo', A,
and only negative frequencies for x«xo', A. We have
indicated by xo&A and xo&A that the domain of non-
vanishing field is confined, respectively, to earlier or
later times than xo. The same statements apply with x
and x' interchanged.

The compatibility of these two forms of the boundary
condition, for arbitrary A„, can be ascribed to the
charge symmetry of the theory. If the second di8er-
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with x(I—x0'—+&0. The symbol tr expresses diagonal
summation with respect to the spinor indices. Now

tl 1

~„Q (x))7,= (Cx')G, (x,x')~&(x')
~ It2y„[ i—a„+eA„(x)7.G~(x,x')

+m,G+(x,x') =b(x—x'), (5) p 0'1

=i ' (dx') (P (x)P (x')brl(x'))+, (l3)where
,G+(x,x') =CG+"(x',x)C '

fr C—1~ C

(6)

(7)
so thatand

(14)

ential equation for G~(x,x') is transposed with respect
to the spinor indices and x interchanged with x', we
obtain the diGerential equation for the charge conjugate
Green's function

The charge conjugate Green's function is thus obtained
from G+ by the substitution 3„—+—3„.The relation
inverse to (6),

which reduces to (IU. 83) in the absence of an electro-
magnetic field. Accordingly,

G„(x,x') =C.G~'"(x',x)C ', (j„(x))70——ie try„G+(x, x), (15)

now shows that the boundary condition obeyed by
G~(x,x'), in its dependence on x', is the same as that of
G~(x', x).

The integration of the differential expression (2)
yields

VPo= " (dx) (dx')iI(x)Gp(x, x')g(x')+w, (9)

where m is the constant of integration, which charac-
terizes the null eigenvalue transformation function in
the absence of sources. We can no longer argue that
this constant vanishes, in view of the presence of the
external electromagnetic field. The resulting trans-
formation function differs in form from (IV. 46, 47)
only by the addition of m to VP. In particular,

(x' ' Ix'+' )7
I

=exp ~w+~ d „Jfda', 0'(x)

where G+(x,x) is defined by the same averaged limit as
in (12). To construct w, we must integrate the dif-
ferential expression

bw= )I (dx) triey„8A„(x)G+(x,x), (16)

with the initial condition that z =0 for A„=O.
It should be noted that z is an even function of the

external Geld, and therefore is an even function of e.
This aspect of charge symmetry follows from the ob-
servation

try„G+(x, x) = trq„'"G+ "(x,x)
= —try„,G+ (x,x),

which shows that

is an odd function of the external 6eld. Hence, m is an'
even function. It is also worth remarking that m is a
gauge invariant, Lorentz invariant quantity.

Infinite Determinants

where 70 indicates the restriction to zero sources.
The dependence of m upon the electromagnetic field

is expressed by

p 4'1

byte= (dx)bye (x)
-0

To obtain explicit formal expressions for m, we intro-
duce a notation in which the spinor indices and space-
time coordinates are regarded as matrix indices. Thus,
the differential equations for the Green's functions are
written as

[z(P—eA)+m7G+= G+[p(P —eA)+m7=1, (19)

where

(Cx)SA„(x)(j„(x)), (11)
—eo -0

and the diGerential expression for m becomes

"em= Tr(iey5AGp) = Tr(G+ieybA), (20)

j»(x) =ekL4(x) VA (x)7
= — t v.(N(*)k( ')) (*,*')7"-*, (12)

and we have used the notation of (IV. 35). In the second
version of the current vector, it is understood that an
average is taken of the two limiting forms obtained (yp+ m) Gp'= Gp'(yp+ m) = 1. (21)

where Tr represents the complete diagonal summation,
with respect to continuous coordinates and discrete

spoor indrces.
We shall employ the Green's function for the zero

field situation, which obeys
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If we multiply the two equations of (19) with G~, on eter )& yields, according to (25),
the left and right, respectively, we get the integral
equations 5 log det(1+I&K) = Tr(1+XK) 't'&XK.

~X

g (1+I&K) = (1+I&'K) 'dl&, 'K
0

which have the symbolic solution
lo

G+——(1—G+'eyA) 'G+' ——G+'(1—eyAG+') '. (23)
we 6nd that

G o~&A)G G (1 &»AG o) G o (22) If we define the logarithm of the matrix 1+XK by

(32)

(33)

Hence,

ibm= Tr[(1—eyAG+') '8(—eyAG+'))

= Tr[(1—G+'eyA) '5(—G+'eyA)).

We thus encounter the diGerential expression

TrX '8X=&&(log detX),

det(1+XK) = exp[Tr log(1+XK)). (34)

(25)
where

00

Tr log(1+I&K) =Q(—1)" '—I&"K (35)

(24) Under appropriate circumstances, the matrix log (1+)&E)
can be expanded in powers of X and

which, together with the initial condition, det1=I, E„=TrE .
completely defines the determinant' of a matrix (or
operator, Therefore If we then expand the exponential in (34), we getj s

(36)

e' = det(1 —eyAG+') = det(1 —G+ eyA). (26) det(1+ XK) =Q X"d., (3&)

The identity of the two forms expresses the deter-
minantal property (E )ihi ( iK )k2 (iK )k3

det(1 —G+'eyA) = det[G+'(1 —eyAG+') (G+') ')

&7AG o) in which the summation is extended over all non-(27)
+

negative integers k~, k~, such that
We have shown that zv is an even function of e.

Hence, we must have
m= ki+2k2+3k3+ (39)

e&~ det(1+eyAG+0)
The direct expansion' of the determinant is expressed

(28) by the coefficient

e'"'"= det (1 e'yA G~'yAG+'), — (29)

which would be the result of constructing w from (18).
The relation between the values of e'" for two diGerent
fields can also be obtained by determinant multipli-
cation. We first observe that (26) can be written

which can also be derived directly from the transposi-
tion property of determinants. An explicitly even for-
mula now follows from the multiplication property,

d„=—
~I (dxi) ~ (dx„) det&„&E(x,,x;),

nf ~

where the summation over spinor indices is understood.
The identity of the two expressions, (38) and (40), is
established by remarking that each of the ef terms in
the development of det&„&E(x;,x;) consists of one or
more cycles in the variables. Thus, for m= 6, one of the
terms is

Hence,

e'"=det[(G ) 'G o) (30)
—[K(x,,x,))[K(x„x3)K (x3,x.))

[K(x4,x&;)K (x&;,x6)K (x&&,x4)).

exp (iw&'&)/exp (Av &'&)

= det[1 —ey(A&'& —A&'&)G &'&)

On carrying out the integrations, this will yield the
product of three traces, EiE~3. In general, we—shall

=det[(G+'»)-iG, O) det[(G„D)-iG &2&) 6nd k& unary cycles, k2 binary cycles, etc. , and these

(31) integers are related to n by (39). The number of terms
= det[(G+"') 'G+&2&) that have the magnitude Ei~IE2~2 ~ is

The matrices that enter in these determinants are of
the form 1+XK.An infinitesimal change in the param-

~ The equivalence of this definition with the customary one is
shown in Appendix A.

p, t2»p, ~3»p, t

(41)

' See, for example, E. T. Whittaker and G. ¹ Watson, Modern
Analysis (Cambridge University Press, t "ambridge, 1927), Sec.
11.2. A derivation, with the aid of operator methods, will be found
in Appendix B.
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where the powers of 2, 3, . express the cyclic sym- provided that
metry of the traces. A binary cycle contains an odd
permutation, and in general the sign factor is

TrEE~& ~.
The modi6ed determinant is then an integral function

(42) of X, and we can assert that the Taylor series (44)
converges for all X. The same statements apply to
det" (1+IiE), since

( 1)k4+k4+

The resulting expression for (40) is just (38).
The quantity

!TrE'! & TrIsKt. (53)
(43)det'(1+IiE) = e r""x det(1+RE)

Bx det'(1+XE)
=det'(1+RE) Tr[((1+liE) '—1)ME)

(54)= —det'(1+), E)Tr[(1+II,E) 9,KMK7

det'(1+LE) =P X"d ',
n=o

(44)

the coefficients
which indicates that the quantities

The dependence of det'(1+LE) upon the elements of

is evidently obtained from det(1+&K) by placing the matrix E is described by
E&=0. Accordingly, in the power series expansion

d '=— (dxi) (dx ) det(„)'K(x, ,x,) det'(1+ XK) (x
~
(1+XE) 9 E

~

x')
= —(B/Bl~E(x', x)) det'(1+II, E) (55)

contain determinants which are obtained from those of
d„by omitting all unary cycles. This is equivalent to
striking out the diagonal elements of the e-dimensional
matrix. Similarly,

are integral functions of ). Now

(B/BE (x',x))d 2' —E(x,x'——),
aild

(56)

det" (1+liE)= exp[ —TrXE+ ~ Tr),'K']
(B/BE(x',x))d '

Xdet (1+!I,E) (46)

has a power series expansion in terms of determinants
from which all unary and binary cycles are omitted.
However, the latter process cannot be represented by
simply omitting elements of the matrix.

The modi6ed determinant det'(1+!I,E) obeys the
fundamental inequality

)
det'(1+l)K)

~

' &exp[TrliE(XE)tg. (47)

To prove this, we erst remark that

(
det'(1+!),E) (

'
= exp[ —TrXEj det(1+I%.E) exp[ —Tr(XE) t$

Xdet(1+RE) t (48)
= exp[Trl~E(XE) t$ det'[(1+RE) (1+LE)tj.

If II= 1+A represents a Hermitian, non-negative
matrix, we have

1
=—iI (d») (dx ) Z &(x'—x)B(x—x)

iwi

X (B/BE(x;,x;)) det(„)'E(x;,x,)
(5&)

(dxa) . (dx.)[(B/BE(xg,xi))
(ri—2)! ~

Xdeti„) E(x;,x )jzi =x,z2 =x,
so that

det'(1+II.E)(x
~
(1+RE)—9,E

~

x')

K (x,x'), E(x,x,)
Xdet (n+i)

E(x;,x'), E(x;,x,)

det'II= exp[Tr(log(1+A) —A) j& 1, (49) is a power series with an infinite radius of convergence,
under the stated condition on E. We have employed a
determinantal notation which corresponds to the par-
titioning of the m+1 dimensional array with respect to
the elements of the first row and of the erst column.
The discarding of unary cycles here implies the omission
of all diagonal elements save the first, E'(x,x').

In a similar way, we have

since, for every eigenvalue 1+A')0, there exists the
inequality

(50)log (1+A')—A' &0.
Hence,

(51)det'[(1+RE) (1+M)tf &1,

which establishes4 (47).
We conclude from this inequality that det'(I+&E)

is devoid of singularities throughout the finite X plane, Bir de" (1+~K)
4 One can also prove (47) with the aid of Hadamard's inequality,

= det" (1 XK)Tr! ((1 I~IO ' —1 XIOXBE!
R. Courant and D. Hilbert, 3/IethoderI, der Mathenzctzschem Physzk
(Interscience Publishers, Inc. , New York, 1943), p. 3I.
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so that

det" (1+)~E)(x t (1+)tE) 9,'E'
~

x')
= (5/Q, K(x',x)) det" (1+)tk) (6o)

00

= —Q &"+'— (dxi) (dx„)
e! &

0 E(x,x;)
Xdet(n+1)"

E(x;,x'), E(x;,x,)
(61)

The omission of E(x,x ), in comparison with the series
(58), corresponds to its origin by differentiation from
the binary cycle term —,'Trl. '.

To employ these results, we first place

) IC= —e'yAG+'yAG+'. (62)

is an integral function of P, which is represented by the
convergent power series

det" (1+)Z) (x
~

(1y)tZ)-i)~sr&
~

x')

for the coe%cient of e' in the expansion of m. Inci-
dentally, since im is the logarithm oI an integral func-
tion, its Taylor series will, in general, have a finite
radius of convergence, which is the magnitude of the
smallest root possessed by the integral function (67).

With the knowledge that det" (1—eyAG+o) is an
integral function, we turn to (61) which provides infor-
mation about the elements of the matrix

(1—eyAG o)—' 1 ~YAG o

= eyA $G+o(1—eyAG+') ' —G+')
= eyA (G+—G+').

(69)

t n

=Z(—~)"—II (dx) . (dx-) tr II(&'A(x'))
~t J 1'=

On removing the factor eYA(x) from both sides, we
obtain the power series representation of the integral
function

det" (1—eyAG+') $G+ (x,x') —G+'(x,x')]

We shall show later that the condition (52) on E holds
for a certain class of electromagnetic fields. Then

0, G,o(x,x,)-
Xdet(~1)"

G+'(x;,x'), G+'(x;,x,)
(70)

det'(1 e'pA G+'pA G+') = ex—p[e'TrpA G+'yA G+']e""

is an integral function of e, or of the parameter measur-
ing the strength of the field. But, according to (26) and
(46), we also have

The Green's function G~(x,x') is thus obtained as the
ratio of two integral functions, ' which are each ex-
hibited explicitly as inlnite series. We can also present
(70) in terms of the matrix I, defined by

det" (1—epAG+o) = exp[~e'TryAG+oyAG+']e'", (64) G+ G+o+G+'IG+', —— (71)

in which we have used the fact that

TLAG 0= —TryA, G '=0,

since G+ =,G+'. Hence

(65)

Thus,
&&I(x",x"')G+'(x"',x'). (72)

G, (x,x') =G,o(*,x')+ (dx") (d*"')G,'(x,x")

det'(1 —eoyAG o&AG+o) fdet" (1.—eyAG+o) y (66) det "(1 eyA G+') I(x,x—')

00

= 1++e'" — (dxi) (dxs.,)
(2rs) t J

Xtr g(y, A(x;)) det& „&"G+o(x;,x,.) . (67)

We have exploited the known even character of this
function, and wri. t ten

m» = '-,i TLAG+'yAG+' (68)

which shows that the power series expansion for
det" (1—eyAG~o) cannot have a finite radius of con-
vergence, since this would contradict the integral
function property of the left side in (66). Therefore
(64) is an integral function of e, which is represented by
the convergent power series

exp ( se'ttii) e'"—=det" (1—eyAG+')

00 f n

=g(—e)"— (dx ) (dx„) tr Q(y,A(x;))
n-1

0, 5(x—x) -~
&&det( +i&

' (73)
8 (x,—x'), G„'(x;,x;)

in which 5 (x.—x,) and 8 (x;—x') also imply delta symbols
for the suppressed spinor indices.

ln discussing the condition (52), where )E is given

by (62), it is well to notice that the value of det'(I+XX)
is not affected by replacing K with f 'Ef, where f is
an essentially arbitrary function of x, concerning which
we only require that it exhibit the space-time localiza-

' This result can be identified vrith the solution of the integral
equations (22) by the methods of Fredholm, Hilbert, and Poincarb,
We have, in effect, developed the requisite parts of this theory
directly from the differential form (25}. Applications of the
Fredholm procedure to the theory of scattering have been made by
several authors LR. Jost and A. Pais, Phys. Rev. 82, 840 (1951);
A. Salam and P. T. Matthews, Phys. Rev. 90, 690 (1953)g.
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wi ——— (dx) (dh')-,'P„„(x)wi(x—x')F„„(x'),
J

tion of A„(x), consistent with the same property for elsewhere can be transformed without diRiculty into
f(x) 'A„(x). Thus, we may say that f(x)= (A(x))&,
where A(x) measures the magnitude of the potential
vector for the external field. Then

Tr7iK(XK) t= e' (dx) (dx') (dxi) (dx2)
J

Xtrt f(x) 'yA (x)G+'(h, xi)yA (xi)G+'(xi, x')

Xf( ')'voG-'(*', )vA( )

where

00

wi(x —x') = ~ «d«[(1 (2—m/«)')~
4x'

—-', (1—(2m/«)') I)b~(x—x', «), (81)
and

XG 0(x2,x)yA (x)f(x) 'yo), (74)

and the integrations are all confined to the interior of
the region occupied by the field. Conditions for the
finiteness of this integral thus refer to the possible
singular character of the Geld in the vicinity of a point
(or points). Let us suppose that

A (h)-L(x —xo)')-'*&'-» =
~

x—xo ~-&'-» (75)

in the vicinity of xo. The convergence of the integral
involves the behavior of G+'(x,x') for x x'. Since the
Green's functions satisfy a first-order diGerential
equation with a four-dimensional delta-function
inhomogeneity, we have

g+(x—x', «) = (dk), e—++0 (82)
(2s-)4 ~ k'+«' ie—

is the outgoing wave Green's function associated with
the differential equation

(—8„'+«')g+(x—x', «) =8(x—x').

The quantity ~, which appears as a mass parameter in
the last equation, ranges from 2m to infinity, thereby
producing the logarithmic divergence that we have
already recognized.

The divergent part is separated by writing

g~(x—x', «) = «
—'b(x —x')+«—'8„'b+(x—x', «), (84)

*-x'. G,o(x,x')- (x—x't-'. (76) which yields

The sixteen fold integral (74) will converge about the
point xo, despite the singularities of the four A and the
four G' provided that 16)4(1—P)+12, or

(77) and

w, (x—x') =Cb (x—x')+ 8„'a)(x—x'),

C = (log («/m) ——,'))„„,
6~'

(85)

(86)

Hence F(x), the measure of the field strength,

F(h)- )x—h. (-&-s&, (78)

t-" d~
~(x—x') =

I
—L(1—(2m/«)')&

4~'&2m &

—-', (1—(2m/«)') &)g+(x—x', «). (87)

X&,P„.(x)~(h x') &),'P„),(x'), —(88)

cannot be as singular as ( x—xo
~

', which implies the
integrability of F(x) . Accordingly, our discussion
applies to those electromagnetic fields for which the wi ———C I (dx)~iF„„'(x)+i2(dx)(dk')
space-time integrated energy density is Gnite. '

%e must observe, finally, that

wi ———',~ t (dx) (dx') trt yA (x)G+'(x,h')

XyA (x')G+'(x', x))= ~, (79)

independently of the field. This stems from the coin-
cidence of the singularities of G~'(x, x') and G+'(x', x)
at x= x'. Since m j must be gauge invariant, the potential
vectors always occur differentiated, and the singularity
of each Green's function is electively reduced to
(x—x'( '. Hence the integral (79) is logarithmically
divergent at x—x'=0. The explicit result obtained

This criterion is also stated by A. Salam and P. T. Matthews,
reference 5.

and the second term is Gnite for the class of fields to
which our results refer. This follows from the remark
that g+(x—x', «) )x—x') 'f(«[x—x'[), for x x'. If
the derivatives of the Gelds have the singularity

~
x—xo~ &' ~&, P)0, the integral

I (dx) (dx') B„F„„(x)g+(x x', «) BiF„i,(x')—
is convergent, and behaves like ~ 't' for ~—&~. The final
integration is therefore convergent.

7 J. Schwinger, Phys. Rev. 82, 664 (195k). In Kqs. (6.26) and
(6.29), the denominators printed as 4n-' should be (4n.}'.
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Although m is divergent,

~i'& 2 ~
—2Imw

is 6nite, since the divergent parameter C is real. We
shall derive a useful determinantal expression for this
quantity. The matrix I, which has been introduced in
(71), is also defined by

But

det(1 —G„q eyA) =det(1 —G,e 'eyA) = 1, (102)

(89) det(1 —G,e 'eyA) =det(1+iS&+&I) det(1 —G+'eyA)
(101)

=det(1+iS& &I) det(1 —G 'eyA).

or

The adjoint matrix

ey AG~ =IG+', G+eyA =G+oI, (90)

I=eyA(1 —G+'eyA) '=(1—eyAG+') 'eyA. (91)

since all cycles vanish when the matrix E(x,x') is pro-
portional to G &'(x,x') or G.e,'(x,x'). In particular,
unary cycles do not occur, in view of the dednitions' of
these Green's functions at xp=xp'.
Therefore,

+pit+ p

e '"*=det(1—G 'eyA) =I det(1+iS& 'I)] '
=

I det(1 —iS&+'I)] '. (104)eyA= (1+IG+) 'I=I(1+G+ I) '
I(1+G oI) '=(1+IG o) 'I, (93)

(92) e'"= det(1 —G+'eyA) = Ldet(1 —iS& &I)] '
is characterized by the same equations, but with t" =

I det(1+iS&+&I)]—' (103)
G replacing G+', G+. If we solve (91) and the analogous
adjoint equations for e&A, we Gnd that

which yields the important equations

I I=I (G+'—G')I=I—(G~o G')I. —

The zero-6eld retarded and advanced Green's func-
tions are given by

G„t,'(x,x') =G+'(x,x')+iS& & (x,x')

=G o(x,x')+iS&+& (x,x')

(1—iS& 'I)(1+iS& &I)=1 iS& &(I —I)+S& &I—S& &I— —

and
=1+S& &IS&+'I, (105)

(1+iS&+ I)&(1—iS&+&I) =1+S'+'IS& 'I, (106)

in which we have used (94), written as

On multiplying together corresponding expressions
in (103) and (104) we encounter determinants of the
matrices

and

(95)
xp&xp )0,

il 5&+&(x,x')+5& &(x,x')], xo&xo' I I=iI(S&+& —S& &)I= iI—(S&+—& S&-&)I, (10—7)

in virtue of the relation

G,e '(x,x') =G~o(x,x') —iS&+&(x,x')
Hence

G o—G o=i(S&+&—S& &). (108)

=G '(x,x') —iS& &(x,x')

I0, xp& xp
(96)

I —il 5&+& (x,x')+S' '(x,x')], xo(xo',

in which we have written

5' '( )=PA ( )4' ( )

le' I'=Ldet(1+5& 'IS&+&I)] '

= Ldet(1+5&+&IS& &I)] '. (109)

Only matrix elements of I and l connecting positive and
negative frequency modes are involved here. With an
evident notation to designate these submatrices, we
have

5&-'(x,x') =Q P&,„(x)&&(g„(x').

1—G„.&'eyA = (1—iS& &I) (1—G~'eyA)

= (1+iS&+&I)(1—G eyA),

1—G,e 'eyA = (1+iS&+'I)(1—G+'eyA)

= (1+iS& 'I)(1—G 'eyA),

Now
The arbitrariness of the definitions for x0=x0' is without in-

liuence on the anal result. Let G„P(x,x'), for example, be more
generally de6ned at x0—x0'= 0 as the numerical multiple
p, (0 &p &1) of the value for x0—x0'=+0, namely,

i Zx„f& ~(x)P&,&(x')(=iyos(x —x') j.

(98)

(99) Then

det(1 —G„q'eyA) = exp —J (dx) trG„t'(x, x)eyA (x)

= exp i@ Z (dx—g&,„(x)e7A (x)&O&,„(x),
Xy

which is of absolute value unity. This is the property actually
employed in deriving (109).

from which we obtain

det(1 —G„&'eyA) = det(1 —iS& 'I) det(1 —G+'eyA)
(100)= det(1 —iS&+'I) det(1 —G 'eyA)

I
e'"I'=

I det(1+I-+I+-)]-'(973

=Ldet(1+I+M )] ' (110)
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Ie&wl2(1 (112)

The Scattering Matrix

The history of the Dirac field under the inQuence of
the external electromagnetic field is given by the trans-
formation function (10), which we now employ as a
generating function for the occupation number trans-
formation function (no(ln'0. 2), according to

(X (r&IX'+'(r~)= 2 (X' 'In)(«) I
n' (r)2(n'IX'+')

I+-=I-+* I-+=I+-*.
Hence I +I+ and I+M + are nonnegative Hermitian
matrices, which possess nonnegative real eigenvalues,
and

and that

4'(h) =2+A.(x)e "*'x~n(+'

+Q &p&„(x)e*"*'x),„& &',

(119)
4'(h) =Z- 4..(*)e-'""x.,'+'

+Z 0 .( ) "*'x .' "
On incorporating the phase factors e'~'1, e '~ ~ into
the eigenvalues, we arrive at the generating function
for the scattering matrix, (nlSln'),

P(x& &'In)(nlSln')(n'lx&+&')
=e'" exp[2 x~,(-'(4., ~.+'I(!&p, l 'p'))x .&+&'

+Z Xx.'-'(~x.,x.—iI(I('p', I p))xx. +&'

+2 X..&-"'I( p,~'p')x', &-'

Ke shall represent this transformation function in
terms of the matrix, referred to the standard surface,
of a unitary operator S,

(no) I
n'o 2) = exp(iE ('n) h)) (n I

s
I
n') exp( —iI'(n')»).

(114)

We can regard S as describing an equivalent disturbance
which is localized on the standard surface.

On introducing the matrix I, according to (72), we get.

80'p, lgv X PpG+ SpÃ Pv

+p x),„&+)'iIpp, l&'p')x), „&+&'], (120)

I(I(p, !&'p') =, (Ck) (Ch')p), ~(h)I (h, h' ))p), „(x'). (121)

A simpli6ed generating function that describes the
transitions of a system known to be initially in the
vacuum state, is obtained by placing the eigenvalues
y(+' equal to zero,

P.(x&-)'I )(nlslo)
= e' exp[i g X),„(—'I(l(p, l('p')X), „&—)']. (122)

+—

dog dov S PpG+ $)X +v $
Hence,

(123)

(n+n I
5

I
0) =()n~n e i det( )I(+,—), (124)

+ (dx) (dh'))p'(h)I(h, h' )p'(h'), (115)

4'(*)= —)g& .V'(*')v.G+'(~', *), (116)

and, it should be noted, the Green's functions are those
for zero external field. Hence,

(x'-'~)
I
x'+'~2) = (x'-'~)

I
x&+'~2)]oe'"

Xexp ijf(Ch) (dx'))P'(h)I(x, x') P'( ))h, (117)

where, in this section, ]0 designates the absence of an
external electromagnetic field. It will be recalled that

(x' '~) IX'+'~~)]o
=exp[+) „x) -'e"' "e-' x) + '], (118)

in which we have written at interior points, as in IV,

P'(x) =)$Z „'G,'(x,x')v„P'(x'), .

1
det(. )I(+,—)= ~~ (ch() (ch„)(dh)') . (dx„')

(n!)' &

X(det( )p+(h;))(det&„)I(x;,x ))

X(det, „,g (x,')). (125)

The probability that the system persist in the vacuum
state is thus given by

p(o,o)= l(olslo) I'= le' I', (126)

where e=e+=e is the number of pairs of oppositely
charged particles that are created, and the e-dimen-
sional determinant is constructed from the elements

I(Xp,Vp'), where the row index Xp ranges, in standard
order, over the positive frequency modes that are
occupied in the final state, and the column index
similarly refers to the negative frequency modes. The
factor i"'(=1, n even; =i, n odd) arises from i" com-
bined with (—1)'"&" '&, the latter being introduced on
bringing the eigenvalues into standard order. The
determinant can also be written as



THEORY OF QUANTIZED FIELDS 623

L4'IXI'')=ex@ ' ~.fd v'(~)v'
p(n+e, O) =

I

e'" I'I det(„)I(+,—) I'. (127)

while the probability for creating n pairs of particles so that
in specified modes is

The total probability for the creation of n pairs is,
therefore,

p, p= Q p(m+0, 0)
n+=n=—n

Z(det(-)I(+, —))
(N!)'+—

X(det I(—+)) (128)

in which the latter summation is extended independ-
ently over the n positive frequency modes, and the
N negative frequency modes. The factor I/(N!)' thus
removes the repetitious counting of final states. We
insert (125), together with the analogous expression for
det( )I(—,+), and employ determinantal relations of
the type

—Z-(det -!!"-(x'))(det- 4-(x ))

XG+(x,x')y,)P'(x'), (134)

and it is understood that the eigenvalues on the right
are to be referred to the standard surface. This ex-
pression serves as the generating function for the occu-
pation number matrix of P, according to

L!t'I& l~']= & 8'I»]L»IZ I»']I »'l~']. (»5)
N, N'

In virtue of the relation

(x( ) l~) (~ I)((+) ) = (—I)&-(—1)I(&=N-') Q'-+&—&-')

xLP'I»]L»'l0'], (136)

we have the following connection between the matrices
of Sand+:
( ISI~)—e' ( 1)N ( I) ', (w=N ')( + -N')—

x L» I p I
»']. (137)

= det(„)S& ) (x;,x/), (129)

"(dxg') . . (dx„')(det(„)I(x;,x;))e!~

r
p„,p ——I.'-I'— (dx,)" (ax„)

nt&

Xdet(„) (x; I
S&+)IS&-'I

I x;)
L0'I pit']=exp/+ P~ 'e(l 8'& ']

(132) =EN'I»](-I) -I »l~'],
so that

=
I
e'" I' det(1+S&+)IS&-)I)

=1 (138)

I »I.I»']=a,v, ~ (—I)~-. (139)
in virtue of the expression (109) for the quantity which
is the vacuum-vacuum transition probability.

The general matrix element of S is advantageously
presented in terms of the classi6cation introduced in IV,
which employs a time-reversed description for the
negative frequency modes. Ke take the generating
function (113) for the matrix of S and write

(x' 'ISI)&'+')=e' 8'IZING'] (133)

This also follows from (137).On using (115) and (138),
the generating function (134) assumes the form

8'I Z I4"]= expl:Z A.'~(&p, ~'p')A ''], (14o)

with
0 ()&p,X'p') = p(X)5g~, ), „+pI(Xp,l&'p').

'See R. P. Feynman, Phys. Rev. 76, 749 (1949).

(141)

and The occupation numbers E=n+, n ' are associated
with modes that propagate out of the region bounded
by a& and 02 (positive frequencies on a&, negative
frequencies on o 2), while the occupation numbers
Ã'=n+', n are those of modes that propagate into the

X(det& )S( )(x&',x),"))=det( )(x;IIS( )lx),"). (130) region (positive frequencies on a2, negative frequencies
on 0 &). Hence P connects an "initial" state described by
incoming 6elds with a "6nal" state speci6ed by outgoing
fields. The sense of development is that of time for the
positive frequency modes, but is reversed for the nega-
tive frequency modes. Without attempting to justify
the term here, we speak of P as describing the develop-
ment of the system in proper time. It should be noted

e probability for encountering the system in some that the number of "Particles" is conserved, %=X', as
is evident from the structure of the generating function
(134). Thus, )(++e '=0+'+n, or e+—e =a+' —m ';

00 1 the conservation of particles in proper time is equivalent

2 p-.= le'"I'Z,
— (~x) "(~x-) to the conservation of charge is conventional time. '

n=o n=ont 0 In the absence of an external field, we have S= 1, and

P = c, where, according to (IV. 96)



624 JULIAN SCHKINGER

[Nl p IN )=8v, ~~ det&N&a(l&p~'A p')&

where l&p and l&'p' range, in standard order, over the
occupied modes of the "final" and "initial" states,
respectively.

We shall now use the connection between I and I,
Eq. (107), to prove that g satisfies the relations

Z[tt'IN'3[N'I 2"INj
N'

= 'g( p y, .„.'at(X'p'p p)«(~))", (153)
) p X'y'

into
143Zt«Z = Z«Z'='

The general occupation number matrix element of g generating functions
is thereby obtained as

Z[NIZIN'j[N'l4'7=II(Z a(~p, l&'p')4v~') (152)
(142) 'Ay X'y'

This indefinite-unitary property will first be established
for a(I&p, I&'p'), which represents the sub-matrix of p
for single "particle" states. We combine (141) with

0 t p.p,X'p') = «(X)bg„, g „—«I (Xp,I&'p'),

and construct

0tp&p l&"p")«(I&")a(II."p",I&'p') = «(l&)5g„, g „
gl lyll

[0 IZt «ZIP"j
=exp[+ p),„'at (I&p, I&"p")«(l&")0 p,"p",I&'p')p), .„.')
=exp[+ P,„'«(I )P,„')

The indefinite-unitary property of g implies, in par-
ticular, that

+i[I(Xp,X'p') —Ip&p, l&'p') j
+ Q I(XP,X"P")«P.")I(I&"p",X'p').

But (107) implies that

I (l&p, l&'p') —Ipp, X'p')

I(hp, X"p")«(X")I(l&"p",l&'p'). (146) I[NIACIN'll =p(~,~')/p(o, o). (156)

Z (-1)"=~-'I[NIACIN') I'=1, (»5)

(145) which indicates that
l

[NIACIN'gl'

is not necessarily
less than unity. But this is to be anticipated from the
significance of these quantities as relative, rather than
absolute probabilities,

Therefore Consider, for example, the probability for no change in
a single particle state, relative to the probability for the

at(gp, g"p")«(g")a(g"p",g'p') = «(g)P~„„,„,, (147) maintainance of the vacuum state,

or, in matrix notation,
p(1 .,».)/p(0, 0) =

I (I p,xp) I' (157)

at@0'= e. (148) The one-particle version of (155),

Since the fundamental relation between I and I is p «(I)«(I')Ia(I'p', I p)l'=1,
unaltered by the substitution I~—I, we also have ) I~/

(158)

0 60't= f. (149) asserts that

The general statement can be deduced from (142).
With

I p p,xp) I'=1— p .(x) (x')
I

(x'p', l&p) I'. (159)
)&, 'y'gXy

[Nl+ I
J= '

& ) ( P P ) ( ) Thus for l&)0 say, we have

we get

Z[NIZt IN"3[N" ITIN'3
Nfl

det&~)(at (l&p,X"p")«(I&"))
Q f ) Ir&ir

Xdet&~&(a (l&"p"& I&'p'))

det&~~( p at(Xp, X p' )«(l& )a(l& p, l& p ))

=8x ~ (—1)"-=[N I «I N'j, (151)

which establishes the first part of (143). The proof of
the second part is based analogously upon (149). In a
closely related derivation, we combine the partial

p(1„,1„)/p(o,o) =1—p+ I
Ip, 'p', zp) I2

+Q II(X'p', Xp) I', (160)

where the positive frequency mode summation omits
l&p. These oppositely signed summations express the
changes in the probability ratio, relative to unity,
produced by transitions of the particle to other positive
frequency modes, and by the exclusion principle sup-
pression of pair creation in which a particle would have
occupied the mode Xp.

We shall now supply the explicit verification that 5
is a unitary operator. The proof is more involved than
the elementary demonstration of the indefinite-unitary
property possessed by P. This is attributable to the
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non-conservation of the number of particles, as com-
pared with the number of "particles. " Our procedure
begins with (117),written as

(C'(x' ')5+(x'+'))=(@(x' ')+(x'+'))~'"

Xexp i (dx) (dx') P'(x)I(x,x')P'(x'), (161)

with the usual understanding on referring eigenvalues
to the standard surface. By introducing the operators
that possess the eigenvalues x~~' &' we can exhibit the
vector 5%(x&+) '), and thereby the adjoint vector
C(x& &')St. We must then prove that the product
(x &

&'
l
5tS

l x '+&') equals (x ' '
l x &+') . The evaluation of

this product is accomplished by bringing the operators
to bear upon their eigenvectors, which will yield a func-
tion of the eigenvalues, multiplied into (x' &'lx&+&').

This function of the eigenvalues can also be obtained by
making the substitution x»&+)—)x»&+)+x»&+)', and
evaluating the null eigenvalue matrix element. Thus,
the demonstration of S~S=i is reduced to the veri-
Gcation that

le'"l'(olFlo)=1,
where

F=exp l i "(dx) (dx')LP'(x)+Q P»(x)x&(„(+)1

xI(*,.)Lp (*)+F.y, .„.(")x,.„.+&j
l

= —'
~(d ')I(**')(0"( ')+2+ 0 .(*')x ."')P

+Fi (dx')I(x, x')(f'(x')+Q g, (x')x»( '). (168)

Furthermore, for X)0,

(+) P]—((I /(&x»( ))P—

=Fi (dx) (dx') It »(x)I(x,x')

and, with 'A&0,

X(y'(x')+p y, .(x')x, , &-&), (169)

l p,".-a=(~,/~x. )

=i, (dx) (dx')P),„(x)I(x,x')

X(0"(x')+2+ 4 (*')x"'+')P (17O)

The latter results can be expressed by

La'(*)+a+ e

Naturally, the same results are obtained from the
operator properties of P and f.

Our first task is to demonstrate that the left side of
(162) is independent of the eigenvalues. Now

(~&/~k'(x)) p

xI( *')l:4'( ')+Z-6 (*')4 ~ ' '3 . (163)

The commutation properties of the operators x) „&+'

should be noted. Since

(x' 'Ix"') =em(Z x»' 'x»"'),
)y

we have

&(x' 'Ix"')
. (x' 'lx"')E(~x»( 'x»(+'+x~. ( 'hx~. "')

)p
= (x' 'IZ(~x»' 'x»'+'+x~. ' '~x»'+') Ix'+'),

Xy

=F (dx') (x liS'+'I
l
x')

X(4'( ')+Z p. „( ')x. „&-)), (»I)

"(dx') (xliS& &Ilx')—
X(0'(x')+Z+ f~ n (x')x~ n'+))F, (172)

where 5(+) (x,x') are defined in (97). On introducing the
notation

and therefore

G,(')=i 2 x»( )&x»(+), G,(-)=i2 x»(+)&x»( '.
Xy ),y

(165)
(ol8'( )+P,P„( )x,„+)Plo)= (olPlo)f, (*),

(173)
(OIFQ'( )+P A„(*)x,„&-))lo)=(olplo)f ( ),

The implied commutation relations are

{166) (168) asserts that

(&)/~4'(x)) (o I
p

I o)

(+) x~, , &+)) —(x~ (—) x~, , (—)) —O

(167)
(x»(+),x), ,' '}=b)„,), ,'

= —(OlFlo)z (dx')(I(x, x') f~(x')

—I(x,x')f (x')), (174)
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while (171) and (172) supply the information

f+(x) —(dx') (x (iS(+)I
(
x')f (x') =)p'(x),

J

f (x)— ' (Cx') (x(zS( )I)x')f+(x') =)P'(x).

(175)

By subtracting the two equations in (175), we get.
(suppressing the indices)

(1+iS( )I)f+
— (1+——i5(+)I)f . (176)

A second diGerentiation with respect to an arbitrary
element of the matrix yields

(()/()X, ,) (8/()X), () detX= [(X—');„(X—')„
—(X '),(, (X ')(;] detX. (3)

The right side reverses sign on interchanging the row
indices i, k, and on interchanging the column indices

j, /. Hence, the second derivative vanishes for equal
row, or equal column indices. In particular,

(()'/()X;,~) detX= 0.

But, according to (107),

I(1+iS' )I)= (1+iIS'+')I,
while

(177)

We also conclude that

P; X;;(8/BX;~) detX= Q; X,,(X ),; detX

I(1+iS'+)I)= (1+iIS(+')I (178)

Hence, if we multiply (176) with I, and remove the
ensuing common factor, 1+iIS'+', we are left with

and that
=detX,

g; X;;(8/()X,,) detX= detX.

(5)

(6)

which shows that
If+ If, ——

Xexp[i p )(q„( 'I (Xp,) 'p'))O, „( ']
~
0)= 1. (181)

But this is just the statement that

(0~5tS(0)=P
~
(e(5(0) ~'=I, (182)

the proof" of which has already been given, in (132).
The substitution I~—I convert this verification of
StS= 1 into one for SSt= 1.

The discussion of time-independent fields will be
deferred to a subsequent paper.

APPENDIX A

We want to verify here that the differential form
(25) correctly defines detX. The integrability of this
expression must be demonstrated first. By considering
two independent variations, we confirm that

82Tr(X 'bgX) —8,Tr(X '82X)
= —Tr(X '82X X '())X)

+Tr(X 'B,XX '() X)=0 (1)

(B)/Bg'(x))(0jF f0) =0. (180)

Evidently, (0 f
F

~
0) is also independent, of the eigen-'

values f'(x). The problem remaining is the demon-
stration of

~

e'" ~'(0~ exp[ —i Q )(g„'+'I(Xp,X'p'))(), ,' ']

detXY= detX det Y.

The constant of integration has been fixed by the initial
condition. Note also that the trace property

leads immediately to

TrX= TrX~~ (10)

detX= detX'".

APPENDIX B

In this section we discuss the connection between
determinants and ordered operators. Let x„&+' be a set
of operators that satisfy

{)( (+) x, (+)}= {)(„(—) )( (—)}—0

{)((+) x (—)}—g

Therefore detX is a linear, homogeneous function of the
elements in each row, and in each column, which is
antisymmetrical in the rows and in the columns of the
matrix. This establishes the identity of detX, as defined

by (25) and the initial condition det1=1, with the
conventional concept.

The multiplication property of determinants follows
directly from the definition (25). Indeed,

Tr(XY) 'f')(XY)=TrX 'bX+TrY '()Y (7)

states that

()(log detXY) =()(log detX)+i)(log detY), (8)

in virtue of the fundamental trace property, TrXY
=TrYX. With infinite matrices, the applicability of
this property requires suitable convergence of the
traces. On using a discrete labelling of the matrix ele-
ments, we can express (25) as

and consider the ordered exponential

Y= exp[2 x. +;X&„)(,—»,
TS

in which we have used the notation

(2)

(c)/BX;;) detX= (X—),; detX.
"For further discussion, see Appendix B.

(2) 1
exp[A; 8]=P A "8". —
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We deduce the commutation properties

Lx.'+' V3= —(~./~x. ' ') V= —2 x '+'&K .V (4)

[V,x.(-)3=—(a,/ax. (+))V= —V 2, XE„X,(-), (5)

since the sl s must be some permutation of the
r) ~ r„, and the factor er) r„e8& ~„ is +1 or —1,
according as the permutation is even or odd. The
analogous result for a continuously labelled matrix is
obtained with the substitution

whence
Zn x~(+) (1+&K)~.V= Vx. '+'

VZ (1+&K).x' '=x. ' 'V,

x, '+' V= V P, x„&+'[1/(1+),E))„„
Vx. ' '= 2 I 1/(1+&K)3. x ' 'V

(6) namely,

E.,', +(dx—,)I K(x,,x,) (Cx;)&, (15)

(7)

&)0

det(1+LE) =Q X"— (dx)) (dx„)
~=0 g, !J

)&det(„)E(x;,xy). (16)

It is of interest to consider the similar properties of
ordered exponentials constructed from operators that
obey the B.E. commutation relations

On differentiating V with respect to ), we get

(&)/&)X)U=P K„x,&+'Vx, & )

=Q Vx, &+) (E/1+)(K) „,x, &
—'

= V Q(E/1+LE)„
—Q Vx, & )x,&+)(E/1+RE)„

= VTr (E/1+RE)
—r. x ' 'Vx. '+'(K/(1+~K)') ', (g)

[X."),X.(+)1=[x.' ',x.' 'j=o,

[x.'+',x.' )3=~-.
(17)

Then the minus sign is to be omitted from (84) and
(85), so that the sign of E is reversed in (86) and (87).
This results in (88) being replaced byand the integration of the 6nal form supplies the

identity (&)/BX) V= VTr(K/1 XE)—
+2 .' 'V ."'(E/(1 —)(K)')-, (Ig)exp[+ x„&+);XK, ,x, &

—))=det(1+LE)
(~K/1+~K)"'~' (9) which yields the B.E. identity

(x' 'I exp[2 x.'+';)(K-x. ' 'jlx"')
=d t(1+LE) (Z ' ' '+' [1/(1+)K)3 ) (10)

Thus the B.E. analog of (811) )s

The (x& 'I IX&+)') matrix element of this operator

Xexp(g x, &
—); x„&+)[)(E/(1—XE)j„). (19)

and, in particular, that

det(1+RE) = (Ol exp[+ x, '+'; XE„,x,, ( 'jl0), (11)

which exhibits det(1+)(E) as the matrix element of an
operator. The derivation of this result requires no more
than the first two rearrangements of (88). Now

1/det(1 —)(E)=(Ol exp[+ x,(;)),E,.x, & 'jl0). (20)

' ' (0)=XI ')'* ( '),

+(0)'x )'+' x -"'= (Il ~~.)+(~)'.
(21)

In the expansion (812), the order of left and right
factors is now irrelevant, and repeated indices can
occur. Thus (813) is replaced by

«p[Z x."'&K x ' 'j=2 ~("—2 x i"'. x "'
+=0 ~! r, s

X8„( ) xs, &
—%'(0)= es) s„e(l'),

+(0)tx )'+' "x -'+'="~ '-+(~)',

The indices sl. s must be some permutation of the
rl r„, and each term carries the factor IInI, !.Hence
the expansion of (820) is represented by

12
00

1/det(1 —)(E)=P )("—P perm&„)Er;r;, (22)

(13)
where the so-called permanent is deined by

where the occupation number eigenvectors are preceded
by alternating symbols, which are unity if the operators
appear in some standard order. Therefore,

perm&»Kr;rz=P P Kr,s;, (23)

00

det(1+RE) =P )("—P det(„)E,';,
~=o ~!

and the summation with respect to the s; is extended
over all n! permutations of the r; This quantity d.iffers
from the corresponding determinant by the omission of
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=Fo) (dx') (x~ iS'+'I
~

x')P P&, „(x')x&,„&—
& (30)

&&0

1/det(1 —XE)=P I&"—I (&Ex,) (Cx„)
&!3 and

the alternating sign factor which, in the latter, enforces Now, according to (1/1) and (1/2),
the nonoccurrence of identical rows or columns. In the
continuous limit LEq. (815)j, repeated indices produce L~+!t'"&(x)x"&
no contribution and we get

LFO,Z- A.(x)x~.& &3
24

r
(dx')(x~iS& &I&x—')Q+ Pg, (x')&o, , &+&Fo,

Xperm&~&E(x&&x&).

This permanent coincides with a special case of the
symmetrant. de6ned in IV. The relation between the
expansions (314) and (322) can be understood in which are combined in

terms of the expressions

(31)

det(1+ICE) = exp[Tr log (I+ICE)]
~' (&Ex')(gi1+S" IS 'I(x')Q—

P „(x')x „&+&F,
(25)

1/det(1 —XE)= exp) —Tr log(1 —
I&.E)j, (26)

=Fo 2+4~.(g)x~.&+&

since the sign factors in (38) arise from the successive
sign changes in the series (35), which are missing in

+ ' (dx')(xliS&+&Ilx')P-4'& (*')x& & &F0. (32)

1—Tr log(1 —
I&.E)=g XE„. -

%e deduce that

(») (OIZ A„(*)x,„&+& Z 6,„,( )„,„,&+&F, IO)

= (x'( (1+S&+&IS& &I)-'iS&+ I-S' ' I*)(OI FoI o) (33)

Finally, we shall use operator techniques to prove
that

and consequently

(0~ F0~0) = det(1+S&+'IS& 'I), (28) (b/!&I (x,x') ) (0 i
Fo i 0)

=(x'[(1+5&+'IS& &I) 'S&+&IS& &ix)(0[Foi0). (34)

f& log(0~ F0~0) = Tr((1+5&+&IS& &I) '
X&&(S&+&IS& &I)], (35)

(&&/bI(x, x')) Fo iQ———
XA,,(x)x&,,'+'Q+ A „(x')x&, y

+
F&& (29) which proves (828).

where Fo represents (163) with zero eigenvalues, thus
verifying (181.). The dependence of Fo upon the quan- We thus arrive at the differential expression

tities I(x;x') is given by


